
Turkish J. Eng. Env. Sci.
29 (2005) , 41 – 50.
c© TÜBİTAK
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Abstract

The fracture toughness of laminates in which both phases are ductile is modeled with finite element
analyses in terms of JIC. The models employed were an exact analogue of compact tension test pieces
loaded longitudinally at pinholes, transverse to the crack plane. This study focused on the verification of
the model in monolithic samples, the simplest form of which was 2-dimensional (plane strain), and the most
elaborate version of which was a 3-D layered structure. Adaptation of the model to laminates showed that
it is possible to predict delamination if the individual layers are glued together with a certain interfacial
strength. The fracture toughness of laminates, JIC, is predicted with and without delamination with the
use of a fracture criterion based on a critical value of load line displacement. This critical value derived from
the experiment, and the fracture toughness of steel laminates with layer properties of low-C and medium-C
steels are predicted successfully for 2 volume fractions. It is further found that the fracture criterion, which
was based on a critical value of LLD, can well be based on a critical value of plastic zone size. This has the
advantage that the critical value of plastic zone size and hence the J integral can be predicted with FEM
analysis.

Key words: Finite element method, J integral, Laminates, Interfacial strength, Delamination, Load line
displacement, Plastic zone size.

Introduction

The modeling of fracture toughness via fine ele-
ment analysis has been of interest for several decades
(Tracey, 1973; Parks, 1974; Barsoum, 1976; Rybicki
and Kanninen, 1977; Blackburn and Hellen, 1979;
De Lorenzi, 1982; Raju, 1987; Cordes et al., 1995).
Most of these studies have focused on the prediction
of the fracture toughness of essentially brittle ma-
terials, in terms of KIC . For materials that behave
in an elasto-plastic manner, the J integral, as pro-
posed by Rice (1968), is the most common method
(McMeeking, 1977; Parks, 1977; Sakata et al., 1983;
Dodds and Read, 1985; Sivaneri et al., 1991; Fraisse
and Schmit, 1993; Freg and Zhang, 1993; Stump and
Zywicz, 1993).

The J integral method simply refers to a change

in energy stored in the material when the crack ad-
vances a unit length. The fracture toughness of the
material therefore is a critical value of this energy
so that the crack grows in a stable manner, before
catastrophic failure.

The prediction of the J line integral for a station-
ary crack was first carried out by Chan et al., (1970).
Since then many studies have been carried out con-
cerning fracture criteria adaptation and application
to a finite element method over the years. Various
fracture criteria have been proposed to predict the
fracture toughness, JIC , based on a critical value of
crack growth (Newman, 1985; Shivakumar and New-
man, 1989; Kuang and Chen, 1996), crack tip open-
ing displacement (CTOD) (Shih et al., 1979), crack
tip opening angle (Shih et al., 1979), strain energy
density (De Giorgi et al., 1989), strain energy release
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rate (Cordes and Yazıcı, 1993), crack mouth open-
ing displacement (CMOD) (Cordes et al., 1995), etc.
While in earlier studies carried out by Rice and John-
son (1970), Shih (1974) and Rice (1976) the crack
tip remains stationary in some other studies (Shih et
al., 1979; Dhar et al., 2000) crack tip blunting was al-
lowed with the use of special elements. Crack growth
was modeled quite successfully, especially in later
studies (Dodds and Read, 1985; Dhar et al., 2000)
with a variety of techniques (Kobayashi, 1973; An-
dersson, 1974; Light et al., 1975; De Koning, 1977),
but the prediction requires the use of experimental
data, against which the model is calibrated.

The current work follows an experimental study
on steel laminates reported by Şimşir et al. (2004),
and attempts to predict fracture toughness in the
same system. The geometry under study is 2-phase
laminates of layers, one with 4 times the strength of
the other, and both ductile. The model is an exact
analogue of the test piece used in the experimental
study, with a fracture being investigated in a crack
divider orientation.

Numerical procedures

Finite element modeling (FEM) as implemented in
the Marc software was used throughout this study.
The method is applied to a compact tension speci-
men with geometry as in ASTM-E 813. The sam-
ple had parameters of ao/W = 0.65 and W/B =
4 (where ao is the original crack length, W is the
width of the specimen, and B is the thickness of the
specimen). This is the same geometry as that used
in the experimental determination of fracture tough-
ness (Şimşir et al., 2004). The model was loaded
in terms of displacement at the pinhole along the
y direction. Typically, the total displacement was
one-hundredth of the crack length ao, which was im-
posed typically over 100 increments. In the evalua-
tion, Updated Lagrange and Large Strain Additive
approaches (Bleackley and Luxmoore, 1983; Dodds
and Read, 1985; Dhar et al., 2000) were used since
the material modeled involves severe plastic defor-
mation, especially in front of the crack tip. Conver-
gence is checked by the Full Newton-Raphson Iter-
ation method (Dodds et al., 1988): a relative dis-
placement (i.e. the maximum displacement of the
last iteration is small compared to the actual dis-
placement change of the increment) value of 0.01 is
assumed to be sufficient. Mesh sizes and density var-

ied according to geometry (see below). Elements at
the crack tip had the smallest size, and had a value of
5 × 10−4 the crack length size, ao. These elements
at the crack tip were modified in all cases by the
“one-quarter method” (Barsoum, 1976; Raju 1987,
1988).

In order to determine the J integral, a radius, r,
of line integration was specified. The value for the
radius was varied over a range. The smallest value
was equal to the crack tip element size. The largest
had a size covering nearly the whole of the uncracked
ligament. A total of 9 radii were used. Normally, the
J integral increases with an increase in r. Beyond a
certain value of r, J is saturated. This value, i.e. far
field J, is taken as the J integral value.

The approach in this study was sequential. First
2-dimensional analyses were carried out assuming
that the model deforms in a plane strain condi-
tion. Subsequently 3-dimensional analyses were car-
ried out, without imposing the condition of plane
strain. Finally, a 3-dimensional model were adapted
to laminates by the introduction of a layered struc-
ture.

In the 2-D analysis, half of the test piece was
modeled (Figure 1a). Because of the symmetry, dis-
placement in the y-direction of nodes between C and
D at the symmetry line (x-direction) was set to zero.
To ensure equilibrium, the node at the very edge
of the symmetry line, D, was stationary, i.e. dis-
placements in the x- and y- directions were set to
zero. Meshing was done manually, since different
mesh sizes were necessary at the crack tip region and
elsewhere. An 8-node quadrilateral plain strain ele-
ment was used1. In the model a total of 64 elements
and 242 nodes were used.

In the 3-D analysis, the model was an expanded
version of the 2-D model by the introduction of the
z-direction (Figure 1b). The boundary conditions
were the same. Only one fourth of the sample was
analyzed since there are symmetry planes, shown by
XY and XZ. The XZ plane is placed at the midthick-
ness of the model. Displacements at the XZ plane
in the z-direction were zero. The model is meshed
with 20 node brick elements2. The meshing is car-
ried out automatically. A total of 900 elements with
5200 nodes were used in the analysis.

The 3-D analysis given above refers to monolithic
materials. To adopt this for layered materials, the
model depicted in Figure 1c was used. In terms of

1Element 27 in Marc software
2Element 21 in Marc software
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boundary conditions, the model is identical to the
3-D one. However, the model is made up of layers
of different mechanical properties. The choices of el-
ement type and size were the same as those in the
3-D model. Typically, there were 10 elements across

the thickness of each layer. Where the layers were in
contact, the elements on either side were subdivided
into 10 subelements. The model had a total of over
1500 elements with 8000 nodes.

A           B                           C(x=0)                        D

Load line

H/2

Crack tip

ao

W

y

(a)

y

Crack front

(c)

y z

x

Symmetry plane in XZ

B/2

B/2

Symmetry plane in XY

(b)

Figure 1. “Compact Tension” models used in the prediction of fracture toughness. B (x = -33.8) refers to position of
the load line, C (x = 0) is the crack tip and C-D (x = 0- 18.2) is the uncracked ligament. ao/W has a value
of (BC/BD) = 0.65. a) for 2-D analysis. The model refers to one half of the “test piece”. b) for 3-D analysis.
The model refers to one-fourth of the test piece. Symmetry planes in xz and xy are shown. c) 3-D layered
analysis, same as (b). Shading refers to layers of different properties.

43
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The layers making up the model are attached to
each other by “gluing”. In this way nodes on either
side of the interface are attached and behave as one,
except when a specified value of interfacial stress or
force is reached. When this stress is reached, the
layers are separated and each node behaves indepen-
dently. A value for “separation distance” was taken
as 5% of the smallest element size 3.

Where the J value varied across the thickness of
the test piece, i.e. in 3-D analysis and layered 3-D
model, an averaging procedure was used. For this
purpose, J values were integrated, using the trape-
zoidal rule, from the surface to the center and divided
by half of the thickness.

Fracture criterion

In the analysis, the fracture criterion was evalu-
ated based on an assumption that there is a critical
value for load line displacement. This is unlike the
widespread approach adopted in many studies, which
bases the criterion on a critical value of crack growth.
This was necessary since the modeling implemented
in this work is enabled to predict the crack growth,
i.e. crack length remains the same throughout the
loading in the current analysis. However, the criti-
cal value of load line displacement was taken as that
observed experimentally in the materials concerned
(see below), corresponding to a crack extension of
0.2 mm.

Results and Discussion

Calibration and Verification of the Model: In
order to verify the method of analysis, first mono-
lithic materials were investigated using 2-D and 3-D
models. First the model was calibrated, in order to
establish the critical value of load line displacement,
with respect to experimental data from the litera-
ture. HY 130 steel, which was the subject of an ex-
tensive cooperative program in the 80s, was chosen
for this purpose (Clarke et al., 1980). The material
properties of this steel, taken from Kuang and Chen
(1996), are given in Table 1.

J versus ∆a data for HY130 steel are available
from Clarke et al. (1980). The steel has a fracture
toughness value of 165 kJ/m2, which corresponds to
a J-integral value at a crack growth value of 0.2 mm.
J integral versus load line displacement was deter-
mined via 2-D analysis (Figure 2a). The same value
of fracture toughness in this curve corresponds to a
load line displacement value of 0.82 mm. Thus in
moving from 2-D to 3-D and to a layered model,
LLD(cr) = 0.82 mm was taken as the critical value.

In the 3-D analysis, J values vary across the thick-
ness. It is seen that J values are lower at the surface
(Sakata et al., 1983; Dodds et al., 1988), where the
conditions are plane-stress, but increase inside the
sample, reaching a plateau at 1/3 the thickness (Fig-
ure 3). J values averaged across the thickness ver-
sus LLD are given in Figure 2b. Using the LLD(cr)
= 0.82 mm, JIC predicted for HY130 steel is 150
kJ/m2. This value is quite close to the previous value
predicted with the 2-D analysis. A slight decrease is
due to the variation of J across the sample thickness.

Table 1. Mechanical properties for HY130 steel and medium-C (0.5% C) steel. Data for Hy130 steel are taken from
Kuang and Chen (1996). κ and n values describe the true stress-true strain relationship in the form σ = κεn.

σys σUTS κ n % Elongation
MPa MPa MPa at fracture

HY130 Steel 975 1030 1140 0.025 -
Medium-C steel (0.5% C) 409 641 1163 0.2144 33.8

3Because the separation of layers, i.e. delamination, is an important process in the failure of layered composites, a separate
analysis was carried out to establish a valid value for “separation distance”. The model used in the analysis was 2-dimensional
consisting of 2 parts. Half of the model had material properties of medium-C steel, while the other half had properties of low-C
steel. The parts were joined together along a centerline in a continuous manner except for a midpart, which was “glued”. Meshed
with 8 node plane strain elements, the model was deformed by longitudinal displacements, transverse to centerline at the edges.
Interfacial strength for the “glued region” is specified as what was measured experimentally (118 MPa, i.e. interfacial shear strength
converted to tensile stress using the Tresca criterion) (Şimşir, 2004). Longitudinal normal stresses were monitored during loading
at various values of separation distance. It is found that the delamination is predicted at the expected value of the normal stress
when the separation distance was 5% of the (smallest) element size.
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Figure 2. J values versus load line displacement pre-
dicted for HY 130 steel. Open symbols show
experimental values taken from Clarke et al.
(1980) and solid symbols are those predicted
with, a) 2-D analysis, b) 3-D analysis, and, c)
Layered 3-D analysis.

In the 3-D layered model, J values vary across the
total thickness as well as across the individual lay-
ers (Figure 4). Additionally there is scatter in the
J values at the interface. In calculating the average,
2 J values on either side of the interface were omit-
ted. Variation of averaged J values as a function of
LLD is given in Figure 2c. Using LLD = 0.82 mm,
the model yields a fracture toughness value of JIC =
154 kJ/m2.
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Figure 3. Variation of J integral values (from 3-D anal-
ysis) from surface to center for HY 130 steel.
Note that J values increase from surface to cen-
ter.
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Figure 4. Variation of J integral values (from layered
analysis) from surface to center predicted for
HY 130 steel. Note that there is a severe fluc-
tuation of J integral values at the interface be-
tween the layers.

The values of 165 kJ/m2, 150 kJ/m2 and 154
kJ/m2 predicted for HY130 steel from 2-D, 3-D and
3-D layered models are quite close to each other and
thus the 3-D layered model with the details imple-
mented in this work (see above) can now be used for
the modeling of laminates.

This point was further checked with a medium–C
steel (0.5% C). The properties of this steel are re-
ported in Table 1. A procedure described in Şimşir
(2004) was used. The crack growth-load line dis-
placement curve is given in Figure 5. Using ∆a(cr)
= 0.2 the steel had a fracture toughness value of 136
kJ/m2. This value of crack growth corresponds to
LLD(cr) = 1.09 mm (Figure 5). Using the 3-D lay-
ered model, the predicted value of fracture toughness
at LLD(cr) = 1.09 mm was 112.5 kJ/m2. This value
was considered quite acceptable.
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Figure 5. LLD versus crack extension data measured ex-
perimentally for medium-C (0.5% C) steel. x
and o refer to different samples, N refers to the
average values.

Prediction of Fracture Toughness: Having
verified the validity of the model, the fracture tough-
ness of steel laminates is evaluated. The steel lami-
nates in question are an exact analogue of those stud-
ied experimentally (Şimşir et al., 2004). Thus they
are made up of layers of flow characteristics the same
as those measured for medium-C (0.6% C) and low-C
(0.1% C) steels (Şimşir et al., 2004). Two laminates
were investigated with the stacking sequence in Ta-
ble 2 with volume fractions of Vr = 0.4 and Vr = 0.8.
The layers differ from each other by a factor of 4 in
terms of yield strength (Şimşir et al., 2004). Young’s
modulus is taken as 200 GPa, and Poisson’s ratio v
= 0.3.

Table 2. Stacking sequence of layers for steel laminates
(Şimşir et al., 2004).

Laminate Stacking Sequence
M: medium-C steel (2.5 mm),

L: low-C steel (1.5 mm)
Vr = 0.4 L L M L M L L
Vr = 0.8 M M L M L M M

In order to determine JIC , the critical value of
LLD must first be determined. This value was deter-
mined experimentally on laminates from their LLD
versus crack extension relationship via a compliance
method (Şimşir et al., 2004). The relationship re-
ported in Figure 6a and b yielded values of LLD(cr)
= 0.91 mm, and LLD(cr) = 1.04 mm for Vr = 0.4
and Vr = 0.8 laminates, respectively.

Fracture toughness was predicted for 2 condi-
tions. In one, the strength of the interface was ex-
tremely high, and so delamination was not allowed in

the laminates. In the other, the interfacial strength
of the layers was assigned a value of 118 MPa, taken
from experimental work (Şimşir, 2004).
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Figure 6. LLD versus crack extension data for steel lami-
nates. a) for Vr = 0.4× and ♦ refer to different
samples, N shows the average values. b) for Vr
= 0.8.

J values predicted for the laminates vary across
the thickness of the sample. A typical example is
given Figure 7a, which refers to Vr = 0.4 at the crit-
ical value of LLD(cr) = 0.91mm. J values are lower
in the softer layer and increase in the hard layer, with
an overall pattern of rising J as it is moved from the
surface of the model to its center.

Prediction yields a JIC value of 98.5 kJ/m2 for a
steel laminate with Vr = 0.4. The value derived for
Vr = 0.8 is 156.6 kJ/m2. These values are derived
for the condition where no interface separation was
permitted.

Using the value of 118 MPa as interfacial
strength, the model allows delamination. Variation
of the J integral across the model thickness is given
in Figure 7b. J values of the model without delami-
nation are smaller than those of the model with de-
lamination. Figure 8 shows the delamination pattern
in the model for Vr = 0.4 after LLD = 0.91 mm. At
the critical values of LLD both samples Vr = 0.4
and Vr = 0.8 showed delamination. It is found that
delamination occurs within a volume in front of the
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crack tip with d/B = 0.8 and d/B = 0.98 (d: delam-
ination length, B: thickness of the sample) for Vr =
0.4 and Vr = 0.8, respectively. The delamination in
the laminate with Vr = 0.4 is less than that of the
laminate with Vr = 0.8.

As reported in Şimşir et al. (2004), delamination
was also observed in the experiments. The values
were d/B = 0.60 for Vr = 0.4 and d/B = 0.34 for Vr
= 0.8. These values are smaller than those predicted
by the current analysis.

With delamination, the model predicts a JIC
value of 100 kJ/m2 for Vr = 0.4 and 165 kJ/m2 for
Vr = 0.8. These values should be compared with ear-

lier values of 98 kJ/m2 and 156 kJ/m2, which were
obtained without delamination. Thus as expected
when delamination is allowed, the prediction leads
to higher values for fracture toughness.

JIC predicted in the current analysis with val-
ues of 100 and 165 kJ/m2 should be compared
with experimental values measured for the laminates.
Experimentally measured values were 97 and 148
kJ/m2. The values are quite close to one another.
More importantly, it is seen that the variation of
fracture toughness with volume fraction follows the
same trend as the experiment.
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Figure 7. Variation of J integral values from surface to center for Vr = 0.4 laminate. M refers to medium-C and L refers
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The results show that the fracture toughness of
laminates can be predicted successfully with finite
element analysis without the need for crack growth
modeling. However, a difficulty in the current ap-
proach is that the critical value of LLD should be
established experimentally, i.e. the need for an ex-
periment cannot be eliminated.

An attempt has been made to determine whether
it would be possible to predict fracture toughness
based on a criterion other than LLD in a manner
such that the experiment would not be required. Fig-
ure 9a and b shows the variation of plastic zone size
as a function of LLD in 2-D analysis for HY 130 steel
and medium-C (0.5% C) steel, respectively. Here
plastic zone size r* is the minimum value of r, be-
yond which the J integral is saturated. In order to
improve the accuracy of evaluation, r* refers to 0.95
of the J integral at a given value of LLD.

As seen in Figure 9, in LLD versus r* there is
initially a rapid increase, but after a certain value of
LLD r* saturates. At saturation conditions r* has a
value of 0.30, which corresponds to an LLD of 1.12
mm for 0.5% C steel. This value should be compared
with the actual critical LLD value of 1.09 derived
from experimental work. Thus a prediction based on

experimentally measured LLD(cr) can well be based
on r* with the advantage that the latter can be de-
termined by FEM analysis without the need for the
experiment. This is also verified with HY130; values
in this case were r* = 0.66, which corresponded to
an LLD of 0.74 mm (the actual value was 0.82 mm).

Results of similar analysis for the laminates are
given in Figure 9c and d. The critical plastic zone
size values predicted are r* = 0.23 and r* = 0.43 mm.
JICvalues corresponding to these zone sizes have val-
ues of 97 and 162 kJ/m2 for the laminate with Vr =
0.4 and Vr = 0.8, respectively. These values are quite
close to those (97 and 148 kJ/m2) derived from ex-
perimentally measured LLDcr’s.

With the introduction of a critical plastic size as
the fracture criterion, the fracture toughness of lam-
inates can be predicted successfully by finite element
analysis without the need for the experiment. This
is particularly useful for comparative evaluations of
fracture toughness for structural optimization pur-
poses, i.e. size and volume fraction of reinforcement.
These parameters can be modified at ease together
with interfacial strength so as to establish conditions
that would maximize the laminate toughness.
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Figure 9. Variation of plastic zone size with LLD, a) for HY 130 steel, b) for medium-C (0.5% C) steel, c) for steel
laminate with Vr = 0.4, d) for steel laminate with Vr = 0.8.
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Conclusion

The present study aimed at modeling the fracture
toughness, in terms of JIC , of laminates made up of
2 ductile phases. The models employed were an exact
analogue of compact tension test pieces loaded lon-
gitudinally at pinholes. Unlike experiments, crack
tip in the models remained stationary. The study
has focused on verification of the model in mono-
lithic samples, the simplest form of which was 2-D
(plane strain), and most elaborate of which was a
3-D layered structure.

Adaptation of the model to laminates showed
that it is possible to predict delamination if the indi-
vidual layers are glued together with a certain inter-
facial strength. The fracture toughness of laminates
JIC is predicted with and without delamination with
the use of a fracture criterion based on a critical value

of load line displacement. This critical value derived
from the experiment, and the fracture toughness of
steel laminates with layer properties of low-C and
medium-C steels are predicted successfully for 2 vol-
ume fractions.

It is further found that a fracture criterion based
on a critical value of LLD can well be based on a
critical value of plastic zone size. This has the ad-
vantage that the critical value of plastic zone size can
be predicted by FEM analysis.

It is concluded that this method can be used suc-
cessfully for the comparative evaluation of fracture
toughness for the purpose of structural optimization,
i.e. so as to identify the size and volume fraction
of reinforcement as well as the value of interfacial
strength between the layers that would maximize
fracture toughness.
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