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Abstract

The basic interface crack problem in a nonhomogeneous coating with continuously varying elastic prop-
erties bonded to a homogeneous semi-infinite medium is examined. The problem is encountered in studying
the fracture mechanics of functionally graded materials, which are mostly 2-phase particulate composites
with continuously varying volume fractions. The objective of this study is to determine the effect of the
material nonhomogeneity parameters and relative dimensions on the stress intensity factors (SIFs). With
the application to fracture mechanics in mind, the main result given in this study is the SIFs and crack
opening displacements (CODs) as a function of the nonhomogeneity and the length parameters for various
loading conditions. Using integral transforms for the displacements in the plane strain crack problem, the
mixed boundary conditions are analytically reduced to a system of singular integral equations that are solved
numerically using certain approximate techniques.

Key words: FGMs, Mixed-mode loading, Singular integral equations, Stress intensity factors, Crack open-
ing displacements.

Introduction

Various forms of composites and bonded materials
have always been widely used in technological ap-
plications such as power generation, transportation,
aerospace, and microelectronics. However, to meet
the exacting demands of modern technologies, the
use of homogeneous materials and standard compos-
ites is becoming more and more difficult so that a
greater emphasis in current research is placed on
material design; more specifically, on developing new
materials or material systems tailored for specific ap-
plications. Increasing concerns with mechanical fail-
ure initiating at the interfacial regions require a bet-
ter understanding of the interaction between flaws
that may exist in these regions and applied loads and
other environmental factors. The conventional ap-
proach to studying the thermomechanics of such ma-
terials is based on the assumption that the composite
medium is piecewise homogeneous and the flaws may

be represented by plane cuts or cracks. On the other
hand, in most bonded materials the interfacial region
appears to have a structure that is generally differ-
ent than that of the adjacent materials. In many
cases, such as in plasma spray coating, sputtering
and ion plating and in some diffusion bonded mate-
rials, the thermomechanical properties of the region
are graded in the sense that the interfacial region is a
nonhomogeneous continuum of finite thickness with
very steep property gradients.

In this study, it is assumed that the coating is
a functionally graded material (FGM), which is a
composite with a gradual compositional variation in
the thickness direction. These continuous changes
result in property gradients that can be adjusted by
controlling the composition. In this sense, material
property grading is just another means to get opti-
mal performance from the material. Generally, the
objective of the optimal design is to provide such
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properties as stiffness, strength, toughness, ductility,
hardness and wear, corrosion and temperature resis-
tance wherever needed in the structural component.
In this respect the concept of FGM provides mate-
rial scientists and engineers with a highly versatile
tool. One of the important potential applications of
FGMs is, for example, their use as an interfacial zone
in bonding dissimilar materials. By eliminating the
abrupt change in thermomechanical properties along
the interface through property grading, it is possible
not only to reduce or eliminate the stress concentra-
tions but also to increase the bonding strength quite
considerably. For an in-depth review of processing,
design and applications of FGMs and extensive ref-
erences see Yamanouchi et al. (1990), Holt et al.
(1993), Ilschner and Cherradi (1995), Shiota et al.
(1997), Kaysser (1999), Trumble et al. (2001) and
Pan et al. (2003).

Since the structure and thickness of the coat-
ing play an important role in determining the crack
growth resistance parameters as well as the crack
driving force, in this study we examine the underly-
ing fracture mechanics problem in a layered medium.
In layered materials there are generally 3 types of
fracture problems, namely surface cracking and crack
penetration, debonding and edge delamination. In
this study only the problem of debonding is consid-
ered. It is assumed that the medium consists of a
graded coating bonded to a homogeneous substrate
and contains an interface crack (Figure 1). The re-
lated plane strain problem is solved under various
loading conditions and for various values of the ma-
terial nonhomogeneity parameter. For a brief review
of the fracture problems in conventional composite
materials see Erdogan (1972). The interface crack
problem for a nonhomogeneous coating and a ho-
mogeneous substrate of finite thickness was studied
by Chen and Erdogan (1996) under uniform loading
conditions. The effect of thermal loading on a nonho-
mogeneous half plane was examined by Jin and Noda
(1993) and the steady thermal stresses in an infinite
plane containing an internal crack investigated by
Noda and Jin (1993).

Formulation of the Problem

Consider the plane elasticity problem with an inter-
face crack between nonhomogeneous coating and ho-
mogeneous semi-infinite substrate described in Fig-
ure 1. It is assumed that the equal and opposite trac-
tions (normal and shear) acting on the crack surfaces

are the only applied loads and x = 0 is a plane of
symmetry. In the problem, the shear modulus of the
coating is approximated by

h

a

x

y

FGM

SS

-a

γ < 0
γ > 0

γ = 0

Figure 1. The geometry of a graded coating bonded to a
homogeneous substrate.

µ1 (y) = µ0e
γy, 0 < y ≤ h (1)

where µ0 is the shear modulus of the homogeneous
substrate and the nonhomogeneity parameter γ may
be positive or negative. Previous studies (Erdo-
gan, 1972; Chen and Erdogan, 1996) indicate that
the influence of Poisson’s ratio ν on the stress in-
tensity factors is not very significant. Therefore,
ν may be assumed to be constant throughout the
medium. Defining κ = 3−4ν for plane strain, stress-
displacement relations may be written as

σxx =
µj

κ − 1

(
(κ + 1)

∂uj
∂x

+ (3− κ)
∂vj
∂y

)
, (2)

σyy =
µj

κ − 1

(
(3− κ)

∂uj
∂x

+ (κ + 1)
∂vj
∂y

)
, (3)

σxy = µj

(
∂uj
∂y

+
∂vj
∂x

)
, j = 0, 1. (4)

Substituting from (1-4) into the equilibrium
equations, it may be shown that

(κ− 1)
∂2uj
∂y2

+ (κ + 1)
∂2uj
∂x2

+ 2
∂2vj
∂x∂y

+

γ(κ − 1)
∂uj
∂y

+ γ(κ − 1)
∂vj
∂x

= 0,

(5)
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ŞAHİN

(κ + 1)
∂2vj
∂y2

+ (κ− 1)
∂2vj
∂x2

+ 2
∂2uj
∂x∂y

+

γ(3 − κ)
∂uj
∂x

+ γ(κ + 1)
∂vj
∂y

= 0
(6)

where uj and vj , (j = 1, 2), are the x and y com-
ponents of the displacement, respectively, and γ = 0
for j = 0, (y < 0) and γ 6= 0 for j = 1, (0 < y < h).
By using Fourier transforms for displacements uj and
vj and making use of the regularity conditions at
y = −∞, the solution of the system (5-6) may be
expressed as

u0(x, y) =
1
2π

∞∫
−∞

2∑
k=1

bkA0k(λ)e|λ|yeiλxdλ, y < 0,

(7)

v0(x, y) =
1
2π

∞∫
−∞

2∑
k=1

dkA0k(λ)e|λ|yeiλxdλ, y < 0

(8)

where

b1 = 1, b2 = y, (9)

d1 = −i
|λ|
λ

, d2 = i

(
κ

λ
− λ

|λ|y
)

(10)

and i =
√
−1. Similarly, for the nonhomogeneous

coating we obtain

u1(x, y) =
1
2π

∞∫
−∞

4∑
k=1

A1k(λ) emkyeiλxdλ,

0 < y ≤ h,

(11)

v1(x, y) =
1
2π

∞∫
−∞

4∑
k=1

ckA1k(λ) emkyeiλxdλ,

0 < y ≤ h

(12)

where mk and ck, (k = 1, . . . , 4) are given by

m1 = m3 = −γ

2
+

1
2
R, m2 = m4 = −γ

2
− 1

2
R,

(13)

R =

√
γ2 + 4λ2 + 4iγλ

√
3− κ

κ + 1
, (14)

ck = − 2iλmk + iλγ(3 − κ)
(κ + 1)m2

k + γ(κ + 1)mk − λ2(κ− 1)
. (15)

From the following boundary and continuity con-
ditions

σyy(x, h) = 0, −∞ < x <∞, (16)

σxy(x, h) = 0, −∞ < x <∞, (17)

σyy(x, 0+) = σyy(x, 0−), −∞ < x <∞,
(18)

σxy(x, 0+) = σxy(x, 0−), −∞ < x <∞,
(19)

the unknown functions A1k(λ), (k = 1, . . . , 4), de-
termined in terms of A01 and A02 as follows

A11 =
w1

∆2
A01 +

w2

∆2
A02, (20)

A12 =
E1

∆2
A01 +

E2

∆2
A02, (21)

A13 =
w1

∆2
A01 +

w2

∆2
A02, (22)

A14 =
E1

∆2
A01 +

E2

∆2
A02 (23)

where wk, Ek, (k = 1, 2) and ∆2 are defined in the
Appendix. The remaining unknowns A01(λ) and
A02(λ) may then be determined from the following
mixed boundary conditions
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v1(x, 0+) = v0(x, 0−), |a| < x, (24)

u1(x, 0+) = u0(x, 0−), |a| < x, (25)

σ1yy(x, 0+) = σ0yy(x, 0−) = −p1(x),

−a < x < a,
(26)

σ1xy(x, 0+) = σ0xy(x, 0−) = −p2(x),

−a < x < a
(27)

where the crack surface tractions p1 and p2 are
known functions.

Derivation of the Integral Equations

To reduce the mixed boundary conditions (24-27)
into a system of integral equations we first introduce

the following new unknown functions (Erdogan et
al., 1973):

φ1(x) =
∂

∂x

(
v1(x, 0+) − v0(x, 0−)

)
, (28)

φ2(x) =
∂

∂x

(
u1(x, 0+)− u0(x, 0−)

)
. (29)

φ1 and φ2 must satisfy the following single-
valuedness and symmetry conditions:

a∫
−a

φj(s)ds = 0, φj(x) = (−1)jφj(−x),

(j = 1, 2).
(30)

In considering the boundary conditions (26) and
(27), from (3) and (4) it can be shown that

σ0yy(x, 0−) = lim
y→0−

µ0

2π

∞∫
−∞

[(
κ + 1
|λ| − 2y

)
A02 − 2A01

]
e|λ|yeiλxiλdλ = −p1(x), (31)

σ0xy(x, 0−) = lim
y→0−

µ0

2π

∞∫
−∞

[
2A01 −

(
κ− 1
|λ| − 2y

)
A02

]
e|λ|yeiλx

dλ

|λ| = −p2(x). (32)

From the solution of the system in (5-6), the density functions can be written as

φj(x) =
1
2π

∞∫
−∞

2∑
k=1

sjkA0k(λ)eiλxdλ, (j = 1, 2) (33)

where sij are known algebraic functions of λ as defined in the Appendix. From (31)-(33)

lim
y→o−

a∫
−a

φ1 (s) ds
∞∫
0

Z11 (λ) eλy sin [λ (s− x)]

+ lim
y→0−

a∫
−a

φ2 (s) ds
∞∫
0

Z12 (λ) eλy cos [λ (s− x)]dλ = −2π
µ0

p1 (x) ,
(34)

lim
y→0−

a∫
−a

φ1 (s) ds
∞∫
0

Z21 (λ) eλy cos [λ (s− x)]dλ

+ lim
y→0−

a∫
−a

φ2 (s) ds
∞∫
0

Z22 (λ) eλy sin [λ (s− x)]dλ = −2π
µ0

p2 (x) .
(35)
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To separate possible singular parts of Zij(λ), (i, j = 1, 2), in (34) and (35) the asymptotic behavior of the
inner integrals must be examined. We observe that for λ → ∞ the integrands of the inner integrals approach
infinity. To eliminate these singularities at λ→∞, we may write the inner integrals in the following form:

lim
y→o−

∞∫
o

(
Zij (λ, y)− Z∞ij (λ, y)

)
sin [λ (s− x)]dλ + lim

y→o−

∞∫
0

Z∞ij (λ, y) sin [λ (s− x)]dλ,

(i = j) ,
(36)

lim
y→o−

∞∫
0

(
Zij (λ, y)− Z∞ij (λ, y)

)
cos [λ (s− x)]dλ + lim

y→0−

∞∫
0

Z∞ij (λ, y) cos [λ (s− x)]dλ,

(i 6= j)
(37)

where Z∞ij (λ, y) are the asymptotic values of Zij(λ, y) for large values of λ. Using the following identities

lim
y→0−

∞∫
0

eλy sin [λ (s− x)]dλ =
s− x

y2 + (s− x)2 , (38)

lim
y→0−

∞∫
0

eλy cos [λ (s− x)]dλ =
y

y2 + (s− x)2 , (39)

the system of integral equations (34-35) may be reduced to

1
π

a∫
−a

2∑
j=1

[
δij

s− x
+ kij (x, s)

]
φj (s) ds = −κ + 1

2µ0
pi (x) , −a < x < a, (i = 1, 2) (40)

where the Fredholm kernels kij(x, s) are square integrable in −a ≤ (x, s) ≤ a (Erdogan et al., 1973) and are
given by

kij (x, s) =

∞∫
o

(
Zij (λ, 0) − Z∞ij (λ, 0)

)
sin [λ (s− x)]dλ, (i = j) , (i, j = 1, 2) , (41)

kij (x, s) =

∞∫
o

(
Zij (λ, 0)− Z∞ij (λ, 0)

)
cos [λ (s− x)]dλ, (i 6= j) , (i, j = 1, 2) . (42)

The functions Zij(λ, y), (i, j = 1, 2), are given in the Appendix. In (40), note that the singular term 1
s−x in

the kernel is associated with the interface crack in a homogeneous medium and leads to the standard square-root
singularity for the unknown functions φj(s). Next we note that by using the asymptotic expansions for λ→∞,
the integrands in (41) and (42) may be expressed as

Z11 (λ, 0)− Z∞11 (λ, 0) =
(κ + 5) γ

(κ + 1)2
λ

+ O

(
1
λ2

)
, (43)
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Z22 (λ, 0)− Z∞22 (λ, 0) =
γ

(κ + 1)λ
+ O

(
1
λ2

)
, (44)

Z12 (λ, 0)− Z∞12 (λ, 0) = − (Z21 (λ, 0)− Z∞21 (λ, 0)) =
γ

(κ + 1)λ
+ O

(
1
λ2

)
. (45)

Upon solving the integral equations (40) the modes I and II stress intensity factors at the crack tip x = a
may be evaluated from

k1 (a) = lim
x→a

√
2 (x− a)σyy (x, 0) = − lim

x→a

2µ0

κ + 1

√
2 (x− a)φ1 (x) , (46)

k2 (a) = lim
x→a

√
2 (x− a)σxy (x, 0) = − lim

x→a

2µ0

κ + 1

√
2 (x− a)φ2 (x) . (47)

Solution of Integral Equations

After the normalizations

s = at, x = ar, φj (s) = ψj (t) , (48)

by defining

ψ1 (t) =
1√

1− t2

∞∑
1

AnT2n−1 (t) , (49)

ψ2 (t) =
1√

1− t2

∞∑
1

BnT2n (t) (50)

from (30) it may be shown that A0 = 0, B0 = 0 and Eq. (40) may be reduced to

∞∑
n=1

Anain (ri) +
∞∑
n=1

Bnbin (ri) = p1 (ri) , (51)

∞∑
n=1

Ancin (ri) +
∞∑
n=1

Bndin (ri) = p2 (ri) (52)

where ain, bin, cin and din are known functions defined at each collocation point ri by

ain (ri) = U2n−2 (ri) + I11,n (ri) +

π∫
0

cos [(2n− 1) θ]X11 (cos θ, ri)dθ, (53)
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bin (ri) = I12,n (ri) +

π∫
0

cos [2nθ]X12 (cos θ, r) dθ, (54)

cin (ri) = I21,n (ri) +

π∫
0

cos [(2n− 1) θ]X21 (cos θ, r) dθ, (55)

din (ri) = U2n−1 (ri) + I22,n (ri) +

π∫
0

cos [2nθ]X22 (cos θ, r) dθ. (56)

The functions Iij,n(r) and Xij(cos θ, r) are given in the Appendix. By using the following properties of
Chebyshev polynomials

1
π

1∫
−1

Tk (t)
(t− r)

√
1− t2

dt =


0, k = 0, 1− < r < 1

Uk−1 (r) , k > 0, −1 < r < 1

(
√
r2−1−r)k

(−1)k+1
√
r2−1

, k ≥ 0, |r| > 1

(57)

1
π

1∫
−1

Tk (t)√
1− t2

log (|t− r|) dt = −Tk (r)
k

, k ≥ 1, |r| < 1, (58)

1
π

1∫
−1

Tk (t)√
1− t2

|t − r|
t − r

dt = −2Uk−1 (r)
√

1− r2, k ≥ 1, |r| < 1, (59)

truncating the series in (51) and (52) at n = N and by solving (51) and (52) for An and Bn , the stress intensity
factors, the strain energy release rate and the crack opening displacements may be obtained as

k1 (a) = − lim
x→a

2µ0

κ + 1
√

a

N∑
1

An (x) , (60)

k2 (a) = − lim
x→a

2µ0

κ + 1
√

a

N∑
1

Bn (x) , (61)

G (a) =
π (κ + 1)

8µ0

[
(k1 (a))2 + (k2 (a))2

]
, (62)

V (x) =
v1 (x, 0+)− v0 (x, 0−)

v0
= −

√
1− (x/a)2

P1

N∑
n=1

An
U2n−2 (x/a)

2n− 1
, (63)

U (x) =
u1 (x, 0+) − u0 (x, 0−)

u0
= −

√
1− (x/a)2

P2

N∑
n=1

Bn
U2n−1 (x/a)

2n
(64)
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where P1 and P2 are the amplitudes of p1 and p2,
respectively, and

v0 =
κ + 1
2µ0

aP1, u0 =
κ + 1
2µ0

aP2. (65)

are constants.

Conclusion

The main results presented in this study are modes
I and II stress intensity factors at the crack tips and
the normalized crack opening displacements calcu-
lated for arbitrary crack surface tractions. The crack
surface tractions p1(x) and p2(x) may be approxi-
mated by polynomials of the form

p (x) = p0 + p2

(x

a

)2

+ p4

(x

a

)4

+ p6

(x

a

)6

, (66)

q (x) = q1

(x

a

)
+ q3

(x

a

)3

+ q5

(x

a

)5

+ q7
(x

a

)7

.

(67)

The dimensionless variables in the problem are
γa and h/a. In Figures 2-14 the stress intensity
factors and crack opening displacements are shown
for 2 different loading conditions, namely p1(x) =
−p0, p2(x) = 0 and p1(x) = 0, p2(x) = −q1(x/a).
The results are obtained by varying γa and h/a and
for ν = 0.3. In Tables 1-3 the effects of various crack
surface tractions on the stress intensity factors are
tabulated for different h/a and γa.
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Figure 2. Mode I SIFs for various length parameters h/a
under normal loading.

0.5

0.0

-0.5

-1.0

-1.5
-3 -2 -1 0 1 2 3

γa

h/a = 0.5
h/a = 1.0
h/a = 10.0

k2

p0√a

Figure 3. Mode II SIFs for various length parameters h/a
under normal loading.
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Figure 4. Mode I SIFs for various length parameters h/a
under shear loading.
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Figure 5. Mode II SIFs for various length parameters h/a
under shear loading.
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Figure 6. Normalized COD V (x)for γa = −2.0,
σyy(x, 0) = −p0 and σxy(x, 0) = 0.
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Figure 7. Normalized COD V (x)for γa = 2.0,
σyy(x, 0) = −p0 and σxy(x, 0) = 0.
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Figure 8. Normalized COD U(x)for γa = −2.0,
σyy(x, 0) = 0 and σxy(x, 0) = −q1 (x/a).
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Figure 9. Normalized COD U(x)for γa = 2.0,
σyy(x, 0) = 0 and σxy(x, 0) = −q1 (x/a).
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Figure 10. Mode I SIFs versus ν for various length pa-
rameters, γa = −2.0.
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Figure 11. Mode I SIFs versus ν for various length pa-
rameters, γa = 2.0.

143
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Figure 12. Mode II SIFs versus ν for various length pa-
rameters, γa = −2.0.
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Figure 13. Mode II SIFs versus ν for various length pa-
rameters, γa = 2.0.
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Figure 14. The crack extension angle θ0 under normal
loading, σyy(x, 0) = −p0 and σxy(x, 0) = 0.
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Figure 15. Possible crack extension direction.

When only normal tractions act on the crack sur-
faces, that is, for σyy(x, 0) = −p0 and σxy(x, 0) = 0,
it was observed that normalized stress intensity fac-
tor k1 decreases for all values of h/a as the nonho-
mogeneity parameter γa increases (Fig. 2). Under
the same loading, k2 increases with increasing γa
for all values of h/a (Fig. 3). On the other hand
under shear loading, σyy(x, 0) = 0 and σxy(x, 0) =
−q1(x/a), primary stress intensity factork2 decreases
for all values of h/a with increasing γa (Fig. 5). Also
under shear loading k1 decreases for small values of
h/a with increasingγa. However, for large values of
h/a, k1 first increases for negative values and then
decreases for positive values of γa (Fig. 4). From
the same figures it can be observed that the primary
stress intensity factors k1 and k2, under normal and
shear loadings respectively, increase with decreasing
thickness of the coating for constant values of γa.
For the homogeneous half plane, that is, for γ = 0 it
may be seen that the calculated stress intensity fac-
tors k1 and k2 should be equal to the results given in
Erdogan et al. (1973). The effect of different load-
ing conditions on stress intensity factors k1 and k2

for constant γa and h/a are presented in Tables 1-3.
Figures 6-9 show some sample results for the nor-

malized crack opening displacements (COD) V (x)
and U(x) defined in (63-64). From Figures 6-7 it
may be seen that the crack opening displacement
V (x) decreases significantly with increasing γa for
all values of h/a. Similarly, the crack opening dis-
placement U(x) decreases with increasing γa for all
values of h/a but the effect of nonhomogeneity is not
significant (Fig. 8-9). It may also be observed from
the same figures that decreasing thickness of coating
increases the crack opening displacements.

As mentioned previously, the problem is solved
by assuming that the Poisson’s ratio is constant. The
assumption can only be justified if the fracture me-
chanics parameters of interest, in this case the stress
intensity factors, prove to be relatively insensitive to
variations in the Poisson’s ratio. In the problem con-
sidered, it is indeed observed that the primary stress
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Table 1. SIFs versus h/a under various loading conditions for constant nonhomogeneity parameter γa.

γa = −2.0, ν = 0.3

h/a
p2 (x/a)2

p4 (x/a)4 p6 (x/a)6

k1
p2
√
a

k2
p2
√
a

k1
p4
√
a

k2
p4
√
a

k1
p6
√
a

k2
p6
√
a

0.5 0.9557 –0.2096 0.5999 –0.0950 0.4526 –0.0557
1.0 0.7722 –0.1122 0.5150 –0.0534 0.4023 –0.0324
2.0 0.7242 –0.0895 0.4928 –0.0433 0.3891 –0.0265
10.0 0.7201 –0.0878 0.4909 –0.0426 0.3879 –0.0261

h/a
q3 (x/a)3 q5 (x/a)5 q7 (x/a)7

k1
q3
√
a

k2
q3
√
a

k1
q5
√
a

k2
q5
√
a

k1
q7
√
a

k2
q7
√
a

0.5 –0.0335 0.4359 –0.0211 0.3514 –0.0149 0.3011
1.0 –0.0123 0.4138 –0.0077 0.3379 –0.0054 0.2919
2.0 –0.0049 0.4084 –0.0031 0.3347 –0.0022 0.2898
10.0 –0.0042 0.4081 –0.0027 0.3345 –0.0020 0.2896

Table 2. SIFs versus h/a under various loading conditions for constant nonhomogeneity parameter γa.

γa = 0.001, ν = 0.3

h/a
p2 (x/a)2

p4 (x/a)4 p6 (x/a)6

k1
p2
√
a

k2
p2
√
a

k1
p4
√
a

k2
p4
√
a

k1
p6
√
a

k2
p6
√
a

0.5 0.8234 –0.1376 0.5297 –0.0608 0.4065 –0.0350
1.0 0.6200 –0.0396 0.4332 –0.0183 0.3482 –0.0109
2.0 0.5390 –0.0083 0.3942 –0.0040 0.3244 –0.0025
10.0 0.5009 0.0002 0.3754 0.0001 0.3127 0.0001

h/a
q3 (x/a)3 q5 (x/a)5 q7 (x/a)7

k1
q3
√
a

k2
q3
√
a

k1
q5
√
a

k2
q5
√
a

k1
q7
√
a

k2
q7
√
a

0.5 –0.0376 0.4125 –0.0238 0.3353 –0.0168 0.2891
1.0 –0.0152 0.3856 –0.0094 0.3189 –0.0066 0.2778
2.0 –0.0040 0.3765 –0.0025 0.3134 –0.0017 0.2741
10.0 –0.0001 0.3749 0.0000 0.3124 0.0000 0.2734

Table 3. SIFs versus h/a under various loading conditions for constant nonhomogeneity parameter γa.

γa = 2.0, ν = 0.3

h/a
p2 (x/a)2

p4 (x/a)4 p6 (x/a)6

k1
p2
√
a

k2
p2
√
a

k1
p4
√
a

k2
p4
√
a

k1
p6
√
a

k2
p6
√
a

0.5 0.7201 –0.0818 0.4741 –0.0339 0.3695 –0.0186
1.0 0.5190 –0.0067 0.3768 –0.0050 0.3099 –0.0037
2.0 0.4410 0.0305 0.3381 0.0161 0.2859 0.0104
10.0 0.4191 0.0328 0.3270 0.0172 0.2789 0.0111

h/a
q3 (x/a)3 q5 (x/a)5 q7 (x/a)7

k1
q3
√
a

k2
q3
√
a

k1
q5
√
a

k2
q5
√
a

k1
q7
√
a

k2
q7
√
a

0.5 –0.0410 0.3907 –0.0261 0.3204 –0.0185 0.2779
1.0 –0.0189 0.3617 –0.0120 0.3026 –0.0085 0.2656
2.0 –0.0091 0.3530 –0.0059 0.2974 –0.0042 0.2620
10.0 –0.0079 0.3523 –0.0051 0.2969 –0.0037 0.2617
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intensity factors k1 and k2 are relatively insensi-
tive to variations in the Poisson’s ratio (Fig. 10-13).

The possible crack extension angle θ0 at the crack
tip x = a as measured from the x-axis is examined
under normal loading p0 for constant values of the
coating thickness h/a. Defining hcr as a critical coat-
ing thickness in which crack tip changes its direction
either into the coating or into the substrate it may
be shown the direction of crack extension in terms
of the coating thickness. From Figure 14 it may be
observed that θ0 decreases with increasing nonhomo-
geneity parameter γa for all constant values of h/a.

Note that in Figure 14 the crack extension angle θ0

is always positive when the coating is less stiff than
the substrate(γa < 0). On the other hand, for the
stiff coatings (γa > 0) the crack extension angle is
positive for small values of the thickness of coating
and then it becomes negative for large values of the
coating thickness h/a. If the thickness of coating
is sufficiently large, then θ0 will always be negative
for γa > 0. This is qualitatively shown in Figure
15. From Figure 14, it may be seen that θ0 becomes
zero (crack extension along x-axis) for homogeneous
infinite mediumγa = 0.

Appendix

αk = (κ + 1)mkck + iλ (3− κ) , βk = mk + iλck. (68)

ζ1 =
−α1β2 − α2β1

∆1
, ζ2 =

α2β1 − α1β2

∆1
. (69)

∆1 = α1β1 + α1β1 = ∆1, ρ =
1
2
R. (70)

G1 = α1ζ1e
−ρh − α1ζ2e

−(ρ+ρ)h/2 + α2, G2 = β1ζ1e
−ρh + β1ζ2e

−(ρ+ρ)h/2 + β2. (71)

ω1 = −2iλ (κ − 1) , ω2 = i
(
κ2 − 1

) λ

|λ| , ω3 = 2|λ|, ω4 = (κ− 1) . (72)

E1 = G1ω3 −G2ω1, E2 = −G1ω4 −G2ω2. (73)

∆2 = G1G2 + G1G2 = ∆2. (74)

w1 =
(
ζ1E1e

−ρh + ζ2E1e
−(ρ+ρ)h/2

)
, w2 =

(
ζ1E2e

−ρh + ζ2E2e
−(ρ+ρ)h/2

)
. (75)

Λ1 (λ) = iλ

(
c1w1 + c2E1 − c1w1 − c2E1 + i∆2

λ

|λ|

)
, (76)

Λ2 (λ) = iλ
(
c1w2 + c2E2 − c1w2 − c2E2 − i∆2

κ

λ

)
, (77)
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Λ3 (λ) = iλ
(
w1 + E1 + w1 + E1 −∆2

)
, (78)

Λ4 (λ) = iλ
(
w2 + E2 + w2 + E2

)
. (79)

s11 (λ) =
Λ1

∆2
, s12 (λ) =

Λ2

∆2
, s21 (λ) =

Λ3

∆2
, s22 (λ) =

Λ4

∆2
. (80)

∆3 = Λ1Λ4 − Λ2Λ3. (81)

z11 (λ, y) = iλ∆2

(
−2

Λ4

∆3
−
(

κ + 1
|λ| − 2y

)
Λ3

∆3

)
, (82)

z12 (λ, y) = iλ∆2

(
2

Λ2

∆3
+
(

κ + 1
|λ| − 2y

)
Λ1

∆3

)
, (83)

z21 (λ, y) = ∆2

(
2|λ|Λ4

∆3
+ (κ− 1− 2|λ|y)

Λ3

∆3

)
, (84)

z22 (λ, y) = ∆2

(
−2|λ|Λ2

∆3
− (κ− 1− 2|λ|y)

Λ1

∆3

)
. (85)

Asy → 0−, Z11 (λ) = i (z11 (−λ)− z11 (λ)) , Z12 (λ) = (z12 (λ) + z12 (−λ)) , (86)

Z21 (λ) = (z21 (λ) + z21 (−λ)) , Z22 (λ) = i (z22 (−λ) − z22 (λ)) . (87)

I11,n (r) =
α (κ + 5)
4 (κ + 1)

(
sin [(2n− 1) arccos (r)]

2n− 1

)
, (88)

I22,n (r) =
α

8

(
2
sin [2n arccos (r)]

2n

)
, (89)

I12,n (r) = −α

4

(
−T2n (r)

2n

)
, (90)

I21,n (r) =
α

4

(
−T2n−1 (r)

2n− 1

)
, n = 1, 2, 3, ..... (91)
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X11 (t, r) =
κ + 1
4π

H11 (t, r) − α (κ + 5)
8 (κ + 1)

|t − r|
(t − r)

, (92)

X12 (t, r) =
κ + 1
4π

H12 (t, r) +
α

4π
log (|t− r|) , (93)

X21 (t, r) =
κ + 1
4π

H21 (t, r) − α

4π
log (|t− r|) , (94)

X22 (t, r) =
κ + 1
4π

H22 (t, r)− α

8
|t− r|
(t − r)

. (95)
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