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Abstract

The problem of creating fair ship design curves is of major importance in Computer Aided Ship Design
environment. The fairness of these curves is generally considered a subjective notion depending on the
judgement of the designer (eg., visually pleasing, minimum variation of curvature, devoid of unnecessary
bumps or wiggles, satisfying certain continuity requirements). Thus an automated fairing process based
on objective criteria is clearly desirable. This paper presents an automated fairing algorithm for ship
curves to satisfy objective geometric constraints. This procedure is based on the use of optimisation tools
and cubic B-spline functions. The aim is to produce curves with a more gradual variation of curvature
without deteriorating initial shapes. The optimisation based fairing procedure is applied to a variety of
plane ship sections to demonstrate the capability and flexibility of the methodology. The resulting curves,
with their corresponding curvature plots indicate that, provided that the designer can specify his objectives
and constraints clearly, the procedure will generate fair ship definition curves within the constrained design
space.
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Introduction

Fairing of the geometry of ship hull forms is a prin-
cipal design requirement of the ship design process.
The fairness of the hull form will be required to im-
prove hydrodynamic performance and producibility
characteristics as well as aesthetic properties. The
solution to this rather complex problem is gener-
ally achieved by reducing the problem of fairing a
3-dimensional body to a series of 2-dimensional prob-
lems. For convenience, the surface of the ship is tra-
ditionally described by a mesh of intersecting curves
called ship lines. These curves are mainly planar
and represent sections along the length, depth, and
breadth (i.e., body sections, waterlines, and buttock
lines). Thus, the problem can be reduced to fairing
these planar design curves, which together form the
3-dimensional body.

Fairing of ship hull forms is, traditionally,
achieved by flexible battens and weights. This
method was introduced in the 18th century, and has
been successfully used until modern numerical tech-
niques and powerful digital computers became avail-
able. This method is based on the successive fairing
of ship lines on 3 different planes (i.e. body sec-
tions, waterlines and buttocks) in an iterative man-
ner. Provided that the designer has sufficient expe-
rience and time, the resultant form should have ac-
ceptable 3-dimensional fairing properties. The pro-
cess has no objective measures for geometric fair-
ness, and the fairing characteristics of the resulting
hull form geometry greatly depend on the designer’s
ability and experience. Thus, giving the fairing of a
set of lines defining a ship’s hull form to ‘n’ differ-
ent designers/loftsmen, all working independently of
each other, will result in ‘n’ different solutions.
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Fairing is a part of most Computer Aided Ship
Design (CASD) packages commercially available to-
day. In the earlier cases the fairing procedures
were based on interactive routines where the de-
signer visually observes the design curves and in-
teractively modifies it until satisfactory fairness is
achieved (Snaith and Parker, 1972). Alternatively,
the designer is presented with curvature plots which
help to identify the regions of unfairness (Horsham,
1988). These procedures can be seen as the com-
puterised version of the traditional manual fairing
method achieved by flexible battens and weights.
Hence, the procedure has no objective criteria and
suffers the same drawbacks of the manual fairing
method, i.e. the need for excessive time and suit-
ably trained and experienced personnel.

One of the main goals of the fairing process is
to automate the process and hence minimise sub-
jective human intervention, which can lead to many
inconsistencies in the resulting hull form geometry.
The development of automated procedures in which
the fairness is defined in an objective manner and
achieved within the boundaries set for the design
problem is clearly desirable. During the past decade
there have been numerous attempts to produce au-
tomated fairing procedures for curves and surfaces
to be employed in both the CAD and CASD en-
vironment. Pramila (1978) used a linearised fair-
ness functional which minimises strain energy for
ship hull surfaces. Maccallum and Zhang (1986)
described an automatic smoothing algorithm based
on B-splines’ curvature behaviour property and ap-
plied this to some curve forms used in ship design.
Nowacki et al. (1989) described a surface approxi-
mation scheme based on minimisation of the sum of
the strain energy of mesh lines and the potential en-
ergy of springs attached to the data points. Rogers
and Fog (1989) applied their constrained B-spline
curve/surface fitting algorithm to ship hull forms
to generate defining polygons for curves and defin-
ing polygonal nets for surfaces. Sapidis and Farin
(1990) proposed an automatic fairing algorithm for
B-spline curves. The algorithm is based on removing
and reinserting knots of the spline. Liu et al. (1991)
introduced constrained smoothing B-spline curve fit-
ting for mesh curves of ships by minimising an en-
ergy functional as a fairness measure. Huanzong et
al. (1991) proposed a fairing method by minimising
the elastic strain energy of mesh curves of hull sur-
faces. Moreton and Sequin (1992) applied non-linear
optimisation techniques to minimise a fairness func-

tional based on variation of curvature. Nowacki and
Lü (1994) proposed procedures for developing fair
curves under constraints in which the fairness crite-
rion is based on the linear combination of the square
of the second and the third derivative norm and the
constraints apply to approximation conditions, end
conditions and an integral condition pertaining to
the area under the curve, while Pigounakis and Kak-
lis (1996a) developed a 2 stage automatic algorithm
for fairing cubic parametric B-splines under convex-
ity, tolerance and end constraints. An iterative knot
removal and reinsertion technique is employed which
adopts the curvature-slope discontinuity as the fair-
ness measure. Pigounakis et al. (1996b) proposed
3 algorithms for fairing spatial B-spline curves: lo-
cal fairing by knot removal and local/global fairing
based on energy minimisation. Hahmann (1998) pro-
posed an automatic and local fairing algorithm for
bi-cubic B-spline surfaces. In the proposed method
a local fairness criterion selects the knot where the
spline needs to be faired and the control net is mod-
ified by a constrained least squares approximation.
Poliakoff et al. (1999) presented an automated curve
fairing algorithm for cubic B-spline curves based on
an extension of Kjellander’s (1983) algorithm, which
is based on finding and correcting the offending data
point. The point to be faired is chosen by calcu-
lating for each point the distance to be moved and
then choosing the one for which the distance is great-
est. Kantorowitz et al (2000) described a method
for fairing ship hull lines which determines the suit-
able number of control points to produce the required
shape of the body sections. Yang and Wang (2001)
presented a method for planar curve fairing by min-
imal energy arc splines where as a first step the op-
timal tangents for curve interpolation are computed
and the point positions are adjusted by smoothing
discrete curvatures.

The 3-dimensional ship hull fairing problem is
generally reduced to the fairing of 2-dimensional ship
hull design curves, namely sections, waterlines and
buttocks. The main reason behind this is the com-
plexity of the 3-dimensional fairing problem. In ad-
dition a robust theory for the fairness of curves would
greatly contribute to surface fairing methodologies.
Indeed, most of the existing surface fairing method-
ologies either borrow or adapt ideas from curve fair-
ing. Thus, the curve fairing problem often arises
in ship hull design and deserves attention. There-
fore, in this paper an automated fairing algorithm
for generating fair ship lines is presented. This algo-

158



NARLI, SARIÖZ

rithm is based on a variational scheme in which all
the numerical details of the fairing process are hidden
from the designer. The fairing problem is specified in
terms of functional optimisation in which the desired
form of the curve has a minimum measure of shape
quality. The measure of shape quality is selected
to provide as uniform a distribution of curvature as
possible. The resulting ship hull form should not
deviate significantly from the original form in order
not to degrade hydrostatic and hydrodynamic per-
formance characteristics already obtained. There-
fore, a closeness constraint is imposed to ensure that
the deviations between the original and faired lines
are not excessive. Hence, the main goal of this fairing
procedure can simply be defined as the reduction in
curvature variation while retaining the overall curve
characteristics.

The presentation of this paper begins with a de-
scription of the curvature concept, which is used as
a basic indicator of fairness of curves and surfaces.
Then the fairing problem is formulated as a non-
linear optimisation problem in which the objective
is to produce ship definition lines with reduced cur-
vature distribution. The fairing method is applied to
typical cubic B-spline ship curves and the results are
presented in order to demonstrate the effectiveness
of the numerical procedure.

Curvature concept and definition of fairness
for ship hull lines

A mathematical fairing process would require an ob-
jective fairing criterion, which may be defined in
terms of the distribution of curvature or local radius
of curvature (=evolute) along the curve.

The curvature κ(t) of planar curves r(t) =
[x(t), y(t)] has a positive or negative sign depending
on whether it curves to the left or right. Thus, this
signed curvature is highly desirable detecting inflec-
tion points as well as convex and concave regions of a
curve. Hence, the signed curvature can be expressed
as follows (Farin and Sapidis, 1989):

κ(t) =
ẍ(t)ẏ(t)− ÿ(t)ẋ(t)

[ẋ(t)2 + ẏ(t)2] 3/2
(1)

Curvature plots are typically displayed as curva-
ture vs. arc length or directly along the curve as
an offset curve with the distance proportional to the
curvature values. The curvature plot consists of seg-
ments normal to the curve emerging from a number

of points on the curve and whose lengths are propor-
tional to the magnitude of curvature at the associ-
ated point. The characteristics of a curve are evi-
denced by the undulations of its curvature plot. In-
flection points occur when the curvature plot crosses
the curve (sign change), flat regions produce zero
curvature values, bulging tendencies produce locally
increased values, and flattening tendencies produce
locally reduced curvature values.

The fairness of a curve is intimately related to
the distribution of curvature over the form, favour-
ing gradual transitions and avoiding abrupt changes.
Hence, a variety of definitions can be found in the
literature for fairness criteria mostly associated with
the curvature properties of curves. The widely ac-
cepted ones are the following:

• A curve is fair if its curvature plot consists of
relatively few monotone pieces (Farin and Sa-
pidis, 1989)

• A curve is characterised as fair if its curvature
plot is continuous, has the appropriate sign (if
the convexity of the curve is prescribed), and
it is as close as possible to a piecewise mono-
tone function with as few monotone pieces as
possible (Sapidis and Farin, 1990)

• A C2 curve is considered fair if it minimises the
integral of the squared curvature with respect
to arc length (Roulier and Rando, 1994)

• A fair curvature plot should be free of any un-
necessary variation, i.e. the distribution of cur-
vature on a fair curve must be as uniform as
possible (Pigounakis et al., 1996b)

Thus, based on the above definitions it is required
of a fair ship line to have the following characteris-
tics:

• Devoid of unintended noise (erratically dis-
tributed high frequency, high amplitude undu-
lations)

• Devoid of unintended flat regions, and flatten-
ing/bulging tendencies

• Continuous first and second derivatives

• Free of unnecessary variation, i.e. limited and
specified inflection points,

• Curvature as uniformly distributed as possible,
i.e. monotonically increasing or decreasing
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• The deviation of offset points should be mini-
mal, i.e. within the boundaries defined by the
designer

• Shape preservation

All curves satisfying the conditions stated above
will look fair or pleasing to the eye of an experi-
enced designer, and these shape requirements should
be translated into mathematical terms in order to
implement them into a fairing algorithm.

Formulation of ship hull lines fairing as an op-
timisation problem

Ship definition curves are generally obtained by in-
specting corresponding curvature plots in an inter-
active fairing process. Due to the aforementioned
drawbacks of this process, researchers are in a con-
stant search for alternative and objective methods.
The main goal is to develop automated fairing pro-
cedures to generate ship curves that have uniformly
distributed (smooth) curvature plots.

Formulation of the ship lines fairing process as
an optimisation problem can be set as a typical en-
gineering problem. It is formed of 3 basic elements,

namely the design variables, objective function and
constraints.

Design variables: X(X1, X2, . . . .,Xn)

Objective function: F(X) = f (X1, X2, . . . , Xn)

Constraints: gj(X) > 0, j = 1,2, . . . , n

The task is to minimise an objective function de-
fined in terms of design variables subject to given
constraints. The design variables for the ship lines
fairing problem are the predefined 2-D offset points
for the curve in consideration. An initial curve,
which satisfies the required performance character-
istics, is assumed to be available. The objective is
to eliminate undesirable shape features in order to
produce a curve fairer than the original one. While
removing the flaws of the curve (e.g., unintended in-
flections, noise), the general shape of the curve must
be preserved in order not to degrade specific per-
formance characteristics. This is mainly achieved
by including the constraints into the problem. The
structure of the optimisation problem is illustrated
in Figure 1. The following must be available in order
to formulate and solve the fairing problem, which are
discussed in detail in the following sections:

Ship Definition Curves
(Waterlines, Sections, etc.)

Initial offset points

Optimisation Procedure

Objective function
Step size
Termination criteria

GEOMETRIC
CONSTRAINTS

PERFORMANCE
CONSTRAINTS

Termination
criteria

satisfied?

Final Curves

NO

YES

Figure 1. Structure of the optimisation based ship lines fairing procedure.
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• A set of initial offset points

• A fairness metric described in terms of design
variables

• Definition of constraining boundaries

• Selection of a suitable non-linear optimisation
algorithm

The fairness metric

A formal optimisation problem will require the def-
inition of an objective function to be minimised,
which is a function of some free geometric design
variables. Thus, in an optimisation based fairing pro-
cedure, the objective function is formulated in terms
of a fairness measure. The selection of the fairness
metric is the first step in the automatic generation
of fair ship lines.

The choice of the fairness functional is crucial
for the effectiveness of the procedure and the qual-
ity of the curve is highly dependent on the type of
the fairness functional. There is no unique mathe-
matical criterion measuring the fairness of a given
curve because it is generally the designer’s decision
to accept a curve as fair enough or not. Nevertheless,
most fairness functionals are motivated by physical
reasoning describing a certain energy over the form
or have geometric meaning. The non-linear curve
modelling a thin elastic beam is known as the mini-
mum energy curve, and is characterised by bending
least while passing through a given set of points. It
is generally considered to be an excellent criterion
for producing smooth curves (Horn, 1983). Hence,
in this paper the minimum energy curve functional
is adopted as the objective function of the problem
to be minimised. This criterion is mainly selected
for its simplicity and effectiveness, which tends to
level the curvature while keeping it on average as
low as possible (Roulier and Rando, 1994). This will
be later proved by various ship curve applications.
The functional representing the strain energy of the
curve can be expressed as the arc length integral of
the curvature squared:

E =
∫
κ(s)2ds (2)

where s denotes the arc length of the curve.
This functional is regarded as the fairness mea-

sure of the problem and is computed for the curve to

obtain the quantity which characterises the desirabil-
ity of the product curve under that metric. Hence,
the required shape will obviously be the one that
satisfies the predefined geometric constraints while
optimising this quantity.

Constraints

One of the fundamental requirements of the ship
lines fairing process is that the faired lines must
be as close as possible to the initial lines in order
to satisfy certain geometric performance character-
istics. Therefore, geometric constraints should be
imposed.

Constraints of this particular fairing problem are
set in terms of the control polygon of the B-spline
curve (e.g., end conditions, deviation form original
offset points, integral constraints). The coordinates
of each design variable are not to change more than a
specified tolerance and some control points are fixed
to guarantee continuity (first and last points of the
curve). Hence, the deviation of a faired curve from
the original one would be within the defined bound-
ary domain.

The solution method: Hooke and Jeeves al-
gorithm

The success of the optimisation process will mainly
depend on the algorithm used. The optimisation al-
gorithm used is the non-linear direct search method
of Hooke and Jeeves (1961). This robust and effi-
cient numerical solution method is one of the most
widely used numerical solution algorithms, and has
been found to work well for the problem under dis-
cussion. It attempts in a simple though ingenious
way to find the most profitable search directions.

This method is specifically developed for non-
constrained problems. Hence, for the purpose of the
numerical treatment of the constraints of this prob-
lem, an internal penalty function technique is applied
which transforms the problem into an unconstrained
optimisation problem where the objective function
can be taken as

F (X, rk) = f(X) + rk

N∑
i=1

1
gi(X)

, rk > 0 (3)

where f(X) refers to the objective function of the con-
strained optimisation problem, gi(X) the constraints
of the problem and N the number of constraints. rk
is an internal penalty function parameter where the
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value of the penalty parameter is chosen to have a
large value (approx. 1000) to add a penalty to the
objective function as soon as one or more constraints
g(X) are violated.

The Hooke and Jeeves method is based on 2 types
of step-by-step searches alternating in turn: first a lo-
cal search, which is a unidirectional variation of each
design variable resulting in the direction of steepest
descent, and a pattern move, and which represents a
rotation of the search direction which accelerates the
search by the aid of increasing the step widths. The
search routine can only proceed in a feasible space
because outside that space the penalty functions are
not defined.

If we consider the problem of minimising
f(X1 , X2, . . . , Xn), the general procedure, can be
described as follows:

• Start with an arbitrarily chosen initial
base point (b1, b2, . . . , bn) and step lengths
(h1, h2, . . . , hn) for the respective variables
(X1, X2, . . . , Xn).

• The method proceeds by a sequence of ex-
ploratory and pattern moves. The proce-
dure for an exploratory move about the point
(b1, b2, . . . , bn) is as follows:

• Evaluate f (bi + hi). If the move from bi to
bi + hi is a success, replace the base point bi
by bi+hi. If it is a failure, evaluate f(bi−hi).
If this move is a success, replace bi by bi − hi.
If it is another failure, retain the original base
point bi.

• Repeat the above procedure for each variable
in turn finally arriving at a new base point af-
ter (2n+1) function evaluations at most.

• If the new variable value b∗i is equal to the orig-
inal base point value bi, halve each of the step
lengths hi and return to the first step. The
calculations terminate when the step lengths
have been reduced to some prescribed level. If
b∗i 6= bi, make a pattern move from b∗i .

• A pattern move attempts to speed up the
search by using information already acquired
about f(X1 , X2, . . . , Xn). It is invariably fol-
lowed by a sequence of exploratory moves, with
a view to finding an improved direction of
search in which to make another move. The
procedure for a pattern move from b∗i is as fol-
lows:

• It seems sensible to move from b∗i in the direc-
tion (b∗i − bi), since a move in this direction
has already led to a decrease in the value of
f(X1 , X2, . . . , Xn). Therefore, move from b∗i
to (2b∗i − bi) and continue with a new sequence
of exploratory moves about (2b∗i − bi).

• If the lowest function value obtained during the
pattern and exploratory moves of (2b∗i − bi) is
less than b∗i , then a new base point b∗∗i has
been reached. In this case, return to (2b∗i − bi)
with all suffices increased by unity. Otherwise
abandon the pattern move from b∗i and con-
tinue with a new sequence of exploratory moves
about b∗i .

Application and evaluation of the algorithm
for actual ship lines

The automated fairing procedure is applied to 3 typi-
cal ship definition curves. These examples represent
offsets taken at transverse sections along the ship
length, called body sections. The small dots dis-
played in the figures represent the control points of
the curves.

The first 2-D curve is from a mathematical
hull form, the well-known Wigley form, selected to
demonstrate the performance of the fairing proce-
dure (Wigley, 1934). The offset values y(x,z) of the
hull surface, which is symmetrical in both fore-aft
and port-starboard, is defined by the following equa-
tion:

y(x, z) =
B

2

[
1−

(
2x
L

)2
][

1−
( z
D

)2
]

(4)

where

x : distance from amidships, positive forward,

z : distance from baseline, positive downwards,

L, B, D : length, breadth and depth of the hull, re-
spectively.

The mathematical hull form has an intrinsically
fair surface and hence fair waterlines, buttocks and
body sections. The mid-section curve of this hull
form is selected as the first application of this fairing
procedure and is displayed in Figure 2a. The offset
points of this section are then randomly distorted by
adding erratically distributed undulations into the
data, which is shown in Figure 2b. The offset points
of the disturbed curve serve as the initial points of
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the optimisation. After approximately 1500 itera-
tions the faired curve is obtained, which is displayed
in Figure 2c. The curvature plot is drawn along the
curve to make all the undulations and unfair regions
visible. It is clear from the figures that the faired
curve is radically improved in terms of fairness. The
percentage improvement in terms of the objective
function is 95%, and this reduction in the objective
function value is mathematical proof of the improve-
ment in the optimised curve. The curvature plot of
the resulting curve has an evenly distributed smooth
shape like the original Wigley section. It should be
noted that for a fairing algorithm to be considered
a useful tool, the deviation between the original and
the faired curves should be within the acceptable de-
sign limits. For this application the difference of the
sectional area of the resulting curve from the orig-
inal Wigley mid-section is 1.2% and therefore the
difference is within the tolerated limits. A simple
algorithm using divided differences principle (Renz,
1982; Narlı and Sarıöz, 1998) can eliminate high fre-
quency errors of the distorted curve but these errors
are deliberately left to show the effectiveness of the
optimisation algorithm.

A bulbous bow section, shown in Figure 3, is se-
lected as a second example. The initial value of the
objective function is reduced by 45% after approx-

imately 1000 iterations. It is clear from the figure
that the variation of curvature is more gradual in
the resulting curve. The deviation between the ge-
ometric characteristics of the original and resulting
curves is within acceptable design limits. Table 1a
shows the offset points of original and faired curves
together with corresponding percentage of deviation
from the original offset values of the curve. Table 1b
displays the number of iterations, the value of the ob-
jective function, and the percentage of improvement
in terms of the objective function.

z

y

Figure 2. (a) Original, (b) distorted, (c) faired Wigley
hull mid-section (1500 iterations, 95% of im-
provement in the objective function).

Table 1a. Comparison of original and optimised offset values of the bulbous bow section.

No. of offsets z values Original Offsets Optimised Offsets Percentage of
(y) (y) deviation (%)

1 0 0.0000 0.0000 0% (defined as a
constraint)

2 0.05 0.1000 0.1100 10%
3 0.1 0.2500 0.2250 10%
4 0.2 0.3500 0.3150 10%
5 0.3 0.3400 0.3076 9.5%
6 0.4 0.2700 0.2430 10%
7 0.5 0.1000 0.1100 10%
8 0.6 0.0200 0.0220 10%
9 0.7 0.0400 0.0360 10%
10 0.8 0.1100 0.1005 8.6%
11 0.9 0.2200 0.2008 8.7%
12 1.0 0.3000 0.3000 0% (defined as a

constraint
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Table 1b. Number of iterations, the value of the objective function, and the percentage of improvement in terms of the
objective function.

No. of Objective Improvement of
Iterations Function objective function (%)

Initial Curve 0 3.671 0
...

...
...

250 3.049 16.9
...

...
...

500 2.580 29.7
...

...
...

750 2.276 38
...

...
...

Optimised Curve 952 2.024 45

z

y

Figure 3. (a) Initial and (b) faired bulbous bow section
(952 iterations, 45% of improvement in the ob-
jective function).

A V-shaped ship section is the last application of
this fairing procedure. The shape of this curve is also
deliberately distorted to demonstrate the effective-
ness of the developed methodology. The unwanted
inflection points can clearly be seen from Figure 4a,
which is exaggerated by the curvature plot of the
curve. The optimisation process starts by taking the

z

y

Figure 4. (a) Initial and (b) final V-shaped section (1050
iterations, 43% of improvement in the objective
function).

offset points of the distorted curve as the initial val-
ues of the design variables. At the end of the optimi-
sation process a rather improved form of the initial
curve is obtained. This curve and its curvature plot
are displayed in Figure 4b. The final curve is de-
void of unnecessary wiggles, favouring gradual tran-
sition and avoiding abrupt changes. The unintended
inflection points are eliminated throughout the opti-
misation process. The degree of fairness of this curve
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is evidenced by the value of the objective function,
which is 43% lower than the initial value. The sec-
tional area of the final curve is only changed 4% from
the original one, which is considered to be within the
feasible design space.

The common feature of all applications is that
the strong variation of the curvature almost disap-
pears in the final curves, while the distribution of
curvature along the curve becomes smoother. Fur-
thermore, the value of the fairness measure decreases
with an increasing number of iterations, which is a
clear indication of generating a curve fairer than the
original one.

Conclusions

The main objective of this research is to fair pla-
nar ship definition curves represented by cubic B-
splines within the specified distance constraints. In
this prospect, an automated fairing methodology for
ship design curves is proposed. A fairness criterion
is used (minimising energy functional) as the ob-
jective function of the optimisation algorithm to be
minimised. Geometric constraints are imposed (e.g.,
end points are fixed) to obtain the optimum curve in
terms of both fairness and closeness to the original
curve. Typical ship definition curves along with a
mathematical curve taken from a mathematical hull
form are selected as applications. The offset points
of these curves are randomly distorted to demon-
strate the effectiveness of the method. The curvature
plots of these curves are drawn along with the curves
to display the improvement achieved by the fairing
method. Both visual and numerical results demon-
strate the effectiveness of the method as an effective
tool for correcting the curvature plots of ship defini-
tion curves and the main advantage of the method
is that it is an automated process which would not
require human intervention.
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Nomenclature

r(t) parametric curve
t curve parameter
x(t) x-coordinates
y(t) y-coordinates
ẋ(t) first derivative of x with respect to parame-

ter t
ẏ(t) first derivative of y with respect to parame-

ter t
ẍ(t) second derivative of x with respect to pa-

rameter t
ÿ(t) second derivative of y with respect to pa-

rameter t
L length of the hull
B breadth of the hull
D depth of the hull
z distance from baseline, positive downwards
x distance from amidships, positive forward
y(x,z) offset values of the hull surface
Xi design variables
f(X) objective function of the constrained opti-

misation problem
gi(X) the constraints of the problem
N the number of constraints
rk penalty parameter
bi initial base points
b∗i , b

∗∗
i new base points for design variables Xi

hi step length
κ (t) curvature
E strain energy of the curve
s arc length of the curve
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