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Abstract

This article presents a comprehensive parametric analysis of rotating variable thickness elastoplastic an-
nular disks with inner boundaries subject to pressure or mounted on rigid inclusion. A computer model based
on von Mises yield criterion, J2- deformation theory and nonlinear isotropic hardening is developed. Elastic
limit angular velocities, partially plastic deformations and plastic limit angular velocities are investigated
with emphasis on the determination of the effects of all the geometric, material and hardening parameters
involved.
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Introduction

The accurate determination of stresses in rotating
disks is important for an efficient design and ma-
terial usage in engineering applications such as ro-
tors of rotating machinery, flywheels and shrink fits.
Therefore much research has been conducted in this
field.

Until recently, closed form solutions of the prob-
lem were limited to uniform disk thicknesses (Gamer,
1984). Güven (1992) and Eraslan and Orçan (2002a,
2002b) derived the closed form solutions of variable
thickness rotating disks using Tresca’s yield condi-
tion and its associated flow rule. Approximate ana-
lytical (Yeh and Han, 1994; You and Zhang, 1999)
and numerical solutions using perturbation (You et
al., 1997) or finite elements (You et al., 2000; Ma et
al., 2001) have also been reported.

In his articles related to the present study, Güven
obtained an analytical solution of the problem of ro-
tating variable thickness disks with rigid inclusion
for the elastic-plastic (Güven, 1998) and fully plas-

tic state (Güven, 1997). His analyses were based on
Tresca’s yield criterion, its associated flow rule and
linear strain hardening material. It was found that
the plastic core of the hyperbolic annular disk con-
sisted of 3 parts with different forms of Tresca’s yield
criterion in the elastic-plastic as well as in the fully
plastic states.

The solution of elastic-plastic problems of rota-
tional symmetry using Tresca’s yield criterion needs
separate treatment in each region due to different
forms of the yield criterion in different parts of the
plastic zone. In particular, in the case when a plastic
region expands over a plastically predeformed region
the task becomes quite cumbersome. On the other
hand, one has to carry out a single formulation for
the whole plastic region in the case of the von Mises
yield criterion. However, this analysis is essentially
numerical due to the nonlinearity involved in the use
of the von Mises yield criterion. Moreover, the treat-
ment of different boundary conditions may cause ad-
ditional difficulties in the analysis.

Elastic limit angular velocities of variable thick-

381



ERASLAN, ORÇAN

ness rotating disks in power function form mounted
on rigid shafts were investigated by Eraslan and
Argeso (2002). Using the von Mises yield criterion
and deformation theory of plasticity, plastic limit an-
gular velocities were also estimated for linear and
nonlinear hardening material behavior. A detailed
analysis of inelastic behavior of constant and variable
thickness rotating annular disks with rigid inclusion
using the von Mises yield criterion was presented by
Eraslan (2002). The stresses and deformations were
studied for thickness variations in power and expo-
nential forms. Neither of these studies covers the
elastic-partially plastic deformation of variable thick-
ness annular disks. They concentrate only on the
elastic limit and fully plastic limit angular velocities
and the corresponding stress states.

The aim of the present work is to perform a com-
prehensive parametric analysis of elastic-plastic de-
formation of variable thickness annular disks sub-
jected to 2 different boundary conditions on the inner
boundaries that are encountered frequently in engi-
neering applications: (i) pressurized inner and free
outer boundaries, and (ii) radially constrained inner
and free outer boundaries. The von Mises yield cri-
terion and J2- deformation theory of plasticity are
employed.

It is assumed that the annular disk of inner ra-
dius a and outer radius b is symmetric with respect
to the mid plane and the variability of the thickness
is in the radial direction according to the form

h(r) = h0

[
1− n

(r
b

)k]
(1)

where h0 is the thickness at the axis, and n and k
are the geometric parameters. The disk geometries
for convex (n = 0.4, k = 2.4) and concave (n = 0.4,
k = 0.7) profiles are shown in Figure 1.

The Analysis

For a state of plane stress (σz = 0) and with
the assumption of small deformations, the strain-
displacement relations εr = du/dr and εθ = u/r,
the equation of motion in radial direction

d

dr
(hrσr)− hσθ = −hρω2r2 (2)

the compatibility relation

d

dr
(rεθ)− εr = 0 (3)

and generalized Hooke’s law

εr = εpr +
1
E

[σr − νσθ] (4)

εθ = εpθ +
1
E

[σθ − νσr] (5)

are valid irrespective of the material behavior. In
the equations above σr and σθ denote the radial and
circumferential stress components, ρ the density of
the material, ω the angular velocity, εr and εθ the
radial and circumferential strain components, E the
modulus of elasticity and ν the Poisson’s ratio. The
superscript p indicates the plastic component.

Defining the stress function in terms of radial
stress

Y (r) = rhσr (6)

and using the equation of motion (2) one obtains

σr =
Y

hr
and σθ = ρω2r2 +

1
h

dY

dr
(7)
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Figure 1. Variable (a) convex (n = 0.4, k = 2.4) and (b) concave (n = 0.4, k=0.7) disk profiles.
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Expressing the elastic strains in terms of the
stress function Y (r) and substituting them in the
compatibility relation lead to

d2Y

dr2
+
[

1
r
− h′

h

]
dY

dr
−
[

1
r2
− ν h′

rh

]
Y =

− (3 + ν)hρω2r

(8)

which is the governing differential equation for the
elastic region. In Eq. (8) a prime stands for dif-
ferentiation with respect to radial coordinate r. On
the other hand, for plane stress, the von Mises yield
condition reads

σy =
√
σ2
r − σrσθ + σ2

θ (9)

Using Swift’s hardening law, the relation between
the yield stress σy and the equivalent plastic strain
εEQ can be expressed as

σy = σ0 (1 + η εEQ) 1/m (10)

where σ0 is the yield limit, η the hardening parame-
ter and m the material parameter. For m = 1 linear
strain hardening is obtained. The inverse relation is

εEQ =
[(

σy
σ0

)m
− 1
]

1
η

(11)

The use of a polynomial relationship in express-
ing the yield stress equivalent plastic strain relation
instead of (10) is discussed in You et al. (2000). Ac-
cording to J2-deformation theory, the plastic strains
are given by (Chackrabarty, 1987; Chen and Han,
1988)

εpr =
εEQ
σy

[
σr −

1
2
σθ

]
(12)

εpθ =
εEQ
σy

[
σθ −

1
2
σr

]
(13)

εpz = − (εpr + εpθ) (14)

Here it should be noted that the above expres-
sions for the plastic strains are exact for proportional

loading, i.e. when the ratio of deviatoric stress com-
ponents is held constant. However, several authors
(Chen, 1973; Jahed et al., 1998) have pointed out the
applicability of total deformation theory, and Budi-
ansky (1959) showed that the total deformation the-
ory of plasticity may be used for a range of loading
paths other than proportional loading without vio-
lating the general requirements for physical sound-
ness of a plasticity theory. Furthermore, since the
objective of the present work is to perform a para-
metric analysis (i.e. to find out the relative effect
of different parameters) the deformation theory of
plasticity is adopted because of its convenience.

Substituting the total strains from Eqs. (4) and
(5) in the compatibility relation (3) leads to the gov-
erning differential equation for the plastic region

(1 + ν) (σr − σθ) + r

[
ν
dσr
dr
− dσθ

dr

]
=

E

[
εpθ + r

dεpθ
dr
− εpr

] (15)

which takes the following form in terms of the stress
function Y (r)

d2Y

dr2
+
[

1
r
− h′

h

]
dY

dr
−
[

1
r2
− ν h′

rh

]
Y =

− (3 + ν)hρω2r − Eh

r

[
εpθ + r

dεpθ
dr
− εpr

] (16)

For the numerical solution of Eq. (16) a nonlinear
shooting-method using a Newton-Raphson scheme
with a numerically approximated tangent is de-
signed. For this purpose, first the plastic strains on
the right are expressed in terms of the stress function
Y (r) by noting that

dεpθ
dr

=
σy (σ′r − 2σ′θ)− σ′y (σr − 2σθ)

2ησ2
y

−

1
2ησ2

y

(
σy
σ0

)m  (m− 1)σ′y (σr − 2σθ) +

σy (σ′r − 2σ′θ)

 (17)

in which

σ′y =
σr
σy

(
σ′r −

1
2
σ′θ

)
+
σθ
σy

(
σ′θ −

1
2
σ′r

)
(18)

σr =
Y

hr
and σ′r = −

[
1
hr2

+
h′

h2r

]
Y +

Y ′

hr
(19)
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σθ = ρω2r2 +
1
h

dY

dr
and σ′θ = ρω2r − h′Y ′

h2
+
Y ′′

h
(20)

Collecting the coefficients of Y , Y ′ and Y ′′, Eq.
(16) is then cast into the general form

d2Y

dr2
= f(r, Y,

dY

dr
) (21)

Letting φ1 = Y and φ2 = Y ′, Eq. (21) is con-
verted into a system of initial value problems (IVP)

dφ1

dr
= φ2 (22)

dφ2

dr
= f(r, φ1, φ2) (23)

subject to the initial conditions

φ0
1 = Y (r = a) and φ0

2 = Y ′(r = a) (24)

In the case of an annular disk subject to internal
pressure p, from Eq. (6) φ0

1 = −ah(a)p but φ0
2 is

not known. Since σr(b) = 0 implies Y (b) = 0, an
iterative scheme can be constructed to find out φ0

2

by requiring that Y (b) = 0. For a strain hardening
material σy ≥ σ0 in the plastic region. An elastic-
plastic border rep is determined from σy(rep) = σ0.
In the adjacent elastic region, Eq. (8) is solved by
imposing the continuity of φ1 and φ2 at rep to assure
the continuity of the stresses.

Iterations begin with the initial estimate φ0
2 (0)

and at the k-th iteration cycle the IVP system is
solved 3 times with

I. φ2(0) = φk2(0) to give F1 = φ1(b)

II. φ2(0) = φk2(0) + ∆φ to give F2 = φ1(b)

III. φ2(0) = φk2(0)−∆φ to give F3 = φ1(b)

in which ∆φ is a small increment. A better approx-
imation for φ2(0) can now be obtained from

φk+1
2 (0) = φk2(0) − (2∆φ)F1

F2 − F3
(25)

Iterations are repeated until
∣∣φk+1

2 (0) − φk2(0)
∣∣ <

εT where εT represents the specified error toler-
ance. For an annular disk with boundary conditions

u(a) = 0 and σr(b) = 0, both initial conditions φ0
1

and φ0
2 are unknown. The condition u(a) = 0 pro-

vides a relation (which is nonlinear if the region is
plastic) between φ0

1 and φ0
2. One of them is esti-

mated, the other one is calculated accordingly and
both are corrected iteratively by imposing Y (b) = 0.
The computational details of this procedure can be
found in Eraslan (2002). The initial value system
defined by Eqs. (22) and (23) for the solution of
Eq. (16) is not convenient for a Runge-Kutta so-
lution since the system may be stiff at early stages
of integration. The robust stiff ODE solver LSODE
by Hindmarsh (Hindmarsh, 1983), which implements
Gear’s stiffly stable method, is used to overcome the
stiffness problem.

Numerical Results

The results are presented in terms of the following
dimensionless and normalized variables: radial coor-
dinate r̄ = r/b, bore radius ā = a/b, angular veloc-
ity Ω = ωb

√
ρ/σ0, stress σ̄j = σj/σ0, displacement

ū = uE/bσ0 strain ε̄j = εjE/σ0, pressure p̄ = p/σ0

and hardening parameter H = ησ0/E. The distribu-
tion of stresses and radial displacement at the elastic
limit angular velocity Ωe = 0.8852 for an internally
pressurized annular disk (p̄ = 0.25) with geometric
parameters n = 0.4, k = 2.4 and ā = 0.2 is shown
in Figure 2. The radial stress is tensile in a majority
of the disk except in the neighborhood of the bore.
The stress function φ in Figure 2 is obtained from

φ =
1
σ0

√
σ2
r − σrσθ + σ2

θ (26)

which corresponds to the yield stress σ̄y in the plastic
core. Note that φ = 1 at the plastic-elastic border
and φ < 1 in the elastic region. Figures 3(a) and
(b) show the effect of the parameter n on the radial
and circumferential stress distribution, respectively,
at the elastic limit angular velocity Ωe = 0.8352 for
n = 0. Both stress components increase with de-
creasing n values and they are maximum for n = 0
corresponding to the uniform thickness disk.

The effect of the geometric parameter k on the
elastic limit angular velocity as a function of the pa-
rameter n is depicted in Figure 4. For disk profiles
with k = 2.4 (i.e. for larger k values) higher limit an-
gular velocities are obtained provided that n is less
than a critical value. Note that for n = 0 both cases
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Figure 2. Stresses and displacement in a pressurized ro-
tating annular disk for ā = 0.2, n = 0.4, k =
2.4 and p̄ = 0.25 at the elastic limit angular
velocity Ωe = 0.8352.

reduce to a uniform thickness disk irrespective of the
value of k. Figure 5 shows that elastic limit angular
velocity increases with decreasing inner radius a for
a fixed value of n and with increasing values of n for
a fixed a. Comparing Figures 6(a) and (b) it is ob-
served that for m = 1, which corresponds to linear
strain hardening material, the plastic region prop-
agates slightly further than that for m = 0.5, and
stress and displacement distributions are almost the
same, whereas the plastic strains are considerably
larger. For m = 2 (Figure 6(c)) the circumferen-
tial stress in the plastic region decreases. The stress
distribution in partially plastic annular disks for dif-
ferent n values is plotted in Figure 7 together with
corresponding plastic strains. The angular velocity
is taken to be Ωfp = 1.8635, which is the fully plastic
limit for a constant thickness disk. Figure 8 shows
that in the fully plastic state the magnitudes of σθ
as well as σr are reduced by as much as 50% for m =
2 compared with those for m = 0.5. Taking ā = 0.2
and m = 1, the propagation of the elastic-plastic
border r̄ep with increasing angular velocity is calcu-
lated and plotted in Figure 9 for different hardening
parameters. In Figure 10, this effect is investigated
for H = 0.4 and different values of the parameter m.
Taking H = 0.5, m = 1, k = 1, and p̄ = 0.25, it

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0
radial coordinate

ra
di

al
 s

tr
es

s 
co

m
po

ne
nt

0.0=n

8.0

4.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0
radial coordinate

ci
rc

um
fe

re
nt

ia
l s

tr
es

s 
co

m
po

ne
nt

8.0

4.0

0.0=n

(a) (b)

Figure 3. Comparison of (a) radial, (b) circumferential stresses for k = 0.8, Ω = 0.8352 using n as a parameter.
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0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0.0 0.2 0.4 0.6 0.8 1.0

parameter n

el
as

tic
 li

m
it 

an
gu

la
r 

ve
lo

ci
ty

0.52k =

2.4k =

Figure 4. Variation of elastic limit angular velocity with
the thickness reduction parameter n for k =
0.52 and k = 2.4.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.0 0.2 0.4 0.6 0.8 1.0

parameter n

el
as

tic
 li

m
it 

an
gu

la
r 

ve
lo

ci
ty

0.3

0.2

a = 0.1

Figure 5. Variation of elastic limit angular velocity with
the thickness reduction parameter n for differ-
ent bore radii.

is observed in Figure 11 that the plastic limit angular
velocity has a stronger dependence on a compared
with the elastic limit angular velocity presented in
Figure 5. Taking ā = 0.2, Figure 12 shows that the
plastic limit angular velocity increases with increas-
ing hardening parameterH and decreasing values of
m.

When an annular disk is mounted on a rigid shaft,
owing to the centrifugal forces developed by rotation
the stress distribution is tensile throughout the disk.
The radial stress at the rigid inclusion-annular disk
interface increases sharply and is much larger than
the circumferential stress, as depicted in Figure 13.
Taking k = 0.8, the effect of thickness reduction pa-
rameter n on the radial and circumferential stress
components is shown in Figure 14. The dimension-
less angular velocity Ωe = 1.3677 is used, which cor-
responds to the elastic limit angular velocity for a
uniform thickness disk. The magnitudes of stresses
decrease with the reduction in disk thickness at the
edge. The effect of the geometric parameter k on the
variation of the elastic limit angular velocity with the
thickness reduction at the edge is given in Figure 15.
As n increases the elastic limit angular velocity
for k = 0.52 increases sharply. The dependence of
the elastic limit angular velocity on the parameter n
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Figure 6. Elastic-plastic stresses, displacement and plas-
tic strains for n = 0.4, k = 2.4, H = 0.5,
p̄ = 0.25, Ω = 1.6 (a) m = 0.5, (b) m = 1,
(c) m = 2.
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strains for k = 1, H = 0.5, m = 1, p̄ = 0.25
and Ω = 1.8635 using n as a parameter.
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-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

radial coordinate

st
re

ss
es

, d
is

pl
ac

em
en

t a
nd

 p
la

st
ic

 s
tr

ai
ns

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

radial coordinate

st
re

ss
es

, d
is

pl
ac

em
en

t a
nd

 p
la

st
ic

 s
tr

ai
ns

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

radial coordinate

st
re

ss
es

, d
is

pl
ac

em
en

t a
nd

 p
la

st
ic

 s
tr

ai
ns

rσ

p
zε

p
rε

p
θε

u

θσ yσ

rσ

p
zε

p
rε

p
θε

u
θσ

yσ

rσ

p
zε

p
rε

p
θε

u
θσ

yσ

(c)

(b)(a)

Figure 8. Fully plastic stresses, displacement and plastic strains for n = 0.4, k = 2.4, H = 0.5, p̄ = 0.25, (a) m = 0.5,
Ωfp = 2.1018, (b) m = 1, Ωfp = 1.9720, (c) m = 2, Ωfp = 1.8422.
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Figure 14. Comparison of (a) radial, (b) circumferential
stresses for k = 0.8, Ω = 1.3677 using n as a
parameter.
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Figure 14. Contunied
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Figure 15. Variation of elastic limit angular velocity with
the thickness reduction parameter n for k =
0.52 and k = 2.4.
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for ā = 0.1, 0.2 and 0.3 is shown in Figure 16. As
the radius of the rigid inclusion (or inner radius of
the annular disk) decreases the elastic limit angular
velocity increases. It is noted that the largest elastic
limit angular velocity corresponds to the largest n
and the smallest inclusion radius. The effect of the
material parameter m, which represents the charac-
teristics of the hardening rule, is investigated for a
partially plastic disk using m = 0.5, 1 and 2 and
the results are presented in Figure 17. It is found
that although the stresses are almost the same the
propagation of the plastic zone as well as the magni-
tudes of the plastic strains increase with increasing
m values.

For H = 0.5 and m = 1 the fully plastic angu-
lar velocity of a uniform thickness disk is calculated
as Ωfp = 2.1743. At this angular velocity the disk
is partially plastic for larger n values. Taking k =
1, the elastic-plastic stresses for different n values
together with the corresponding plastic strain com-
ponents are plotted in Figure 18. The elastic-plastic
border radius in each case is marked by the location
where the plastic strains vanish. The stresses, plas-
tic strains and the width of the plastic zone are all
minimum for the largest value of n.
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Figure 16. Variation of elastic limit angular velocity with
the thickness reduction parameter n for differ-
ent inclusion radii.

Figure 19 shows the stresses, radial displacement
and plastic strains at the fully plastic state for m =
0.5, 1 and 2. The corresponding plastic limit angular
velocities are Ω = 2.4688, 2.3283 and 2.1865, respec-
tively. Note that with increasing m the magnitudes
of the stresses are lowered, whereas plastic strains
become significantly larger.
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Figure 17. Elastic-plastic stresses, displacement and
plastic strains for n = 0.4, k = 2.4, H = 0.5,
Ω = 2.0 (a) m = 0.5, (b) m = 1, (c) m = 2.
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Figure 17. Contunied

The expansion of the elastic-plastic border radius
r̄ep with increasing angular velocity is calculated and
displayed in Figures 20 and 21 for different values of
the material and hardening parameters m and H ,
respectively. As expected, due to larger yield stress
values corresponding to larger H and/or smaller m
values (for a certain value of effective plastic strain)
the propagation of the elastic-plastic border radius
occurs at higher angular velocities. It is interesting
to note that in the early stages of elastic-plastic de-
formation the propagation of rep occurs at a lower
rate and is less sensitive to the hardening parameter
H (and m) compared with the final stages of elastic-
plastic deformation where the effect of H (and m)
becomes significant. The plastic limit angular veloc-
ities for H = 0.4, m = 0.5, 1 and 2 are determined as
Ω = 2.4321, 2.2893 and 2.1566, respectively, and for
m = 1, H = 0.2, 0.4 and 0.6 as Ω = 2.1769, 2.2893
and 2.3604, respectively.
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Figure 18. Elastic-plastic (a) radial stresses and plastic
strains (b) circumferential stresses and plas-
tic strains for k = 1, H = 0.5, m = 1, and Ω
= 2.1743 using n as a parameter.
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Figure 19. Fully plastic stresses, displacement and plastic strains for n = 0.4, k = 2.4, H = 0.5, (a) m = 0.5, Ωfp = 2.4688,
(b) m = 1, Ωfp = 2.3283, (c) m = 2, Ωfp = 2.1865.
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Figure 22. Variation of plastic limit angular velocity with
the thickness reduction parameter n for differ-
ent bore radii (k = 1.0, H = 0.5, m = 1).
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the thickness reduction parameter n for ā =
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Figure 22 shows that for a certain thickness pa-
rameter n higher plastic limit angular velocities are
encountered as the rigid inclusion radius a is in-
creased. Finally, it is depicted in Figure 23 that the
plastic limit angular velocity increases with increas-
ing values of the parameter n for fixed values of the
hardening parameters H and m. The fact that larger
H and smaller m values lead to higher plastic limit
angular velocities is also evident from this figure.

Concluding Remarks

Using an efficient numerical solution procedure, this
article presents a von Mises solution to elastic-plastic
stress distribution within rotating variable thickness
annular disks with inner boundaries subjected to
pressure or mounted on rigid inclusion. Non-linear

isotropic strain hardening in the form of Swift’s hard-
ening law is considered. A comprehensive paramet-
ric analysis for elastic limit angular velocities, par-
tially plastic behavior and plastic limit angular ve-
locities is carried out to demonstrate the influence
of all the geometric, material and hardening param-
eters involved. In particular, the dependence of the
expansion of the plastic core on the thickness reduc-
tion parameters k and n together with the mate-
rial parameters H and m governing the non-linear
hardening behavior is investigated. Extensive nu-
merical results pertaining to the parametric analysis
are presented. These results indicate that in most
cases the stresses, displacements and plastic strains,
elastic and plastic limit angular velocities and width
of the plastic region are affected significantly by the
parameters used in the model.
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Güven, U., Elastic-Plastic Stresses in a Rotating
Annular Disk of Variable Thickness and Variable
Density”. Int. J. Mech. Sci. 34, 133-138, 1992.
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