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Abstract

An adhesive-bonded single lap joint is analyzed using a new fuzzy finite element model. In the model,
Young’s moduli and Poisson’s ratios of the joint materials are taken as fuzzy numbers in order to take the
uncertainty of the material properties into account. The fuzzy numbers are modeled using linear triangular
membership functions. At a selected material point in the adhesive layer, the possibility distributions for
the displacements and shear stresses are depicted by graphics.
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Introduction

Traditional approaches to stress analysis assume that
all the problem data are known with mathematical
precision. In practice, however, most real problems
are imprecise in nature and their mathematical mod-
els can be best represented with some level of impre-
cision. The relations and statements used for the
description of real problems are in general imprecise
because of inherent fuzziness in the problems. There
are several ways by which imprecise parameters can
be represented and manipulated in engineering cal-
culations. The simplest approach is to choose single
values for each parameter and record a single value
output using the system governing equations. The
process is repeated in order to explore a given space.
This method is very simple but can be extremely
expensive from a computational point of view.

Interval analysis is another method for carry-
ing out computations with imprecise parameters
(Moore, 1979). In this case, an interval is used to
represent a problem variable. The results are also
represented by 2 numbers at the end points of the

interval. The result characterized in this manner in-
dicates the range of possible values for outputs but
provides no information on the performance of the
result within the interval.

The theory of fuzzy sets and its logic offer a new
approach in solving engineering problems where crisp
information and engineering knowledge can be inte-
grated to arrive at an approximate reasoning on the
problem. Several applications of the fuzzy set the-
ory in numerical analysis can be found in Aydemir
et al. (2002), Chao and Ayyub (1996), Muhanna
and Mullen (1999) and Valliappan and Pham (1993).
Several probabilistic methods are also used in finite
element analysis and a comparison of the methods is
given in the work of De Lima and Ebecken (2000).

Before carrying out a finite element stress analy-
sis some properties of the material must be obtained.
For a linear elastic finite element stress analysis the
properties are Young’s modulus and Poisson’s ratio
of the materials. These values are obtained via sev-
eral experiments, and in all test results there is a
degree of scatter present due to variations in the
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specimen preparation, testing errors and certainly
not least to variability in the materials tested. With
adhesives the scatter is proportionately greater than
that with metals. With metals the coefficient of vari-
ation, i.e. standard deviation divided by the sample
mean, is often less than 5%; with adhesives it is usu-
ally 10% or more (see the work of Benson (1967)).

In this paper, a fuzzy finite element stress anal-
ysis of an adhesive-bonded single lap joint is car-
ried out. For the analysis, a new fuzzy strain-stress
matrix is defined. The mechanical properties, i.e.
Young’s moduli and Poisson’s ratios, of the joint ma-
terials are modeled as fuzzy numbers.

Fuzzy Modelling of the Mechanical Properties

In a classical finite element stress analysis the me-
chanical properties are taken as crisp values. Since
the input data are imprecise, no matter what tech-
niques are used the solution will not be reliable. In
fuzzy finite element stress analysis, the mechanical
properties are considered fuzzy parameters in order
to take the uncertainty into account. The fuzzy num-
bers are characterized by their membership func-
tions. In this paper, linear triangular membership
functions are used for the fuzzy numbers. Although
brief information will be given below, more informa-
tion on the membership functions can be found in
the work of Valliappan and Pham (1995).

Before constructing a membership function 2 ex-
treme values L′, which is the minimum possible value
of the parameter, and H ′, which is the maximum
possible value of the parameter, are defined. The
extreme values are calculated using the definition be-
low:

L′=

{
P − 2(P − L) if P ≥ 2(P − L)
0 if P ≤ 2(P − L)

(1)

H ′= P + 2(H − P ) (2)

where L, P and H are expert estimates of the me-
chanical properties for low, possible and high values,
respectively. A linear triangular membership func-
tion µ(r) can now be constructed using the piecewise
function defined below:

µ(r) =



0 if r ≤ L′
r − L′
P − L′ if L′ ≤ r ≤ P
H ′ − r
H ′ − P if P ≤ r ≤ H ′

0 if r ≥ H ′

(3)

where r is a value.
On the basis of the definitions given above, the

mechanical properties of the joint can be represented
in an interval of confidence as

E =
[
EL ER

]
(4)

ν =
[
νL νR

]
(5)

where the subscripts L and R stand for the left and
right of the relevant fuzzy number, respectively. The
given type of fuzzy numbers lead to the fuzzy arith-
metic computations at each-level cut set. At an α-
level, the intervals given above can be rewritten as

Eα =
[
EαL EαR

]
(6)

να =
[
ναL ναR

]
(7)

In the following, a fuzzy finite element formula-
tion will be given based on the definition above.

Fuzzy Finite Element Formulation

In the finite element analysis, the load-displacement
relation is written as

KQ = F (8)

where K is the stiffness matrix, Q is the nodal dis-
placement vector and F is the nodal force vector.
The stiffness matrix is defined by

K =
∫
V

BTDBdV (9)

where B is the strain-displacement matrix, D is the
elasticity matrix and V is the element volume. If
the finite element displacement method is used, the
displacements are first calculated from Eq. (8) as

Q = K−1F (10)

in which the inverse of the elasticity matrix D−1

will be involved in the fuzzy mathematical model-
ing. The inverse of the elasticity matrix is the elastic
compliance matrix C, i.e. C = D−1.

The matrix C is material dependent and for a ho-
mogeneous material it includes 36 elastic constants.
Strain energy considerations can be used to show
that for fully anisotropic crystalline materials the
number of independent material constants can be as
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large as 21 (Ugural and Fenster, 1995). For a ho-
mogeneous isotropic material, the constants must be
identical in all direction at any point. It is observed
later that if the material is isotropic the number of es-
sential elastic constants reduces to 2, namely Young’s
modulus and Poisson’s ratio. In the 2-dimensional
case, C can be written as below

C =

C11 C12 0
C21 C22 0
0 0 C33

 (11)

where C’s are the material dependent constants.
Since the strain energy is always a positive value;
the terms of C are not arbitrary. For example, the
terms on the principal diagonal must always be posi-
tive, for more information see the work by Alers and
Neighbours (1957).

For an isotropic material C can be written in
terms of the mechanical properties. Since the me-
chanical properties are considered fuzzy parameters,
the elastic compliance matrix needs to be fuzzified.
A 3-dimensional version of the fuzzy elastic compli-
ance matrices was given by Aydemir (2001). Here,
this matrix will be given for the plane-strain case.
For an isotropic material, in the case of the plane-
strain, the fuzzy elastic compliance matrices are de-
fined as

Cα
L,R =


1−(ναR,L)2

EαR,L
−ν

α
R,L(1+ναR,L)

EαL,R
0

−ν
α
R,L(1+ναR,L)

EαL,R

1−(ναR,L)2

EαR,L
0

0 0 2(1+ναL,R)

EαR,L


(12)

In a plane-strain fuzzy finite element calculation,
if Cα

L is used the lower-bound displacements (Qα
L)

will be calculated. Similarly, if Cα
R is used the upper-

bound displacements (Qα
U ) will be calculated.

In the case of stress-deformation problems, the
nodal displacements are the first results and the
stresses S are computed from the displacements.
Then the fuzzy stress vectors at the same α-level
will be

SαQL
= Dα

QL
BQα

L (13)

SαQU
= Dα

QU
BQα

U (14)

It should be noted that the vector of fuzzy sec-
ondary quantities (stresses) calculated from Eq. (13)
may not always be smaller than those calculated
from Eq. (14). Their magnitudes depend on the val-
ues of fuzzy material parameters, and the vector of
the related fuzzy primary quantities (displacements).

A Case Study: Adhesive-Bonded Single Lap
Joint

Although there are many types of adhesive joints the
single lap joint is the most famous and most com-
monly studied adhesive-bonded joint. Its stress dis-
tribution is open to some doubt and certainly a com-
plex combination of stresses. The pioneering work
dates back to the early 1940s when Volkarsen (1938)
published the first known stress analysis. Over the
past 60 years there have been numerous studies con-
ducted and information collected on the stress anal-
ysis of adhesively-bonded single lap joints. In most
cases, analytical expressions are developed that at-
tempt to better predict the stress state within the
joint these and are then compared to past research or
finite element results. However, with finite element
analysis, solutions can be obtained that are totally
intractable by classical analytical methods; see the
work of Lang and Mallick (1998).

In the following, the defined fuzzy finite element
model will be used to carry out the stress analysis of
an adhesive-bonded single lap joint.

Joint configuration

The joint dimensions and applied loads are given in
Figure 1. In the joint, the adhesive thickness, the
overlap length and the length of each identical ad-
herend are 0.15 mm, 13 mm and 51 mm, respectively.
A horizontal tension stress with the magnitude of
1 MPa is applied to the non-overlapped ends of each
adherend.

Figure 1. Joint dimensions and applied loads.

Material properties

It is often possible to obtain expert knowledge about
the values of the mechanical properties in the form of
low, probable and high. It is already said that based
on this kind of subjective information the member-
ship functions of the mechanical properties can be
constructed. Although the construction of member-
ship functions is still a big issue and a debatable
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one in the fuzzy set theory, in this paper we use lin-
ear triangular membership functions. Here, it should
be noted that the shape of the membership function
is subjective and depends on its application. The
choice of the shape of the function will depend on
the expert’s opinion, since it cannot be inferred that
any type of possible shape is more suitable than the
other.

In the joint, the adherends are identical and made
from aluminum. Assume that low (L), possible (P )
and high (H) values for the elastic material proper-
ties of the joint are given as below:

for the adherends,
EL
EP
EH

 =


68
70
72

GPa

 νL
νP
νH

 =

 0.29
0.30
0.31


for the adhesive,

EL
EP
EH

 =


2.80
2.87
2.94

GPa

 νL
νP
νH

 =

 0.37
0.38
0.39


Now, using the definitions given by Eqs.(1-3), the

linear triangular membership functions of the me-
chanical properties can be constructed. They are
given in Figures 2-4.
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Figure 2. The membership function for Young’s

modulus of the adherend.
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Figure 3. The membership function for Young’s

modulus of the adhesive.
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Figure 4. The membership functions for Poisson’s ra-

tios. The solid line is for the adherend material and the

dotted line is for the adhesive material.

The finite element model

The boundary conditions and the coordinate system
are shown in Figure 5. The coordinate system is
placed in the center of the adhesive layer. Point A is
fixed and point B is free to move in the x-direction.
In this figure, (x, y) coordinates of points A and B
are also given.
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Figure 5. Boundary conditions and coordinate system.

For the solution, the plane strain assumptions
are used. The finite element mesh and its details
are shown in Figure 6. In the mesh, quadrilateral
8-node isoparametric finite elements are used. In a
finite element stress analysis of single lap joints, it is
essential to use a suitable mesh, which will be able
to simulate the real happenings in the material in-
terfaces as much as possible. Since the mechanical
properties of the joint materials are highly different
from each other, an intensive mesh discretization is
prepared through the overlap length, especially in
the adhesive layer.

Figure 6. Details of the finite element mesh.

Results

Three different cases are considered: i) only E is
fuzzy, ii) only ν is fuzzy, and iii) both E and ν are

fuzzy. The displacements and the stresses are calcu-
lated at each α-level. To show the results, the point
where von Mises equivalent stress is maximum in the
centerline of the adhesive layer is selected. The coor-
dinates of the selected point is (-6.42 mm, 0 mm). It
should be noted that any result obtained from fuzzy
finite element stress analysis will have an interval;
but, in the following, only the intervals for the ver-
tical displacements and shear stresses are shown.
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Figure 7. Possibility distributions of vertical

displacements.

The possibility distributions for the vertical dis-
placement are shown in Figure 7. It is observed that
even small changes in the value of E will contribute
to large changes in the value of the displacements.
The distributions of the displacements are almost
symmetric around the possible values. The largest
possible distribution range is obtained for the case
where both E and ν are fuzzy, and the smallest pos-
sible distribution range is obtained for the case where
only ν is fuzzy.

The possibility distributions for shear stresses are
shown in Figure 8. The stress distributions are not
symmetric around their possible values. It can be
seen that even small changes in the value of ν will
contribute to large changes in the shear stress values.
The largest possible distribution ranges are obtained
for the case where both E and ν are fuzzy. For the
shear stress, the smallest possible distribution range
is obtained for the case where only E is fuzzy.
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Figure 8. Possibility distributions of shear stresses.

Conclusions

The fuzzy finite element method proposed in this pa-
per is a new technique for solving problems subjected
to fuzzy parameters. It is important to note that
the resulting elasticity matrices are different from
those given in the literature by Valliappan and Pham
(1993).

Finite element solutions are presented in terms
of lower and upper bounds at different membership

grades. To be aware of the possible interval of the re-
sults is undoubtedly very important for an engineer,
and the fuzzy set theory makes this possible within
a reasonably shorter calculation time. To adopt the
fuzzy finite element procedures to an existing finite
element code is also quite simple.

This is the first time that the fuzzy set theory has
been used for the finite element plain strain analysis
of an adhesive-bonded single lap joint. The method
has vast potential in the finite element stress analysis
of adhesive-bonded joints. Furthermore, the method
shown here is not limited to this specific application
(i.e. adhesive joint). It can be applied to any kind
of linear-elastic plain strain problem.

Furthermore, it is well known that the accuracy
of finite element analysis results is highly affected by
the reliability of the mesh discretization. Although,
in the case study here, a suitable mesh is used, the
results are still mesh dependent. Several adaptive
mesh refinement procedures have been developed to
improve the reliability of the finite element results.
Among them, a procedure suitable for use in a fuzzy
finite element stress analysis was proposed by Val-
liappan and Pham (1993). Therefore, the results
might be further elaborated to take the mesh de-
pendency into account.

Acknowledgments

This project was partially funded by TÜBİTAK-
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