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Abstract

A computational model is developed to predict partially plastic stresses in variable thickness annular
disks subject to radial compression. The model is based on the von Mises’ yield criterion, deformation
theory of plasticity and a Swift type hardening law. Considering a thickness profile in the form of a general
parabolic function, the condition of occurrence of plastic deformation at the inner and outer edges of the
annular disk is investigated. A critical disk profile is determined and the corresponding elastic-plastic stress
as well as the residual stress distribution is computed.
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Introduction

For the design of rotating or nonrotating disks in
many industrial applications, in order to achieve ef-
ficiency in design, the stresses in these objects un-
der different boundary conditions must be examined.
Such a need has generated much research in this field.
The subject of stationary disks under external pres-
sure was first studied by Gamer (1984a, 1984b). In
his investigations, Gamer considered a uniform thick-
ness annular disk and obtained analytical solutions
of the elastic-plastic deformation caused by the ap-
plication of pressure at the edge of the disk for linear
strain hardening. The analytical solution presented
by Gamer was based on Tresca’s yield criterion and
its associated flow rule. It was shown that the plas-
tic region in the uniform thickness annular disk first
forms at the inner surface and propagates outwards
with increasing pressures. Güven (1992) extended
Gamer’s work using the same basic assumptions to
an annular disk of variable thickness in hyperbolic
form. In his later work, Güven (1993) considered an
annular disk profile in exponential form and stud-

ied the effect of the application of external pressure
analytically. In both of these studies (Güven, 1992;
1993), it was assumed that the plastic deformation
commenced at the inner surface of the disk. A nu-
merical solution of the problem for an annular disk
of nonlinearly hardening material behavior exhibit-
ing linearly tapered thickness was presented by You
and Zhang (1998). Their analysis was based on von
Mises’ yield criterion and deformation theory of plas-
ticity. They reported that for small aspect ratios
different types of plastic deformation might occur.
Recently, Güven (1998) introduced 2 thickness func-
tions, one in power function form, and the other in
parabolic form both involving 2 geometric param-
eters to describe the variation of the thickness of
annular disks. Analytical solutions for disks having
such profiles were obtained with free and pressur-
ized boundary conditions. Similar thickness profiles
were then used by Eraslan and Apatay (2004) to in-
vestigate different modes of plastic deformation for
small aspect ratios. Considering the stresses in a
purely elastic state it was shown that there exists a
critical thickness profile for which plastic flow takes
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place at the inner and outer surfaces of the annu-
lar disk simultaneously under compression. How-
ever, this work was limited to elastic deformations
and partially plastic behaviour was not studied.

In this paper, the relationship between the ge-
ometry of variable thickness annular disks and the
radial locations of the formation and development of
plastic regions under external pressure are investi-
gated. A unified treatment of the boundary value
problem under consideration is presented using the
von Mises yield criterion, the deformation theory of
plasticity and a general nonlinear strain hardening
material behavior. A critical disk profile for which
yielding commences at both annular surfaces simul-
taneously is determined and stress analysis results
are presented for the partially plastic and fully plas-
tic stress states for this profile. The residual stresses
occurring in such disks upon complete unloading of
external pressure are also determined.

The Parabolic Disk

In this work, we consider a thin annular disk whose
thickness varies continuously in the form of a general
parabolic function h(r) (Eraslan, 2003)

h(r) = h0

[
1−

(
r

b+ n

)k
]
, (1)

where h0, n and k are parameters (h0 > 0, n > 0,
k ≥ 0), and b is the outer radius of the annular
disk. With this form of the profile function, a uni-
form thickness disk is obtained by setting n → ∞
and a linearly decreasing disk thickness is obtained
by the use of k = 1. If k < 1 the profile is concave
and if k > 1 it is convex. Furthermore, the shape of
the profile is smoothed as n increases. It should be
noted that the elastoplastic model developed herein
is not limited to this thickness variation. It can be
used for variable thickness with any functional form
of thickness variability.

Basic Equations and Elastic Solution

A state of plane stress (σz = 0) and small deforma-
tions are presumed. The thickness of the disk is as-
sumed to be sufficiently small compared to its diame-
ter so that plane stress assumption is justified (Timo-
shenko and Goodier, 1970). The strain-displacement
relations for small strains εr = du/dr and εθ = u/r,

the equation of equilibrium in radial direction

d

dr
(hrσr)− hσθ = 0, (2)

the compatibility

d

dr
(rεθ)− εr = 0, (3)

and generalized Hooke’s law

εr = εer + εpr =
1
E
[σr − νσθ] + εpr , (4)

εθ = εeθ + εpθ =
1
E
[σθ − νσr] + εpθ, (5)

γrθ = 0, (6)

hold in the entire annular disk irrespective of the
material behavior. In the equations above σr and
σθ denote the radial and circumferential stress com-
ponents, E the modulus of elasticity, εr and εθ the
radial and circumferential strain components, ν the
Poisson’s ratio and γrθ the shearing strain. The su-
perscripts e and p stand for elastic and plastic coun-
terparts of total strains εr and εθ. In purely elastic
deformations εpj = 0, and a straightforward manipu-
lation on strain-displacement relations and Hooke’s
law results in the following stress-displacement rela-
tions:

σr =
E

1− ν2

[νu
r

+ u′
]
, (7)

σθ =
E

1− ν2

[u
r
+ νu′

]
, (8)

in which a prime denotes differentiation with respect
to the radial coordinate r. Substitution of the disk
thickness profile from Eq. (1), the stresses from Eqs.
(7) and (8) in the equation of equilibrium (2), leads
to the following homogeneous differential equation in
radial displacement u:

r2

[
1−

(
r

b+ n

)k
]
d2u

dr2
+ r

[
1− (1 + k)

(
r

b+ n

)k
]

du

dr
−

[
1− (1− kν)

(
r

b+ n

)k
]
u = 0.

(9)

The exact solution is achieved by using a new vari-
able z = [r/(b+ n)]k and the transformation u(r) =
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ry(z). After some algebraic manipulations, Eq. (9)
is transformed into

z(1− z)
d2y

dz2
+
1

k
[2 + k − 2(1 + k)z]

dy

dz
− 1

k
(1 + ν) y = 0.

(10)

This is the standard form of the hypergeometric
differential equation with the solution (Abramowitz
and Stegun, 1966)

y(z) = C1F (α, β, δ; z) + Ĉ2 z
− 2

kF (α− δ + 1,
β − δ + 1, 2− δ; z) (11)

where Ci is an arbitrary integration constant and
F (α, β, δ; z) is the hypergeometric function defined
by

F (α, β, δ; z) = 1 +
αβ

δ1!
z +

α(α+ 1)β(β + 1)
δ(δ + 1)2!

z2

+
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

δ(δ + 1)(δ + 2)3!
z3 + · · ·. (12)

The arguments α, β and δ of the hypergeometric
function F in Eq. (11) have the following meanings:

α =
1
2
+

1
k
−

√
k2 + 4(1− kν)

2k
, (13)

β =
1
2
+

1
k
+

√
k2 + 4(1− kν)

2k
, (14)

δ = 1 +
2
k
. (15)

The general solution for the radial displacement can
now be expressed as

u(r) = C1P (r) + C2Q(r), (16)

where

P (r) = rF

(
α, β, δ;

(
r

b+ n

)k
)
, (17)

Q(r) =
1
r
F

(
αδ + 1, β − δ + 1, 2− δ;

(
r

b+ n

)k
)
.

(18)

Substituting the displacement solution (16) in stress-
displacement relations (7) and (8) one obtains

σr =
E

1− ν2

[
C1

(
νP

r
+ P ′

)
+C2

(
νQ

r
+Q′

)]
,

(19)

σθ =
E

1− ν2

[
C1

(
P

r
+ νP ′

)
+C2

(
Q

r
+ νQ′

)]
.

(20)

The derivatives P ′ and Q′ in Eqs. (19) and (20) are
evaluated using the differentiation rule (Abramowitz
and Stegun, 1966)

d

dr
F (α, β, δ; z(r))=

αβ

δ

dz

dr
F (α+1, β+1, δ+1; z(r)) .

(21)

The elastic solution is completed by the application
of the boundary conditions. For an annular disk with
bore radius a, subject to external pressure p, bound-
ary conditions read σr(a) = 0 and σr(b) = −p. Ac-
cordingly, the integration constants are evaluated as

C1 =
−bp(1− ν2)[νQ(a) + aQ′(a)]

D
,

C2 =
−bp(1− ν2)[νP (a)+ aP ′(a)]

D
,

(22)

in which

D = E{[νQ(a) + aQ′(a)][νP (b)+ bP ′(b)]−

[νQ(b) + bQ′(b)][νP (a)+ aP ′(a)]}.
(23)

On the other hand, for plane stress, the von Mises
yield criterion takes the form (Mendelson, 1968)

σY =
√
σ2

r − σrσθ + σ2
θ . (24)

The disk will yield, that is, the plastic deformation
in the disk will begin as soon as σY ≥ σ0 with σ0 be-
ing the uniaxial yield limit of disk material. Elastic
limit pressure pe = p1 is calculated from σY = σ0.

For small aspect ratios (a = a/b) different forms
of plastic flow may occur. Figure 1 depicts the set
of k vs. n values for which the plastic deformation
commences simultaneously at both the inner and
outer surfaces of the annular disk for aspect ratios
a = 0.1, 0.2, 0.3 and 0.4. If the geometric param-
eters are located on the left of the curves, plastic
flow begins first at the outer surface and otherwise
at the inner surface. We consider the aspect ratio
a = 0.2. For the parameter n = 0.4, the critical
value of k for which yielding sets in simultaneously
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at both surfaces is determined as 1.02467 (see Fig-
ure 1). This critical disk profile is drawn in Fig-
ure 2. Note that the profile is almost linear with
outer edge thickness h(b) = 0.292 · h0. The elastic
limit pressure for this critical profile is determined
as p1 = p1/σ0 = 1.10720. Figure 3 shows the cor-
responding nondimensional stresses, σj = σj/σ0 and
nondimensional displacement u = uE/σ0b in the an-
nular disk. The stress variable φ in this figure is
obtained from

φ =
√
σ2

r − σrσθ + σ2
θ. (25)

Note that according to the von Mises yield criterion
(24), φ = 1 states an elastic-plastic border. As seen
in Figure 3, φ(a) = φ(b) = 1, indicating the initia-
tion of plastic flow at both surfaces simultaneously.
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Figure 1. Critical disk profile parameters for which yield-
ing sets in simultaneously at the inner and
outer surface for different values of a = a/b.
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Figure 2. Critical disk profile for a = 0.2 (n = 0.4,
k = 1.02467).
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Figure 3. Elastic stresses and displacement in the critical
disk profile for a = 0.2, (n = 0.4, k = 1.02467
and p1 = 1.10720).

Elastic-Plastic Solution

As stated earlier, the computational model devel-
oped in this section is valid for variable thickness
with any functional form of thickness variability.
Defining the stress function in terms of radial stress

Y (r) = rhσr, (26)

and using the equation of motion (2) one obtains

σr =
Y

hr
and σθ =

1
h

dY

dr
. (27)
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Expressing the elastic strains εer and εeθ in terms of
the stress function Y (r) and substituting them in
the compatibility relation (3) leads to the following
governing differential equation for elastic behavior:

d2Ye

dr2
+

[
1
r
− h′

h

]
dYe

dr
−

[
1
r2

− νh′

rh

]
Ye = 0, (28)

where Ye denotes the stress function in the elastic
region. Similarly, if the total strains from Eqs. (4)
and (5) are substituted in the compatibility relation
(3) and making use of Eq. (27) one obtains the gov-
erning differential equation for the plastic region

d2Yp

dr2
+

[
1
r
− h′

h

]
dYp

dr
−

[
1
r2

− νh′

rh

]
Yp =

−Eh

r

[
εpθ + r

dεpθ
dr

− εpr

]
,

(29)

in which Yp denotes the stress function in the plas-
tic region. Note that at the elastic-plastic border
rep, for the stresses σr and σθ to be continuous,
from Eq. (27) it is required that the stress func-
tion and its first derivative must be continuous, that
is Ye(rep) = Yp(rep) and Y ′

e (rep) = Y ′
p(rep). Since

the plastic strains and their first derivatives on the
right hand side of Eq. (29) are not known a priori,
further elaboration is necessary. This is done next.

According to Henky’s deformation theory, the
plastic strains εpr , ε

p
θ, and ε

p
z are given as (Mendelson,

1968; Chen and Han, 1988)

εpr =
εEQ

σY

[
σr − 1

2
σθ

]
, (30)

εpθ =
εEQ

σY

[
σθ − 1

2
σr

]
, (31)

εpz = −(εpr + εpθ), (32)

where σY is the yield stress defined earlier by Eq.
(24) and εEQ is the equivalent plastic strain. Here,
it should be noted that the above expressions for the
plastic strains are exact for proportional loading, i.e.
when the ratios of deviatoric stress components are
held constant. However, several authors (Jahed et
al., 1998; Chen, 1973) pointed out the applicability
of total deformation theory, and Budiansky (1959)
showed that total deformation theory of plasticity
may be used for a range of loading paths other than
proportional loading without violating the general
requirements for physical soundness of a plasticity
theory.

Furthermore, using Swift’s expression for nonlin-
ear isotropic strain hardening, the relation between

the yield stress σY and the equivalent plastic strain
εEQ can be expressed as

σY = σ0(1 + ηεEQ)1/m, (33)

where η is the hardening parameter and m the ma-
terial parameter. The inverse relation is

εEQ =
[(

σY

σ0

)m

− 1
]
1
η
. (34)

A polynomial relationship in expressing the yield
stress-equivalent plastic strain relation instead of Eq.
(33) is also possible (You et al., 1997) and can eas-
ily be incorporated in the present model. However,
Swift’s hardening law will be retained here for its
convenience.

Using Eqs. (24), (34) and (31) one arrives at

dεpθ
dr

=
σY (σ′

r − 2σ′
θ) − σ′

Y (σr − 2σθ)
2ησ2

Y

−

1
2ησ2

Y

(
σY

σ0

)m

[(m− 1)σ′
Y (σr − 2σθ)

+σY (σ′
r − 2σ′

θ)] , (35)

in which the derivative σ′
Y may conveniently be ex-

pressed as

σ′
Y =

σr

σY
(σ′

r −
1
2
σ′

θ) +
σθ

σY
(σ′

θ −
1
2
σ′

r). (36)

The governing equation (29) for the plastic region
can now be rewritten in terms of Yp and its deriva-
tives by virtue of Eqs. (24), (34), (30), (31) and (35)
and of the definitions

σr =
Yp

hr
and σ′

r = −
[
1
r
+
h′

h

]
Y

hr
+
Y ′

p

hr
, (37)

σθ =
1
h

dYp

dr
and σ′

θ = −h′Y ′
p

h2
+
Y ′′

p

h
. (38)

Hence, Eq. (29) as well as Eq. (28) can be put into
the following general form:

d2Yi

dr2
= fi(r, Yi,

dYi

dr
). (39)

A nonlinear shooting method using Newton itera-
tions, as described in the Appendix, is of great ad-
vantage in solving nonlinear 2-point boundary value
problems of this type.
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Numerical Results

For the presentation of the numerical results we use
a dimensionless radial coordinate: r = r/b, dimen-
sionless disk thickness: h = h/h0, normalized strain
εj = εjE/σ0 and normalized hardening parameter
H = ησ0/E, in addition to nondimensional variables
(σj, u, p) defined earlier with reference to Figure 3.
All the computations refer to the parabolic profile
described by Eq. (1). The initiation of yielding and
the propagation of the 2 plastic regions for 3 differ-
ent annular disk profiles n = 0.3, k = 1.02; n = 0.4,
k = 1.02467 (the critical profile) and n = 0.4, k = 1.5
are shown in Figures. 4(a), (b) and (c), respectively,
as a function of dimensionless external pressure p.
The parameters chosen for the material hardening
model are H = 0.25 andm = 0.75. As seen in Figure
4(a), for the profile with n = 0.3, k = 1.02, the yield-
ing first starts at the outer surface at p1 = 1.12382
and later at the inner surface at p2 = 1.31359. Un-
der the pressure p > p2, 3 adjacent ring shaped zones
are formed inside the disk, i.e. an inner plastic re-
gion, an annular elastic region and an outer plastic
region. Both plastic regions expand with increasing
pressures, and at p = p3 = 2.06697, the disk becomes
fully plastic when the 2 plastic regions merge at the
radial location r = 0.46788. In addition, for this
case, the outer plastic region expands more rapidly
than the inner one. Comparing the elastic-plastic
response of the 3 disk profiles (Figures 4(a), (b),
and (c)), it can be observed that the fully plastic
pressure p3 decreased significantly (p3 = 2.06697,
p3 = 1.75969, and p3 = 1.57182 for Figures 4(a), (b),
and (c), respectively) as the outer edge thickness of
the disk increased (h(1) = 0.235, h(1) = 0.292, and
h(1) = 0.396 for Figures. 4(a), (b), and (c), respec-
tively).

Under the external pressure p = 1.7, for the ma-
terial parameters H = 0.25 and m = 0.75, the disk
is in a partially plastic state with r1 = 0.336 and
r2 = 0.640. The corresponding stress and plastic
strain distributions are given in Figure 5(a).

The residual stresses occurring in the variable
thickness annular disks upon removal of the external
pressure are also determined. As long as secondary
plastic flow does not occur, the residual stresses can
be obtained by subtracting the stresses correspond-
ing to unrestricted elastic behavior at the same load
from those of the elastic-plastic state. The possibil-
ity of occurrence of secondary plastic flow is inves-
tigated by the determination of the values of σR

Y at
the residual stress state which is defined according

to the von Mises’ yield criterion as
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Figure 4. Expansion of plastic regions as a function of
nondimensional pressure for (a) n = 0.3, k =
1.02, (b) n = 0.4, k = 1.02467, (c) n = 0.4,
k = 1.5.
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σR
Y =

√
(σR

r )2 − σR
r σ

R
θ + (σR

θ )2 . (40)

The residual stresses and the function σR
Y (σR

r , σ
R
θ )

upon removal of the pressure p = 1.7 are plotted
in Figure 5(b) for m = 0.75 (solid lines) and for
m = 1.25 (dashed lines).

Figure 6(a) shows the stress and plastic strain
distributions under the fully plastic pressure p3 =
1.79954 for m = 0.75. The residual stress distribu-
tions corresponding to this pressure are also shown
in Figure 6(b) for m = 0.75 (solid lines) and for
m = 1.25 (dashed lines; p3 = 1.75968). It can be ob-
served in this figure that although moderately large
tensile circumferential stress occurs at the inner sur-
face, since σR

Y < 1 it does not lead to secondary
plastic deformation.

Concluding Remarks

The present work deals with the elastic, partially
plastic and fully plastic stress and deformation re-
sponse of nonuniform annular disks with nonlinear

hardening material behavior under the application
of external pressure. The problems of linearly hard-
ening annular disks subject to external pressure have
been treated analytically using Tresca’s yield condi-
tion for hyperbolic, exponential and other forms of
thickness variations in the references (Güven, 1992,
1993, 1998). In all of these studies it was considered
that yielding commences at the inner surface and the
plastic region formed there expands outwards and
reaches the pressure loaded outer boundary at the
fully plastic state. In fact, their analysis is valid
provided that a ≥ 0.5. However, depending on the
aspect ratio, thickness variation may allow plasti-
cization to start at the outer surface at the initial or
later stages of elastic-plastic deformation (see Fig-
ure 1). The present analysis focused on this aspect
of deformation by employing the von Mises yield cri-
terion, which is known to be generally more accurate
than Tresca’s. With the present approach nonlinear
isotropic hardening in its general form can be taken
into account. An efficient computational procedure
using the shooting method with Newton iterations is
utilized for a unified treatment of the problem under
consideration.
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Figure 5. (a) Stresses, displacement, and plastic strains in the critical disk profile at partially plastic stress state subjected
to p = 1.7 form = 0.75, (b) residual stresses upon removal of p = 1.7 form = 0.75 (solid lines) and form = 1.25
(dashed lines).
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Figure 6. (a) Stresses, displacement, and plastic strains in the critical disk profile at fully plastic stress state subjected
to p = 1.79954 for m = 0.75, (b) residual stresses upon removal of p = 1.79954 for m = 0.75 (solid lines) and
for m = 1.25 corresponding to p = 1.75968 (dashed lines).

A critical disk profile required for an optimum
design for load carrying capacity is determined for
which yielding sets in at the inner and outer surfaces
simultaneously. The applied pressure is increased up
to the values for which the intermediate elastic region
vanishes. The residual stresses on removal of the ex-
ternal pressure are determined for various hardening
and geometric parameters. It is found that unload-
ing from any elastic-plastic state or from the fully
plastic state will not lead to secondary plastic de-
formation. It is also observed that the pressure at
which the disk becomes fully plastic is higher for the
disk with the thinner outer edge.

Nomenclature

a, b inner and outer radii of disk (dimen-
sionless inner radius a = a/b)

Ci integration constants
E Young’s modulus
F (α, β, γ; z) hypergeometric function defined by

Eq. (12)
h(r) disk thickness function

h0 disk thickness at the axis
m material parameter
n, k geometric parameters
p external pressure (normalized form

p = p/σ0)
r radial coordinate (dimensionless form

r = r/b)
u radial displacement (dimensionless

form u = uE/σ0b)
Y stress function
γij shearing strain component
εEQ equivalent plastic strain component
εi elastic strain component (normalized

form εi = εE/σ0)
εpi plastic strain component
η hardening parameter (normalized

form H = ησ0/E)
ν Poisson’s ratio
σi stress component (dimensionless form

σi = σ/σ0)
σR

i residual stress component
σ0, σY initial and subsequent yield stress
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APPENDIX

The Nonlinear Shooting Method

Details of the method may be found in Eraslan and Kartal (2004). A summary is provided here. Consider
a 2-point boundary value problem in the form

d2Ψ
dr2

= G(r,Ψ,
dΨ
dr

), (41)

subject to the boundary conditions of type I

Ψ(a) = γ1 and α2
dΨ
dx

∣∣∣∣
x=b

+ β2Ψ(b) = γ2, (42)

or of type II

α1
dΨ
dx

∣∣∣∣
x=a

+ β1Ψ(a) = γ1 and Ψ(b) = γ2, (43)

where αi, βi and γi are constants.

59



ERASLAN, AKGÜL

Letting φ1 = Ψ and φ2 = Ψ′, Eq. (41) is converted into a system of initial value problems (IVP)

dφ1

dr
= φ2, (44)

dφ2

dr
= G(r, φ1, φ2), (45)

subject to the initial conditions

φ0
1 = Ψ(r = a) and φ0

2 = Ψ′(r = a). (46)

Depending on the boundary conditions (42) or (43), either one of φ0
1 or φ0

2 or both may be unknowns. These
unknowns are computed iteratively by the application of the Newton method.

In the case of BC type I, φ1(a) = γ1, that is, φ0
1 is known but φ0

2 is not, Newton iterations begin with an
initial estimate φ0

2 and at the i-th iteration cycle, the IVP system is solved 3 times with

I. φ0
2 = φi

2(a) to give f1 = α2φ2(b) + β2φ1(b)− γ2 ,
II. φ0

2 = φi
2(a) +∆φ to give f2 = α2φ2(b) + β2φ1(b)− γ2 ,

III. φ0
2 = φi

2(a) −∆φ to give f3 = α2φ2(b) + β2φ1(b)− γ2 ,

in which ∆φ is a small increment. Two of these solutions involving φi
2(a) ±∆φ are performed for the purpose

of generating tangents numerically. Via central differences this tangent is (f2 − f3)/2∆φ and hence a better
approximation for φ0

2 = φ2(a) can now be obtained from

φ0
2 = φi+1

2 (a) = φi
2(a) −

(2∆φ)f1
f2 − f3

. (47)

Iterations are repeated until
∣∣φi+1

2 (a) − φi
2(a)

∣∣ < εT , where εT represents the specified error tolerance.

On the other hand, in the case of boundary conditions defined by Eq. (43), both initial conditions φ0
1 and

φ0
2 are unknowns. In this case, φ0

1 is estimated and φ0
2 is calculated from φ0

2 = (γ1 − β1φ
0
1)/α1 and again at the

i-th iteration cycle the IVP system is solved 3 times with

I. φ0
1 = φi

1(a) and φ0
2 = (γ1 − β1φ

0
1)/α1 to give f1 = φ1(b)− γ2,

II. φ0
1 = φi

1(a) +∆φ and φ0
2 = (γ1 − β1φ

0
1)/α1 to give f2 = φ1(b)− γ2,

III. φ0
1 = φi

1(a) −∆φ and φ0
2 = (γ1 − β1φ

0
1)/α1 to give f3 = φ1(b)− γ2.

A Newton iteration equation similar to Eq. (47) is then used to successively correct φ0
1.

The initial value system defined by Eqs. (44) and (45) is solved numerically by the use of the Runge-Kutta
Fehlberg predictor corrector method (Rice, 1987). The main advantages of this procedure are accuracy provided
by higher order Runge Kutta methods and rate of convergence. Only a few iterations are performed to arrive
at convergence and this rate depends weakly on the initial estimates to start the computations.
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