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Abstract

This paper presents a methodology for the modeling of the agricultural drought duration in the Tokat
region. For this purpose, the study area was divided into 4 hydrologically homogeneous regions. A rain gauge
with the longest observation period was selected for each region. Days with rainfall equal to or less than a
threshold of 6.4 mm and days with no rainfall were assumed to be drought periods in the 4 hydrologically
homogeneous regions. The monthly data sequences were constituted by counting days with rainfall equal
to or less than the threshold value of 6.4 mm and days with no rainfall. Linear stochastic models known
as ARIMA were used to simulate drought periods in the hydrologically homogeneous regions. For 5 years,
the predicted data using the best models were compared to the observed data. The results showed that the
predicted data represent the actual data very well for each hydrologically homogeneous region.
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Introduction

Drought is one of the most serious problems for
human societies and ecosystems arising from cli-
mate variability. Although its impact does not come
through sudden events, such as flood and storms,
drought is one of the most damaging types of natu-
ral disasters over long periods. Human beings often
increase the impact of drought because of a high use
of water that cannot be supported when the natural
supply decreases. Drought is difficult to define pre-
cisely, but operational definitions often help to define
the onset, severity and end of droughts. Le Houerou
(1996) stated that droughts are experienced in al-
most all types of agricultural land in the world, but
that arid lands are most susceptible.

Drought is classified as agricultural, hydrological
or meteorological. Agnew and Warren (1996) de-
scribed agricultural drought as a spatial phenomenon
that causes significant reductions in agricultural pro-
ductivity, mainly due to an inadequate supply of soil

moisture. Hydrological drought refers to deficiencies
in surface and subsurface water supplies (Palmer,
1965). Meteorological drought is usually measured
by how far from normal the precipitation has been
over a certain period of time (Agnew, 1990).

Ranking the severity of droughts in cropping ar-
eas is difficult, due to the varying impact of rainfall
at different times of the year. Drought intensity and
duration must always be related to a calendar of crop
sensitivity to rainfall. Assessing drought severity re-
quires a measure of effective rainfall in relation to soil
moisture and plant conditions, rather than just total-
ing rainfall deficiencies (Wilhite and Glantz, 1985).
In addition, agricultural drought durations are af-
fected by soil moisture capacity and evapotranspira-
tion (Okman, 1981). As well as being directly af-
fected by drought, crop yield is a regionally sensi-
tive measure that integrates the temporal and spa-
tial distribution of rainfall anomalies over a region.
In a mix of cropping and livestock activities, it is the
agronomic indicator most sensitive to rainfall fluctu-
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ations (Waring, 1976).
Hersfield et al. (1973) stated that days with less

than 6.4 mm of rainfall or less than 0.003 mm of
runoff cannot supply effective moisture accumulation
in soil and cause agricultural drought. Oliver (1961)
suggested that rainfall of up to 5.0 mm in 1 day
should be regarded as useless since it will evaporate
before infiltrating into the soil. Howe and Rhoades
(1955) stated that rainfall of up to 3.0 mm in 1 day
never contributes to crop water requirements. How-
ever, Richey et al. (1961) proposed that the tem-
perature in the surroundings decreases due to insuf-
ficient amounts of rainfall that cannot infiltrate into
the soil but evaporate and crop water consumption
is thus reduced. Therefore, they suggested that this
rainfall is also useful for crops.

There has been considerable research on model-
ing for various aspects of drought, such as the iden-
tification and prediction of its duration and sever-
ity. There exist a variety of techniques and meth-
ods to analyze the duration and severity of droughts
through probability characterization of low flow,
time series methods, synthetic data generation, the-
ory of runs, multiple regression, group theory, pat-
tern recognition and neural network methods. The
prediction aspects of drought duration are better de-
veloped than the drought severity aspects. A ma-
jor challenge facing drought research is to develop
suitable methods and techniques for forecasting the
onset and termination points of drought (Panu and
Sharma, 2002).

In times of drought, agricultural productiv-
ity (particularly food productivity) declines signifi-
cantly. A period of only a few weeks without precip-
itation may cause serious problems for the farmer.
In arid and semi-arid regions, drought effects on
crops may be reduced or eliminated by reserving
enough water from available sources. Therefore, it
is very important to know the drought duration in
the growing season in terms of scheduling irrigation.
In this study, it is proposed to simulate drought du-
rations by the autoregressive integrated moving av-
erage (ARIMA) model in cropping areas.

Materials and Methods

Tokat province, selected as the study area, is
bounded by latitudes 39◦ 45′ N and 40◦ 45′ N, and
longitudes 35◦ 30′ E and 37◦ 45′ E, covering 10,160.7
km2. About 30% of the area is occupied by cropland.
Wheat is the major food crop (the average sowing

area is 68.5% of the total cropped area) not only in
the district, but in all of Turkey. The major sources
of irrigation are rainfall, canals and groundwater.

Rainfall amounts vary spatially within the area
covered by a given storm. Therefore, this area should
be divided into hydrologically homogeneous regions
in which rainfall amounts recorded at the rain gauges
are assumed to be identical to obtain reliable results
in hydrologic studies related to rainfall (Wisler and
Brater, 1959; Okman, 1994). For this reason, the
studied area was divided into 4 hydrologically homo-
geneous regions, west (W), central north (CN), cen-
tral south (CS) and east (E), considering the mean,
standard deviation and standard error of monthly
rainfall recorded from the rain gauges and altitudes
of the rain gauges in Tokat province. These 4 regions
are separated from each other by Thiessen polygons.
Average annual rainfall levels are 415.8, 479.6, 413.3,
and 557.2 for W, CN, CS, and E, respectively (Figure
1) (Yürekli, 1999). Considering the similarity prin-
ciple of rainfall amounts from rain gauges in a hy-
drologically homogeneous region, a rain gauge with
the longest observation period was selected for each
hydrologically homogeneous region. Days with rain-
fall equal to or less than a threshold of 6.4 mm and
days with no rainfall were assumed to be drought
periods in the 4 hydrologically homogeneous regions.
To constitute the monthly time series, drought peri-
ods were obtained by counting days (for each month
of the year) with rainfall equal to or less than the
threshold value and days with no rainfall.

Zile (W)

Sulusaray
     (CS)

TOKAT (CN)
Resadiye
    (E)

1:15000
    km

  N

 Rain gauge

Figure 1. Hydrologically homogeneous regions of the
study area.

Time Series Analysis for Drought Periods

In order to analyze time series for drought periods
in the W, CN, CS and E hydrologically homoge-
neous regions, linear stochastic models known as ei-
ther Box-Jenkins or ARIMA were used. A seasonal
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ARIMA model is written as (Janacek and Swift,
1993; Sun and Koch, 2001)

Ø(B)ΦF (Bs)(wi − µ) = Constant + θ(B)Θ(Bs)ai
(1)

wi = (1− B)d(1−Bs)Dxi (2)

In Eq. (1), wi should be taken as zi if the series
is stationary.

Box and Jenkins (1976) recommended that model
development consist of 3 stages (identification, es-
timation and diagnostic check) when an ARIMA
model is applied to a particular problem.

The identification stage is intended to determine
the differencing required to produce stationarity and
also the order of both the seasonal and nonseasonal
autoregressive (AR) and moving average (MA) op-
erators for a given series. By plotting original se-
ries (monthly series), seasonality and nonstationar-
ity (stochastic trend in the mean and variance) can
be revealed.

Many hydrologic time series processes may be
stationary or nonstationary. Nonstationary time se-
ries can occur in many different ways. The occur-
rence of a stochastic trend in the mean and variance
in a hydrologic time series can result from gradual
natural or man-induced changes in the hydrologic
environment producing the time series. In stochas-
tic modeling studies in particular nonstationarity is
a fundamental problem. Therefore a time series
that has nonstationarity should be converted into
a stationary time series. A nonstationary time se-
ries may be transformed into a stationary time se-
ries by using a linear difference equation. There-
fore, nonstationarity is the first fundamental statis-
tical property tested for in time series analysis (Huff
and Changnon, 1973; Wei, 1990). The following non-
parametric test (Spearman’s Rho test) can be ap-
plied to decide whether a trend exists in the monthly
data. The Spearman’s Rho test recommended by
Gibbons (1997) is given as

Rsp = 1− 6 ∗
∑
D2
i

n ∗ (n2 − 1)
(3)

Di = Kxi −Kyi (4)

tcal = Rsp ∗
[

(n− 2)
(1 −R2

sp

]1/2

(5)

To determine whether there is a trend, the cal-
culated tcal value in Eq. (5) should be compared to
the t-critical value from the tables. If the tcalvalue
lies within a 5% significance interval, the data has
no trend.

Autocorrelation function (ACF) and partial au-
tocorrelation function (PACF) should be used to
gather information about the seasonal and nonsea-
sonal AR and MA operators for the monthly series
(Hipel et al., 1977). ACF measures the amount of
linear dependence between observations in a time se-
ries. In general, for an MA (0,d,q) process, the auto-
correlation coefficient (rk) with the order of k cuts off
and is not significantly different from zero after lag
q. If rk tails off and does not truncate, this suggests
that an AR term is needed to model the time series.
When the process is an MA (0,d,q)*(0,D,Q), rk trun-
cates and is not significantly different from zero after
lag q+sQ. If rk attenuates at lags that are multiples
of s, this implies the presence of a seasonal AR com-
ponent. For an AR (p,d,0) process, the PACF (økk)
with the order of k truncates and is not significantly
different from zero after lag p. If økk tails off, this
implies that an MA term is required. When the pro-
cess is an AR (p,d,0)*(P,D,0), økk cuts off and is not
significantly different from zero after lag p+sP. If økk
damps out at lags that are multiples of s, this sug-
gests the incorporation of a seasonal MA component
into the model.

The estimation stage consists of using the data to
estimate and to make inferences about values of the
parameters conditional on the tentatively identified
model. In an ARIMA model, the residuals (ai) are
assumed to be independent, homoscedastic and usu-
ally normally distributed. However, if the constant
variance and normality assumptions are not true,
they are often reasonably well satisfied when the ob-
servations are transformed by a Box-Cox transfor-
mation. The transformations can be expressed as
either of the following equations (Wei, 1990):

zni=1 = λ−1
[
(xni=1 + c)λ − 1

]
λ 6= 0 (6)

zni=1 = ln (xni=1 + c) λ = 0 (7)
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Box and Jenkins (1976) stated that the model
should be parsimonious. Therefore, they recom-
mended the use of as few model parameters as possi-
ble so that the model fulfils all the diagnostic checks.
Akaike (1974) suggested a mathematical formulation
of the parsimony criterion of model building, the
Akaike Information Criterion (AIC) for the purpose
of selecting an optimal model fit to given data. The
AIC mathematical formulation is defined as

AIC = −2L
(∑

a2
i

)
+ 2K (8)

where K = p + q +P+Q+ 1, and L(
∑
â2
t ) = the log

of the likelihood function of the Box-Jenkins ARIMA
(p,d,q)*(P,D,Q) model. The log likelihood function,
L(
∑
â2
t ), is a monotonically decreasing function of

the sum of squared residuals,
∑
â2
t . The model that

gives the minimum AIC is selected as a parsimonious
model.

Shibata (1976) has shown that the AIC criterion
tends to overestimate the order of autoregression.
However, Akaike (1978, 1979) developed a Bayesian
extension of the minimum AIC procedure, called
BIC. Similar to Akaike’s BIC, Schwarz (1978) sug-
gested the following Bayesian criterion for model se-
lection, which has been called the Schwarz Bayesian
Criterion (SBC)

SBC = −2L
(∑

a2
i

)
+Kln(n) (9)

The diagnostic check stage determines whether
residualsare independent, homoscedastic and nor-
mally distributed.

The residual autocorrelation function (RACF)
should be obtained to determine whether residuals
are white noise. There are 2 useful applications re-
lated to RACF for the independence of residuals.
The first is the correlogram drawn by plotting rk(a)
against lag k. If some of the RACFs are significantly
different from zero, this may mean that the present
model is inadequate. The second is the Q(r) statistic
suggested by Ljung and Box (1978). A test of this
hypothesis can be done for the model adequacy by
choosing a level of significance and then comparing
the value of the calculated χ2 to the actual χ2 value
from the table. If the calculated value is less than
the actual χ2 value, the present model is adequate
on the basis of the available data. The Q(r) statistic
is calculated by

Q(r) = n(n+ 2)
m∑
k=1

(n− k)−1rk(a)2 (10)

rk(a) =
n∑

i=k+1

aiai−k/
n∑
i=1

a2
i (11)

The following test described by Breusch and Pa-
gan (1979) is very useful for determining whether a
transformation of the data is needed. If there is a
change in the variance (heteroscedasticity) of resid-
uals, a transformation is necessary for the data. For
the test, the residuals from the model fitted to the
data are divided into 2 groups. Then the residual
sum of squares (ESSL, ESSH) for these groups is ob-
tained. The Breusch-Pagan test statistic (Fcal) is
obtained from the equation below. This test statis-
tic will be distributed F. If Fcal is smaller than the
actual F value from the table, the residuals are as-
sumed to be homoscedastic.

Fcal =
ESSH/(nH − kp)
ESSL/(nL − kp)

≈ Ftable[(nH − kp), (nL − kp)]

(12)

There are many standard tests available to
check whether the residuals are normally distributed.
Chow et al. (1988) stated that if historical data are
normally distributed, the graph of the cumulative
distribution for the data should appear as a straight
line when plotted on normal probability paper.

Haan (1977) stated that the other way to
check the normality of residuals is the Kolmogorov-
Smirnov method. This is a non-parametric test of
the fit of data to a theoretical distribution using the
maximum absolute deviation (Dcal) between the 2
functions of cumulative distribution. The maximum
absolute deviation is (Haan, 1977)

Dcal = max |Fn(x)− Fa(x)| (13)

The value of the Dcal statistic is compared with
the critical value DTab (n, α) obtained from Haan
(1977). If Dcal is greater than the critical value DTab

(n, α), the null hypothesis related to normality is re-
jected for the chosen level of significance.
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YÜREKLİ, KURUNÇ, ÇEVİK

Results and Discussions

All the information from rain gauge stations (Fig-
ure 1) taken into consideration in order to simulate
drought periods in the W, CN, CS and E hydrolog-
ically homogeneous regions is given in Table 1. The
non-parametric test (Spearman’s Rho test) at a 5%
significance level was applied to monthly series com-
prising days with rainfall equal to or less than the
threshold value of 6.4 mm and days with no rainfall.
The Spearman’s Rho test results are given in Table 2.
The tcal values of the CN, W and CS hydrologically
homogeneous regions for the 6.4 mm threshold and
of the CS hydrologically homogeneous region only for
days with no rainfall were not between the actual t
values (±1.96) from the table at a 5% significance
level. This suggests that there are linear trends in
these data sequences. The plots of the ACFs drawn
for the data sequences were examined in order to
identify the form of the ARIMA model. Visual in-
spections show that the plot of original series and the
ACF graph for the 6.4 mm threshold of the E hydro-
logically homogeneous region follow an attenuating
sine wave pattern that reflects the random period-

icity of the data and possibly indicates the need for
non seasonal and/or seasonal AR terms in the model.
For these series, the cyclic seasonal component and
linear trend were removed by taking the non seasonal
and seasonal differencing operator as one (1).

The ACFs and PACFs were estimated for the
monthly data of each hydrologically homogeneous re-
gion. All the ACFs were significantly different from
zero at lag 60 (5s < n = 240/4). Additional to this,
the Ljung-Box Q statistics were estimated for lag
60. The Q(r) statistics of the W, CN, CS and E hy-
drologically homogeneous regions at lag 60 for the
6.4 mm threshold are 240.0, 515.8, 271.1 and 422.2,
respectively. The Q(r) statistics of the hydrologi-
cally homogeneous regions at lag 60 for days with
no rainfall are 1204.0, 1108.9, 1145.4 and 717.6, re-
spectively. These results are greater than 77.9 (the
actual χ2 value). Therefore, they emphasize that the
ACFs obtained from the monthly data sequences are
different from zero. In other words, there was a lin-
ear dependence between the selected drought peri-
ods. However, the ACFs did not cut off but rather
damped out. This may suggest the presence of AR

Table 1. Hydrologically homogeneous regions for the study area.

Hydrologic Rain gauges Average Area
regions rainfall (mm) (km2)
West Zile, Turhal, Boztepe, Zile, Reşadiye 34.7 2010
Central North Tokat, Erbaa, Almus, Almus Dam, Doğanyurt, 47.0 4650

Pazar, Dökmetepe, Hacıpazarı, Niksar
Central South Artova, Çamlıbel, Sulusaray, Ekinli 36.3 1539
East Çamiii, Reşadiye, Bereketli 47.7 1961

Table 2. The ARIMA models selected for hydrologically homogeneous regions.

Model Statistic
Hydrologic ARIMA Trend Probability of K-S Test Fcal

region model (tt) SBC Q(r) > 0.05 Dcal < D∗Tab >0.05 Const.
W6.4 (0,1,1)(1,0,1) 2.67 -1289.6 0.714 0.072 0.661 —
WNR (0,0,1)(1,0,1) 0.04 1346.5 0.963 0.051 0.853 20.95
CN6.4 (2,1,0)(1,0,1) 2.69 993.1 0.061 0.076 0.792 —
CNNR (2,0,1)(1,0,1) 0.74 1358.1 0.525 0.062 0.922 20.98
CS6.4 (0,1,2)(1,0,1) 2.56 996.6 0.827 0.081 0.709 —
CSNR (2,1,0)(1,0,1) 3.79 1415.5 0.089 0.038 0.732 —
E6.4 (1,0,1)(1,1,1) 1.76 874.7 0.320 0.071 0.974 —
ENR (1,0,2)(1,0,1) 0.95 1317.3 0.158 0.077 0.894 —

∗0.088, DTabcritical value from the table
SBC, Schwarz Bayesian Criterion
Const, constant in ARIMA model

185
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Figure 2. Comparison of the observed data to the predicted data for 5 year.
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terms. The PACFs possess significant values at some
lags but rather tail off. This may imply the presence
of MA terms. The ACFs have significant values at
lags that are multiples of 12. This may stress that
seasonal AR terms are required but that these val-
ues attenuate. There are peaks on the graphs of the
PACFs at lags that are multiples of 12 that may sug-
gest seasonal MA terms, but these peaks damp out.

Alternative ARIMA models were estimated by
considering the ACF and PACF graphs from the
monthly data obtained for the hydrologically homo-
geneous regions. The SBC was taken into account
for obtaining a parsimonious model among these al-
ternatives. The model with the lowest SBC was as-
sumed to be parsimonious. In addition, model pa-
rameters were analyzed at a 5% significance level by
using the t-test to select the best model fit to the
data. If there was any parameter significant at a
level greater than 5% , it was eliminated.

Diagnostic checks were applied in order to deter-
mine whether the residuals of the selected models
from the ACF and PACF graphs were independent,
homoscedastic and normally distributed. The mod-
els that had the minimum SBC among the selected
models fulfilled all the diagnostic checks and these
were selected as the best model for days with rain-
fall equal to or less than the 6.4 mm threshold and
days with no rainfall for the hydrologically homoge-
neous regions. The selected best models are given in
Table 2. The critical assumption of independence for
the RACFs of the residuals was done by using the
χ2 distributed Ljung-Box Q statistic. In addition,
the probabilities of the Q statistics calculated for the
best models are given in Table 2. In this table, test
results from the Kolmogorov-Smirnov method for the
normality and those from Breusch-Pagan for the ho-
moscedascity of the residuals are also given. Table 2
shows that all the diagnostic checks for the residuals
are fulfilled.

The value (V) of the parameters, associated stan-
dard errors (SEV), t-ratios and probabilities (<5%)
for the standard errors are listed in Table 3. The
SEVs calculated for the model parameters were
rather small compared to the parameter values. Fur-
thermore, even at the 1% significance level, all of
the parameters are significant and these parameters
should be included in the models (Table 3).

Since the residuals from the models are normally

distributed and homoscedastic, a Box-Cox transfor-
mation (Eqs. (3) and (4)) to the monthly data se-
quences was not necessary except for the 6.4 mm
threshold for the W hydrologically homogeneous re-
gion. In Eq. (4), c is substituted by 100 for this se-
ries. Granger and Newbold (1976) pointed out that
the transformations can change the type of the model
being estimated. Therefore, it is better to estimate
a model from non-transformed data.

Comparison of means and standard deviation for
observed data and predicted data from the model
are given in Table 4. To detect whether there was
a significant difference between the mean and stan-
dard deviation values from the observed and pre-
dicted data, a Z-test for the means and F-test for
the standard deviation were applied (Haan, 1977;
Devore and Peck, 1993). Since Zcal values related to
means were between Z-critical table values (±1.96 for
two-tailed at a 5% significance level), the data sup-
port the claim that there is no significant difference
between the mean values of observed and predicted
data. Similarly, the Fcal values of standard deviation
were smaller than the F-critical table values at a 5%
significance level. Thus, the results show that pre-
dicted data preserve the basic statistical properties of
the observed series. In addition, Figure 2 shows the
relationships between the observed data for 5-years
and the predicted data for the same years from the
best model selected for days with rainfall equal to
or less than the 6.4 mm threshold and days with no
rainfall in each hydrologically homogeneous region.
For each hydrologically homogeneous region and se-
lected threshold values, the predicted data follow the
observed data very closely.

Conclusion

Based on the analysis to simulate drought durations
by the ARIMA model for hydrologically homoge-
neous regions shown above, the following conclusions
were drawn:

ARIMA model applications to the W, CN, CS
and E hydrologically homogeneous regions showed
that predicted data preserved the basic statistical
properties of the observed series.

The ARIMA model equation for each hydrolog-
ically homogeneous region given below can be used
successfully for the simulation of drought durations.
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Table 3. Statistical analysis for the model parameters.

Variables in the model
Hydrologic Model Value of Standard t-ratio Probability

regions parameters parameters error < 0.05

W6.4

θ1 0.832 0.052 16.12 0.000
Φ1 0.982 0.023 43.23 0.000
Θ1 0.868 0.078 11.14 0.000

WNR

θ1 -0.193 0.062 -3.13 0.002
Φ1 0.998 0.005 186.80 0.000
Θ1 0.942 0.094 9.98 0.000

Constant 20.95 1.318 15.89 0.000

CN6.4

Ø1 -0.509 0.061 -8.30 0.000
Ø2 -0.277 0.062 -4.49 0.000
Φ1 0.985 0.018 55.54 0.000
Θ1 0.857 0.072 11.90 0.000

CNNR

Ø1 0.971 0.149 6.50 0.000
Ø2 -0.282 0.063 -4.44 0.000
θ1 0.771 0.139 5.56 0.000
Φ1 0.993 0.013 75.75 0.000
Θ1 0.914 0.084 10.88 0.000

Constant 20.98 0.605 34.67 0.000

CS6.4

θ1 0.592 0.066 9.03 0.000
θ2 0.253 0.065 3.89 0.000
Φ1 0.986 0.021 47.89 0.000
Θ1 0.897 0.074 12.13 0.000

CSNR

Ø1 -0.582 0.061 -9.61 0.000
Ø2 -0.306 0.061 -4.97 0.000
Φ1 0.993 0.009 111.09 0.000
Θ1 0.890 0.066 13.55 0.000

E6.4

Ø1 0.795 0.135 5.89 0.000
θ1 0.887 0.108 8.23 0.000
Φ1 -0.166 0.075 -2.21 0.028
Θ1 0.866 0.062 13.86 0.000

ENR

Ø1 0.998 0.001 868.63 0.000
θ1 0.731 0.063 11.54 0.000
θ2 0.237 0.062 3.80 0.000
Φ1 0.923 0.040 22.98 0.000
Θ1 0.681 0.092 7.43 0.000

W6.4, (1 - 0.982B12) [(1 - B)zi] = (1 - 0.832B) (1 - 0.868B12)ai
WNR, (1 - 0.998B12)xi = 20.95 + (1 + 0.193B) (1 - 0.942B12)ai
CN6.4, (1 + 0.509B + 0.277B2) (1 - 0.985B12) [(1 - B)xi] = (1 - 0.857B12)ai
CNNR, (1 - 0.971B + 0.282B2) (1 - 0.993B12)xi = 20.98 +
(1 - 0.771B) (1 - 0.914B12)ai
CS6.4, (1 -0.986B12) [(1 - B)xi] = (1 - 0.592B - 0.253B2) (1 - 0.897B12)ai
CSNR, (1 + 0.582B + 0.306B2) (1 - 0.993B12) [(1 - B)xi] = (1 - 0.890B12)ai
E6.4, (1 - 0.795B) (1 + 0.166B12) [(1 - B12)xi] = (1 - 0.887B) (1 - 0.866B12)ai
ENR, (1 - 0.998B) (1 - 0.923B12)xi = (1 - 0.731 B - 0.237B2) (1 - 0.681B12)ai
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Table 4. Comparison of statistic properties of the observed and predicted data.

Hydrologic Decision Decision
regions M1

obs M2
pre | zcal| < 1.96 SD3

obs SD4
pre Fcal < 1.24

W6.4 28.7 28.7 0.00 1.94 1.31 0.68
WNR 21.0 21.1 -0.24 5.40 3.75 0.69
CN6.4 28.6 28.6 0.00 1.89 1.39 0.74
CNNR 21.0 21.1 -0.24 5.27 3.50 0.66
CS6.4 28.5 28.6 -0.68 1.97 1.14 0.58
CSNR 22.4 22.4 0.00 5.21 4.42 0.85
E6.4 28.7 28.9 -1.30 1.93 1.39 0.72
ENR 23.4 23.2 1.11 4.40 3.51 0.80

1mean of the observations
2mean of the predictions from the model
3standard deviation of the observations
4standard deviation of the predictions from the model

Nomenclature

ai white noise time series value at time i
B backward shift operator
c constant for Box-Cox transformation
d order of the nonseasonal differencing oper-

ator
D order of the seasonal differencing operator
ESSL the residual sum of square for the low

group
ESSH the residual sum of square for the high

group
Fa (x) the specified theoretical cumulative distri-

bution function
Fn (x) cumulative density function based on n

measurements
kp degree of freedom
Kxi rank of ith observation in the historical

data
Kyi rank in the historical data of ith observa-

tion in the ascended data

n the number of observation
nL the number of residuals in the low group
nH the number of residuals in the high group
Q(r) Ljung-Box statistic at lag m
rk(a) ACF of ai at lag k
Rsp rank order correlation coefficient
s seasonal lengh
xi discrete time series value at time i
wi stationary series formed by differencing the

xi
zi transformation of xiseries

Greek Symbols

λ exponent for Box-Cox transformation
µ mean level of the wi series (if D + d > 0

often µ ≈ 0)
Ø(B) nonseasonal AR operator of order p
θ (B) nonseasonal MA operator of order q
Φ (B) seasonal AR parameter of order P
Θ (B) seasonal MA parameter of order Q
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