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Abstract

In ARIMA modeling studies, the selection of a best model fit to historical data is directly related
to whether residual analysis is performed well. Therefore, diagnostic checks including the independence,
normality and homoscedasticity of residuals is the most important stage of ARIMA model building. This
study is concerned with testing residuals from ARIMA models for monthly streamflow data from the Çekerek
Stream watershed. Alternative tests including the Ljung-Box Q statistic, runs test and turning point test
for independence analysis of the residuals; Kolmogorov-Smirnov and Anderson-Darling tests for normality of
residuals; and Goldfeld-Quandt, Breusch and Pagan and Spearman’s rho approaches for the homoscedasticity
of residuals were used. The selected parsimony model for each data set among the ARIMA models fulfilled
the diagnostic checks, considering the Schwarz Bayesian criterion.
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Introduction

Records of hydrologic variables such as rainfall and
runoff are the basis of studies related to the planning
and design of water resource projects. However, hy-
drologic data are generally unavailable, and, in con-
ditions where they are available, these records may
be too short to detect any statistically significant
meaning. If the period of available data is shorter
than the economic life of the project involving the
planning and management of water resources, failure
of the project results. In this sense, for many hydro-
logic studies, generating data in the form of a time
series is necessary. Time series analysis and model-
ing, commonly used in water resources, are 2 of the
major tasks in hydrologic research and development
(Chatfield, 1991). The operation and management
of a hydraulic structure such as a dam demand reli-
able information concerning monthly flow (Bayazit,
1981).

When generating synthetic data for a hydrologic
variable, it is necessary to take into consideration
the data that are statistically similar to the observed
data (Sharma et al., 1997). One of the most im-
portant and highly popularized time series models
is the Box-Jenkins approach, commonly known as
ARIMA (autoregressive integrated moving average).
Researchers have used this approach for many dif-
ferent scientific and technical applications. McK-
erchar and Delleur (1974) used an ARIMA pro-
cess to achieve stochastic modeling of monthly flows.
McLeod et al. (1977) applied the ARIMA approach
to average annual streamflows, annual sunspot num-
ber series and monthly airline passenger data and
suggested a different ARIMA model for each data
set. Fernando and Jayawardena (1994) used vari-
ous ARIMA models in forecasting monthly rainfall
records. Venama et al. (1996) investigated climate
change in the Senegal River basin via this approach.
Chaloulakou et al. (1999) forecasted daily maxi-
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mum 1-h ozone concentrations, whereas Ahmad et al.
(2001) analyzed water quality data using an ARIMA
model.

To test the fit of Box-Jenkins ARIMA models,
there are 3 steps; identification, estimation and di-
agnostic check (McKerchar and Delleur, 1974; Box
and Jenkins, 1976; Hipel et al., 1977; Enders, 1995;
McLeod, 1995; Zhang, 2003). To select alterna-
tive models, the diagnostic check step is very im-
portant in ARIMA modeling. This step is focused
on residuals from Box-Jenkins ARIMA models to de-
tect whether residuals are independent, homoscedas-
tic and normally distributed. In order to use a Box-
Jenkins ARIMA model for the purpose of generating
hydrologic data, the model should fulfill all the diag-
nostic checks.

The work in this paper is concerned with the di-
agnostic checking of residuals from the ARIMA mod-
els fitted to monthly streamflow data for 3 gauging
stations located on the Çekerek Stream watershed by
alternative methods.

Materials and Methods

Study area

Monthly streamflow data from 3 gauging stations
(1424, 1409 and 1424) managed by the Electrical
Power Resources Survey and Development Adminis-
tration (EIE) at the Çekerek Stream watershed were
used as materials. The Çekerek Stream watershed
is bounded by 39◦ 30′ and 40◦ 45′ N latitudes, and
35◦ 15′ and 36◦ 15′ E longitudes. This area covers
approximately 1,165,440 ha, which is about 1.5% of
Turkey’s total area. The approximate locations of
the gauging stations are shown in Figure 1 and in-
formation related to these stations is presented in
Table 1.

The study area is located on the north Anatolia
fault line, which is one of the most important faults
in the world. Therefore, tectonic movement affects
the characteristics of the watershed. Çekerek Stream
is formed by the joining together of small streams
that originate from the Kızık, Dinar, Çalı and Kavak
hills, near Çamlıbel district. Çekerek Stream is ap-
proximately 276 km in length. The stream joins the

Figure 1. Location of the study area and the gauging stations of Çekerek Stream in the Yeşilırmak basin.

Table 1. Summary of information about the gauging stations.

Station Station Name Drainage Area, Number of
Number km2 years of data

1404 Çekerek-Kayabaşı 11,724.0 13
1409 Çekerek-Akçakeçili 5,267.6 38
1424 Çekerek-Çırdak Bridge 1,032.8 27
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Yeşilırmak River near Kayabaşı. The water qual-
ity of the stream is C2S1 (low salinity-low sodium)
(GDSW, 1970), which can be used for irrigation pur-
poses for plants with moderate salt tolerance in most
cases without special practices for salinity control
(Chhabra, 1996).

The ARIMA model for application

In order to analyze the monthly time series from the
3 gauging stations, an ARIMA modeling approach
was used in this study. A seasonal ARIMA model
denoted as ARIMA (p,d,q)*(P,D,Q) that is a combi-
nation of past values and past residuals can be writ-
ten as follows (Janacek and Swift, 1993; Ahmad et
al., 2001; Sun and Koch, 2001):

Ø(B)ΦF (Bs)(wi − µ) = C + θ(B)Θ(Bs)ai (1)

wi = (1− B)d(1−Bs)Dxi (2)

Ø(B) = 1−Ø1B − Ø2B
2 − . . .− ØpB

p (3)

θ(B) = 1− θ1B − θ2B
2 − . . .− θqBq (4)

Φ(Bs) = 1−Φ1B
s − Φ2B

2s − . . .−ΦPBPs (5)

Θ(Bs) = 1−Θ1B
s −Θ2B

2s − . . .− ΘQB
Qs (6)

There are 3 stages for fitting a seasonal ARIMA
model to a given time series: model identification,
parameter estimation and diagnostic checking (Box
and Jenkins, 1976). The identification stage is in-
tended to determine the differencing required to pro-
duce stationarity, and the order of nonseasonal and
seasonal AR and MA operators for a given series.
The estimation stage consists of using the data to
estimate and to make inferences about the values of
the parameters conditional on the tentatively identi-
fied model. The parameters are estimated such that
an overall measure of residuals is minimized. This
can be done with a nonlinear optimization procedure
(Zhang, 2003). The diagnostic checking of model

adequacy determines whether residuals are indepen-
dent, homoscedastic and normally distributed.

The ARIMA model requires the use of station-
ary time series data (Dickey and Fuller, 1981). A
stationary time series has the property that its statis-
tical characteristics such as the mean and the auto-
correlation structure are constant over time. When
the observed time series presents a trend and het-
eroscedasticity, differencing and power transforma-
tion are often applied to the data to remove the trend
and stabilize variance before an ARIMA model can
be fitted. The existence or lack of stationarity in
a time series can be detected by alternative meth-
ods, i.e. nonparametric tests (including Kendall’s
tau, Mann-Kendall and Sen tests), a unit root test
and a graphical approach (Hipel and McLeod, 1994;
Gibbons, 1997; Greene, 2000).

By plotting original series, stochastic trends
(nonstationarity) in the mean and variance may be
revealed (Box and Jenkins, 1976). Under current
practice, such data requires that the observed data
series be tested for unit roots. One of unit the
root approaches commonly used to explain whether a
time series is nonstationary is the Dickey and Fuller
(DF) test (Dickey and Fuller, 1981). Residuals of
the regression based on the relationship between the
current value (in time t) and the last value (in time
t-1) in a given time series were assumed to be inde-
pendent and to have constant variance in this test.
Therefore, under the conditions that residuals have

serial correlation, the
p∑
i=1

di∆yt−i term should be

augmented to DF test regression to remove serial
correlation in residuals. This approach is called the
augmented Dickey and Fuller (ADF) test. Typically,
this test is expressed as (Enders, 1995)

∆Yt = α0 + βt + α1Yt−1 +
P∑
i=1

di∆Yt−i + ut (7)

where ∆Yt = Yt−Yt−1, α0 is the drift (constant) term
and t is the time trend with the null hypothesis H0:
α1 6= 0 and alternative hypothesis H1: α1 = 0, P is
the number of lags necessary to obtain white noise
or to remove serial correlation in residuals and ut
is the error term. The test involves examining the
t statistic, t(α1), for the parameter α1, under the
null hypothesis that α1 = 0. The null hypothesis is
rejected if the t statistic is larger than the critical
value, τ1, obtained from MacKinnon (1990). Note
that the critical values are not those used in typical
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applications of the t statistic, t(α1), in linear regres-
sion models.

To determine the possible persistence structure
in the data set, an autocorrelation function (ACF)
and partial autocorrelation function (PACF) should
be used (Janacek and Swift, 1993). The ACF and
PACF give information about the nonseasonal and
seasonal AR and MA operators for a time series. The
ACF provides significant information about the cor-
relation between pairs of observations that are k time
units apart, called lag. The identification of the ap-
propriate parametric time series model depends on
the shape of the ACF (Brooks, 2002). In general, for
an MA (0, d, q) process, an autocorrelation coefficient
(rk) with the order of k cuts off and is not signifi-
cantly different from zero after lag q. If rk tails off
and does not truncate, this suggests that an AR term
is needed to model the time series. When the process
is an MA (0, d, q) x (0, D,Q), rk truncates and is not
significantly different from zero after lag q + sQ. If
rk attenuates at lags that are multiples of s, this im-
plies the presence of a seasonal AR component. For
an AR (p, d, 0) process, the partial autocorrelation
coefficient (økk) with the order of k truncates and is
not significantly different from zero after lag p. If økk
tails off, this implies that an MA term is required.
When the process is an AR (0, d, q) x (0, D,Q), økk
cuts off and is not significantly different from zero
after lag p+sP. If økk damps out at lags that are
multiples of s, this suggests the incorporation of a
seasonal MA component into the model. The ACF
for seasonal series should not exceed a maximum lag
of approximately 5s(5s < n/4). The PACF is usu-
ally calculated for 20 to about 40 lags (40 < n/4).
For seasonal models, higher lags of the PACF may
be required for identification (Hipel et al., 1977).

The diagnostic checking of model adequacy is
the last stage of model building. The tests re-
lated to independence, normality and homoscedas-
ticity should be performed at this stage as the resid-
uals (ai) from an ARIMA model are assumed to be
independent, homoscedastic, and usually normally
distributed. Several diagnostic statistics and plots
of the residuals can be used to examine the goodness
of fit of the tentative model to the historical data.
If the constant variance and normality assumptions
are not true, they are often reasonably well satisfied
when the observations are transformed by a Box-Cox
transformation (Hipel et al., 1977; Bayazıt, 1981).
The Box-Cox transformation can be given as

zni=1 = λ−1
[
(xni=1 + c)λ − 1

]
λ 6= 0 (8)

zni=1 = ln (xni=1 + c)λ = 0 (9)

If the model is inadequate, the 3-step model
building process is typically repeated several times
until a satisfactory model is finally obtained. The
final selected model can then be used for prediction
purposes (Wei, 1990).

Alternative test approaches for diagnostic
checking of independence

Testing for independence (randomness) against serial
dependence is a fundamental problem in time series
analysis. To determine whether a time series, x(t),
is independent, the function (ACF) of the series is
examined. If the ACF is significantly different from
zero, this implies that there is dependence between
observations. Therefore, ACF is a powerful comple-
mentary tool for testing independence (Janacek and
Swift, 1993; Ferguson et al., 2000). The residual au-
tocorrelation function (RACF) should be obtained
to determine whether the residuals are white noise.
There are different applications related to the RACF
for the independence of residuals. The first one is the
correlogram drawn by plotting rk (a) against lag k.

rak =

n∑
t=k+1

atat−k

n∑
t=1

a2
t

(10)

Under the assumption that at follows a white
noise process the standard errors of these rak are
approximately equal to 1

/√
T . Thus, under the

null hypothesis that at follows a white noise process,
roughly 95% of the rak should fall within the range
±1.96/

√
T . If more than 5% of the rak fall outside

of this range, then most likely at does not follow a
white noise process (Lehmann and Rode, 2001).

There are many statistical tests used for diag-
nostic checking of randomness. In this study, the
Ljung-Box Q statistic, and turning point and runs
tests were used as alternative approaches for the di-
agnostic checking of residuals for independence.

Ljung-Box Q (LBQ) Statistic: The Ljung-
Box Q or Q(r) statistic can be employed to check
independence instead of visual inspection of the sam-
ple autocorrelations. A test of this hypothesis can be
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done for the model adequacy by choosing a level of
significance and then comparing the value of calcu-
lated χ2 with the χ2-table critical value, the present
model is adequate on the basis of available data. The
Q(r) statistic is calculated by the following equation
(Ljung and Box, 1978):

Q(r) = n(n + 2)
m∑
k=1

(n− k)−1rk(a)2 (11)

Turning Point Test: A turning point is when
the series changes from increasing to decreasing or
vice versa. That is, Xt−1 < Xt > Xt+1 or Xt−1 >
Xt < Xt+1. Equations (12) and (13) can be used to
calculate the mean and variance. Then, by counting
the number of turning points, the NT can be approx-
imated well with Eq. (14). Let T = the number of
turning points in an n period series. The NT statistic
should be compared with the z-table critical value.
If the NT statistic lies within the 5% significance
interval, the null hypothesis related to the indepen-
dence of the data set is accepted. The hypothesis
of randomness should be rejected at α significance
level if the absolute value of NT > NT (1−α/2), where
NT (1−α/2) is the 1- α/2 quantile of standard normal
distribution (Cromwell et al., 1994).

µT = (2/3)(n− 2) = (12)

σ2
T = (16n− 29)/90 (13)

NT = |T − µT |/σ2
T ≈ N(0, 1) (14)

Runs Test: The runs test can be used to de-
cide if a data set is from a random process. A run
is defined as a series of increasing values or a se-
ries of decreasing values. The number of increasing
(or decreasing) values is the length of the run. In a
random data set, the probability that the (i + 1)th

value is larger or smaller than the ith value follows
a binomial distribution, which forms the basis of the
runs test. The first step in the runs test is to com-
pute the sequential differences (Yi − Yi−1). Positive
values indicate an increasing value, whereas negative
values indicate a decreasing value. In other terms,
if Yi > Yi−1 a 1 (one) is assigned for an observation
and a 0 (zero) otherwise. The series then has an

associated series of 1s and 0s. To determine if the
number of runs is the correct number for a series that
is random, let T be the number of observations, TA
be the number above the mean, TB be the number
below the mean and R be the observed number of
runs. Then, using combinatorial methods, the prob-
ability P(R) can be established and the mean and
variance of R can be derived (Cromwell et al., 1994;
Gibbons, 1997). When T is relatively large (>20)
the distribution of R is approximately normal.

E(R) =
T + 2TATB

T
(15)

V (R) =
2TATB(2TATB − T

T 2(T − 1)
(16)

ZN =
R−E(R)√

V (R)
≈ N(0, 1) (17)

The null hypothesis is rejected if the calculated
ZN value is greater than the selected critical value
obtained from the standard normal distribution ta-
ble. In other words, the x(t) series is decided to be
non-random.

Alternative test approaches for diagnostic
checking of normality

If a data set is distributed according to the bell-
shaped curve of the normal distribution, this set can
be referred to as normal. Therefore, the histogram of
a data set gives information related to normality. In
addition, it is well known that a normal distribution
is not skewed and is defined to have a coefficient of
kurtosis of 3 (Brooks, 2002).

There are several statistical tests used for the
diagnostic checking of normality. In this study,
Kolmogorov-Smirnov, Anderson-Darling and skew-
ness tests were used as alternative approaches for
the diagnostic checking of residuals for normality.

Kolmogorov-Smirnov (K-S) Test: This is a
non-parametric test of data fitting to a theoretical
distribution using the maximum absolute deviation
(D) between the 2 functions of cumulative distribu-
tion. The K-S test is distribution free; therefore, the
critical values do not depend on the specific distribu-
tion being tested. The maximum absolute deviation
is as follows (Haan, 1977):
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D = max|Fn(x)− Fa(x)| (18)

where Fn (x) is the cumulative density function
based on n measurements, and Fa (x) is the specified
theoretical cumulative distribution function. The
value of the D statistic is compared with the crit-
ical value D (n, α) obtained from Haan (1977). If D
is greater than the critical value D (n, α), the null
hypothesis related to normality is rejected for the
chosen level of significance.

Anderson-Darling Test: The Anderson-
Darling (AD) test is a member of the group of good-
ness of fit statistics known as empirical distribution
function statistics. This test is widely used in prac-
tice to test normality. It is a modification of the K-S
test and gives more weight to the tails than does the
K-S test. The AD test makes use of the specific dis-
tribution in calculating critical values. This has the
advantage of allowing a more sensitive test and the
disadvantage that critical values must be calculated
for each distribution. The AD test for normality has
the functional form (Thode, 2002)

AD =

nX

i=1

1− 2i

n

�
ln(F0[Zi]) + ln(1− F0

�
Z(n+1−i)

�
)
	
− n

(19)

where Fo is the cumulative distribution function of
the specified distribution and Zi is the ordered data.
The null hypothesis, which has normality at the 0.05
significance level, cannot be rejected if the AD test
statistic is smaller than the critical value (CV) from
Eq. (20).

CV =
0.752

(1 + 0.75/n+ 2.25/n2)
(20)

Skewness Test: This method is used for test-
ing whether a sample comes from a normal popula-
tion. If a given series has a normal distribution, the
skewness measure (γ) of the series is approximately
normally distributed with zero and standard devia-
tion (6N−1)1/2 (Snedecor and Cochran, 1989; Salas
et al., 1980). The series is decided to have a skewed
distribution if the skewness statistic is greater than
its standard deviation. However, when the sample
size is less than 150, the table given in Snedecor and
Cochran (1989) is suggested for the standard devia-
tion of skewness statistic.

Alternative test approaches for diagnostic
checking of homosecdasticity

For the diagnostic checking of residuals in terms of
homoscedasticty, Goldfeld-Quandt, Breusch and Pa-
gan and Spearman’s rho tests are commonly used.

Goldfeld-Quandt Test: This test is very use-
ful for determining whether a transformation of the
data is needed. If there is a change in variance (het-
eroscedasticity) of residuals, a transformation is nec-
essary for the data. The Goldfeld-Quandt test statis-
tic (Fcal) can be obtained from Eq. (21) (Greene,
2000):

Fcal =
ESSH/(nH − kp)
ESSL/(nL − kp)

≈ Ftable[(nH − kp), (nL − kp)]
(21)

If Fcal is smaller than the F-table critical value,
the residuals are assumed to be homoscedastic. The
following is the method for the Goldfeld-Quandt
statistic:

1. Rank or order the residuals from the model fit
to the data in ascending order,

2. Omit c central residuals from the ranked resid-
uals, where c may be approximately 1/4 or 1/5 of
total residuals,

3. Obtain 2 subsets of residuals (below and above
residuals of the omitted residuals),

4. Calculate sum of squares for 2 subsets of resid-
uals.

5. Calculate Fcal value using the equation.
Breusch and Pagan (B-P) Test: This test

is similar to the Goldfeld-Quandt test but the main
difference is that central residuals from the ranked
residuals are not omitted. For the test, the residu-
als from the model fit to the data are divided into
2 groups. Then the residual sum of squares (ESSF ,
ESSS) for these groups is obtained. Equation (22)
can be used to calculate the Breusch-Pagan test
statistic (Fcal) (Breusch and Pagan, 1979):

Fcal =
ESSH/(nH − kp)
ESSL/(nL − kp)

≈ Ftable[(nH − kp), (nL − kp)]
(22)

If Fcal is smaller than the F-table critical value,
the residuals are assumed to be homoscedastic.

Spearman’s Rho Test: Spearman’s rho test, a
nonparametric test, is another approach that can be
used for determining the homoscedasticity of resid-
uals. It is assumed that the variance of residuals is
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directly related to the size of the observation on x(t).
If this is true, then the rank of the ith observation on
x(t), say dxi , should correspond to the observed rank
dai . Hence, the differences in the ranks for observa-
tions and residuals would be expected to be zero on
average. For this reason, observations and residu-
als are arranged in ascending order. Then, ranks of
these variables are signed. The equations related to
Spearman’s rho statistic (tcal) are as follows:

Rsp = 1− 6 ∗∑D2
i

n ∗ (n2 − 1)
(23)

Di = dxi − dai (24)

tcal = Rsp ∗
[

(n− 2)
(1−R2

sp

]1/2

(25)

where Di is the ith difference between rankings, dxi
is the rank of a measured variable in chronological
order, and dai is the rank in the historical data of
the ith observation in the ascended data. To detect
whether residuals have a constant variance, the cal-
culated tcal value in Eq. (5) should be compared to
the t-critical value from the tables. If the tcal value
lies within the 5% significance interval, the residuals
have a constant variance.

Schwartz bayesian criterion (SBC) for
goodness-of-fit measure

Wei (1990) expressed the need to select the model
that has fulfilled all the diagnostic checks and has
as few parameters as possible in terms of parsimony.
The SBC can measure the parsimony of model build-
ing. An ARIMA model that has the smallest SBC
value among the competing models fit to time series
is preferred. The mathematical formulation of the
SBC can be given as follows (Wei, 1990):

SBC = −2L(
∑

â2
t ) + K ln(n) (26)

where K = p + q + P+ Q + 1, L(
∑
â2
t ) = the

log of the likelihood function of the Box-Jenkins
ARIMA(p, d, q) (P, D, Q) model. The log likeli-
hood function, L(

∑
â2
t ), is a monotonically decreas-

ing function of the sum of squared residuals,
∑
â2
t .

Results

The results of the ADF test applied to monthly data
sequences to test whether monthly data sequences
of 1424, 1409 and 1404 gauging stations are station-
ary or nonstationary are presented in Table 2. The
ADF test statistics (t (α1)) for the data sequences of
monthly streamflow from each gauging station were
greater than the critical values obtained from MacK-
innon (1990) at 0.01, 0.05 and 0.10 significance lev-
els. According to these results, the null hypothesis,
which has a unit root, for the data sequences should
be rejected at 0.01, 0.05 and 0.10 significance levels.
For each data sequence from 1424, 1409 and 1404
gauging stations, maximum lag lengths of theADF
test to remove serial correlation from the residuals of
the regressions based on the relationship between the
current value and the last value of the data sequences
from the mentioned gauging stations were selected as
10, 11 and 1, respectively. The values (V) of the pa-
rameters associated with the standard errors (SEV),
t-ratios (tcal) for drift (constant) and trend parame-
ters in regressions of the data sequences are also pre-
sented in Table 2. The t-ratios (tcal) related to con-
stant and trend coefficients were compared with the
critical value of 1.96 obtained from the t-distribution
at the 0.05 significance level. Only t-ratios (tcal) of
constant coefficients obtained for monthly stream-
flow for 1409 and 1424 gauging stations were greater
than the critical value (Table 2). Therefore, constant
parameters for the data sequences of the mentioned
gauging stations should be involved in regressions.

Table 2. Unit root test results for trend analysis of monthly streamflows.

Gauge ADF Test Critical Value Constant Trend
Station Statistic 0.01 0.05 0.10 V SEV t-ratio V SEV t-ratio

1424 -4.02 -3.99 -3.42 -3.14 161.13 56.33 2.86 0.33 0.22 1.49
1409 -4.22 -3.98 -3.42 -3.13 7.96 2.69 2.96 0.01 0.01 0.93
1404 -6.57 -4.02 -3.44 -3.14 6.06 3.40 1.78 0.05 0.04 1.32
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Figure 2. ACF seasonal differenced monthly streamflow
data.

The plots of the ACF and the PACF for each
monthly data sequence were drawn to gather infor-
mation about the seasonal and nonseasonal AR and
MA operators concerning the monthly series. The
ACF graphs show an attenuating sine wave pattern
that reflects the random periodicity of the data and
possibly indicates the need for non-seasonal and/or
seasonal AR terms in the model. For these data se-
quences with the cyclic seasonal component, seasonal
differencing was needed. By taking the seasonal dif-
ferencing operator as one (1), the seasonal wave pat-
tern in the ACFs was removed (Figure 2).

All the ACFs for monthly streamflow data from
each gauging station were significantly different from
zero. In addition, the Ljung-Box Q statistics cal-
culated for ACFs were rather high compared to χ2

critical value. All of these results emphasize that
the ACFs obtained for each monthly data sequence
were significantly different from zero. In other words,
there was a significant linear dependence between
monthly observations. However, the ACFs did not
cut off but rather damped out. This may suggest the
presence of autoregressive (AR) terms. The PACFs
possess significant values at some lags but rather tail
off. This may imply the presence of moving average
(MA) terms. The ACFs have significant values at
lags that are multiples of 12. This may stress that
seasonal AR terms are required but these values at-
tenuate. There are peaks in the graphs of the PACFs
at lags that are multiples of 12, which may suggest
seasonal MA terms, but these peaks damp out.

Alternative models were selected by inspecting
these diagrams and considering the principle of par-
simony. Diagnostic checks were applied in order to
determine whether the residuals of the alternative
models were independent, homoscedastic and nor-
mally distributed. The residuals from the models
given in Table 3 by taking into consideration monthly
data sequences, which are not transformed, of each
gauge station were tested with the K-S test for nor-
mality and the B-P test for homoscedasticity. The
Dcal values calculated based on K-S for 1424, 1409
and 1404 gauging stations, which are 0.184, 0.189
and 0.223, respectively, were greater than the DTable
values given in Table 5. This implies that the resid-
uals from the models do not come from a normal
distribution. According to B-P, the Fcal values were
1.809, 2.155 and 2.851, respectively. These values
were greater than the FTable values given in Table
6. These results show a change in residual vari-
ances from the models. Normality and homoscedas-
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ticity results indicated that a Box-Cox transforma-
tion was required for the monthly data of each gaug-
ing station. The homoscedasticity and normality
assumptions for residuals were achieved using Eq.
(8) (λ = -0.5 and c = 1) for gauging station 1424
and Eq. (9) (c = 0) for gauging stations 1409 and
1404. These transformations caused the residuals to
be homoscedastic and approximately normally dis-
tributed. All of the ARIMA models selected from
the ACF and PACF graphs did not fulfill the residual
assumptions (independent, homoscedastic and nor-
mality). The models that did not fulfill at least one
of the diagnostic checks were eliminated. The SBC
was taken into account to obtain a parsimony model
among the models fulfilling all the diagnostic checks.
The model with the minimum SBC was assumed to
be parsimonious. Thus, these models were expressed

as the best model for time series of monthly data
from each gauging station. The selected best models
are presented in Table 3. The ARIMA model equa-
tions for the gauging stations (1424, 1409 and 1404,
respectively) are as follows:

(1− 0.70B)[(1− B12)zi] = (1 − 0.94B12)ai (27)

(1− 0.76B)[(1− B12)zi] = (1 − 0.90B12)ai (28)

(1− 0.86B+ 0.14B2)[(1−B12)zi] = (1− 0.84B12)ai
(29)

Table 3. Summary of the statistical parameters of the best fitted ARIMA models for each gauging station.

Variables in the model
ARIMA Model Value of Standard t-ratio Probability SBC
Model Parameter parameter error < 0.05 SBC

(1,0,0)(0,1,1) Ø1 0.70 0.039 17.86 0.000
-256.8(1424) Θ1 0.94 0.049 19.12 0.000

(1,0,0)(0,1,1) Ø1 0.76 0.030 25.12 0.000
599.3(1409) Θ1 0.90 0.028 32.10 0.000

(2,0,0)(0,1,1) Ø1 0.86 0.079 10.79 0.000
258.9(1404) Ø2 -0.14 0.081 -1.78 0.077

Θ1 0.84 0.082 10.19 0.000

Table 4. Independence test results of monthly streamflow data for each gauging station.

L-B Test Runs Turning
Gauge k = 48 Decision Decision Test Decision
Station Q(r) χ2

Table ZN ZTable NT NTable

1424 60.20 62.83 R -0.564 ±1.96 R 0.070 ±1.96 R
1409 47.08 62.83 R 0.161 ±1.96 R 0.059 ±1.96 R
1404 50.07 61.66 R 0.167 ±1.96 R 0.220 ±1.96 R

R, residuals are independent

Table 5. Normality test results of monthly streamflow data for each gauging station.

Gauge K-S Test
Decision

A-D Test
Decision

Skewness Test
DecisionStation Dcal DTable AD CV γ SD

1424 0.038 0.077 ND 0.557 0.750 ND 0.090 0.139 ND
1409 0.034 0.065 ND 0.690 0.751 ND 0.096 0.118 ND
1404 0.049 0.113 ND 0.408 0.748 ND -0.152 0.199 ND

ND, residuals are normally distributed
γ, skewness statistic for the sample
SD, standard deviation related to skewness statistic
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The values (V) of the parameters associated with
the standard errors (SEV), t-ratios and probabilities
(<5%) for the standard errors are also listed in Table
3. The standard errors calculated for the model pa-
rameters were rather small (<5%) compared to the
parameter values. Furthermore, even at the 1% sig-
nificance level, all of the parameters, except for Ø2

for gauging station 1404, are significant; thus, these
parameters should be included in the models (Table
3). The Ø2parameter is significant at the 0.10 confi-
dence level. Although the parameter is insignificant
at the 5% confidence level, the selected model for
gauging station 1404 is the best model according to
the constraints mentioned above.

Three approaches, namely the Ljung-Box Q
statistic, and runs and turning point tests, are ap-
plied for the independence assumption of residuals
for the best models. The results of these tests were
presented in Table 4. The selected best models were
consistent with the independence assumption for all
tests. The test statistics were smaller than the criti-
cal values from the tables related to the tests. This
implies that residuals from the best models are in-
dependence or white noise. Furthermore, the RACF
drawn for the best models (Figure 3) indicated that
the residuals were not significantly different from a
white noise series at the 5% significance level.

For the selected best models, the results related
to the normality of residuals using K-S, AD and
skewness tests are given in Table 5. The test statis-
tics (Dcal and AD) based on these 2 methods were
smaller than the critical values (DTable and CV) at
the 5% level of significance. As can be seen in Table
5, skewness measures (γ) related to residuals from
each model were less than its standard deviation
(SD). These results suggest that the residuals of the
best models are normally distributed. In addition to
these tests, Figure 4 shows the frequency histograms
of the residuals. As expected, the normal curves sig-
nificantly reflect a normal distribution.

Test statistics from the G-Q, B-P and Spear-
man’s rho approaches for the homoscedasticity of
the residuals are presented in Table 6. Test statistics
(Fcal) from G-Q and B-P methods were smaller than
the critical values obtained from FTable at the 5% sig-
nificance level. These results concerning the G-Q and
B-P tests imply that the residual variances are con-
stant. Similarly, the homoscedasticity test statistic
(Tcal) of residuals based on Spearman’s rho approach
was also smaller than the critical value (TTable) from
the t-distribution at the 5% significance level. Spear-
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Figure 3. Residual ACF monthly streamflow data for
each gauging station.
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Figure 4. Frequencies of residuals from the best model
for each gauging station.

man’s rho approach also causes no change in the
residual variances. Thus, all 3 methods satisfy con-
dition the related to homoscedasticity.

Comparisons of monthly mean flow and standard
deviation values for observed and predicted data
from the ARIMA model are given in Figure 5. To
determine whether there is significant difference for
the mean flow and standard deviation values of the
observed and predicted data for each month, a z-
test (for means) and F-test (for standard deviations)
were applied (Haan, 1977; Devore and Peck, 1993).
Since monthly mean values from observed and pre-
dicted data for each gauging station were between
z-critical table values (± 1.96 for 2 tailed at the 5%
significance level), the data support the claim that
there is no difference between the mean values of ob-
served and predicted data. Similarly, monthly stan-
dard deviation values from observed and predicted
data for each gauging station were smaller than F-
critical table values at the 5% significance level (1.96
for 1424, 1.76 for 1409 and 2.82 for 1404 gauging
station). Furthermore, these results show that the
predicted data preserve the basic statistical proper-
ties of the observed series.

The results of the relationship between the ob-
served and predicted monthly data sequences in
terms of regression are presented in Table 7. The
coefficient of correlation (R), which measures the
strength of the association between 2 variables, and
the significance level (Rsig) related to the R of re-
gression for each gauge station shows that there is
a statistically significant linear relationship between
the observed and predicted data. On the other hand,
the coefficient of determination (R-square), which is
interpreted as the proportionate reduction of total
variation associated with the use of the predictor
variable (the observed data in this study), and ad-
justed R-square measure, which presents the sam-
ple response of the population for each regression,
were close to one. In addition, the results (F-value
and FSig) concerning tests applied for determin-
ing whether the estimated regression functions ad-
equately fit the data emphasize that the association
between the observed and predicted monthly data
sequences is linear. Based on these results, it is con-
cluded that the selected best ARIMA model for each
station can make accurate estimates.
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Figure 5. Comparison of some statistical properties from observed and predicted data.

Table 6. Homoscedasticity test results of monthly streamflow data for each gauging station.

Gauge
G-Q Test

Decision
B-P Test

Decision
Spearman’s Rho Test

DecisionStation Fcal FTable Fcal FTable Tcal TTable
1424 1.11 1.35 NC 1.11 1.30 NC 1.39 ±1.96 NC
1409 1.07 1.29 NC 1.07 1.25 NC 0.76 ±1.96 NC
1404 0.95 1.57 NC 0.96 1.49 NC 1.74 ±1.96 NC

NC, no change in variance of residuals.

Table 7. Regression summaries of the relationship between the observed and predicted data.

Gauge Correlation Adjusted
station R RSig R-square R-square F-value FSig
1424 0.920 0.000 0.847 0.846 1709.8 0.000
1409 0.921 0.000 0.848 0.848 2402.8 0.000
1404 0.895 0.000 0.801 0.800 572.7 0.000
RSig, significance level concerning coefficient of correlation
FSig, significance level for F-value of regression model
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Conclusion

The estimation of monthly flow is, in practice, often
based on small samples of data, which may cause se-
vere uncertainty. Therefore, the main priority is to
obtain reliable estimates of monthly flows. Simula-
tion on the basis of samples of historical flow records
is needed for reliable information as for many water
resources studies the available streamflow records are
scarce. The selection of a best model fit to historical
data is directly related to whether residual analysis
is performed well.

This study is concerned with testing residuals
from an ARIMA model, which are the most pop-
ular for generating stochastically synthetic data, ap-
plied to monthly streamflow data from the Çekerek
Stream watershed. Independence analysis of the
residuals was examined by using the Ljung-Box Q
statistic, and runs and turning point tests. To deter-
mine whether the residuals are normally distributed,
Kolmogorov-Smirnov, Anderson-Darling and skew-
ness tests were used. The homoscedasticity of resid-
uals was tested by Goldfeld-Quandt, Breusch and
Pagan and Spearman’s rho approaches. The se-
lected parsimony model for each data set among the
ARIMA models fulfilled the diagnostic checks con-
sidering the Schwarz Bayesian criterion. All of these
tests related to assumptions including independence,
normality and homoscedasticity showed that the as-
sumptions concerning the residuals from the selected
best ARIMA model held. Furthermore, comparisons
of monthly mean and standard deviation values for
observed and predicted data from the ARIMA model
showed that the predicted data preserved the basic
statistical properties of the observed series. The sim-
ple linear regression approach was applied to explain
the association between the observed and predicted
monthly data sequences. The results from the regres-

sion analysis support the existence of a statistically
significant linear relationship between the observed
and predicted data.

Nomenclature

ai white noise time series value at time i
B backward shift operator
C constant term in ARIMA model
c constant for Box-Cox transformation
d order of the nonseasonal differencing operator
ESSL the residual sum of square for the low group
ESSH the residual sum of square for the high group
kp degree of freedom
n the number of observation
nL the number of residuals in the low group
nH the number of residuals in the high group
Q(r) Ljung-Box statistic at lag m
rk(a) ACF of ai at lag k
s seasonal length
xi discrete time series value at time i
wi stationary series formed by differencing the xi
zi transformation of xiseries

Greek Symbols

λ exponent for Box-Cox transformation
µ mean level of the wi series (if D + d > 0 often

µ ≈ 0)
Ø(B) nonseasonal AR operator of order p
θ
(B)

nonseasonal MA operator of order q

Φ
(B)

seasonal AR parameter of order P

Θ
(B)

seasonal MA parameter of order Q

σ2
a residual variance
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