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Başkent University, Department of Mechanical Engineering

Ankara-TURKEY

Received 10.11.2004

Abstract

A computational model is developed to estimate thermal stresses in nonlinearly hardening elastic-plastic
axisymmetric systems in cylindrical polar coordinates. The model is based on von Mises’ yield criterion,
total deformation theory and Swift’s hardening law. Various numerical examples including plane strain and
generalized plane strain problems in cylinders and tubes are handled. Comparisons are made with existing
analytical solutions employing Tresca’s yield criterion for elastic-ideally plastic and elastic-linearly hardening
systems. Parametric analyses are carried out to investigate the effect of important model parameters on the
stresses and deformations.
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Introduction

Analysis of thermally induced deformations of rods,
tubes, disks, spherical shells and other structures is
of great importance in engineering design and op-
eration (Boley and Weiner, 1960; Timoshenko and
Goodier, 1970; Uğural and Fenster, 1995). Since in
general, to better utilize the material, plastic defor-
mation may be admitted to some extent, recent stud-
ies have focused on elastic-plastic treatment of ther-
mal behavior. A special case, in which thermal defor-
mations are caused by a prescribed symmetrical tem-
perature distribution or internal energy generation in
systems that can be treated under plane-strain pre-
supposition, has been the topic of numerous inves-
tigations. The elastic-plastic deformation occurring
in a perfectly plastic cylinder having fixed ends sub-
jected to a uniform temperature inside its cylindrical
core was studied by Orcan and Gamer (1991). Later,
Gülgeç and Orcan (1999) extended the analysis pre-

sented in Orcan and Gamer (1991) to include linear
strain hardening. In a closely related work, Orcan
(1994a) obtained the solution of an elastic-ideally
plastic cylindrical rod with uniform internal energy
generation. All stages of the elastic-plastic defor-
mation of a uniform heat generating tube with free
ends were studied analytically by Orcan and Gülgeç
(2001), assuming perfectly plastic material behavior.
Recent investigations include the numerical solution
of thermal stresses in elastic perfectly plastic tubes
considering temperature dependent physical proper-
ties by Orcan and Eraslan (2001), an analytical solu-
tion of 2-layer tubes for linear hardening by Eraslan
et al. (2003) and for nonlinear hardening by Eraslan
(2003) and an analytical solution considering a con-
vective boundary condition for fixed end cylinders by
Eraslan and Orcan (2004). In all these theoretical
investigations, Tresca’s yield criterion and its associ-
ated flow rule were used.

The use of Tresca’s yield criterion in elastoplas-
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tic analysis for nonhardening or linear hardening
materials leads to linear differential equations and
hence permits the analytical treatment of the prob-
lem. However, in the case of thermoplasticity its use
needs separate treatment in each region due to dif-
ferent forms of the yield criterion in different parts
of the plastic zone. Due to various combinations
of elastic and plastic regions, the analysis depends
entirely on the temperature distribution and may
change completely if a different temperature distri-
bution is imposed. Moreover, in the case when a
plastic region expands over a plastically predeformed
region the task becomes quite cumbersome. Hence,
to develop an algorithm for a unified treatment for
design purposes by the use of Tresca’s yield criterion
would be a formidable task.

In this work, we suggest a simple computational
procedure for the unified treatment of a class of
plane strain thermal stress problems taking nonlin-
ear strain hardening into account. The model is
based on von Mises’ yield criterion, the deformation
theory of plasticity and a Swift-type hardening law.
A shooting method using Newton iterations with nu-
merically generated tangents is developed for the nu-
merical solution of the nonlinear governing differen-
tial equation. The major contributions of the present
model are the inclusion of (i) von Mises’ yield cri-
terion, (ii) nonlinear isotropic hardening, (iii) any
prescribed temperature distribution and (iv) an ef-
ficient numerical solution procedure. Furthermore,
all combinations of solid and hollow cylinders with
fixed and free end conditions can be handled. Small
and large values of the hardening parameters can be
used without any difficulty.

The results of the computations are compared
with the existing analytical solutions based on
Tresca’s criterion to verify the present computational
model. These comparisons indicate that there exists
fairly good agreement in the predictions of stress
and displacement distributions and relatively poor
agreement in plastic strain, predictions for structures
made of ideally-plastic and linearly hardening mate-
rials. It is also observed that the elastic-plastic inter-
face predicted by Tresca’s criterion advances further
than that of von Mises and hence, lower fully plastic
limits are predicted by Tresca’s yield criterion.

Model Development

The elastic equation

The following dimensionless and normalized vari-
ables are introduced: Radial coordinate: r = r/b,
inner radius: a = a/b, normal stress: σj = σj/σ0,
normal strain: εj = εjE/σ0, radial displacement:
u = uE/σ0b, heat load: Q = QEαb2/σ0k, coefficient
of thermal expansion: α = αE/σ0, hardening pa-
rameter: H = ησ0/E, with b being the outer radius,
σ0 the yield limit of the material, E the modulus of
elasticity, Q the constant rate of internal heat gener-
ation, k the thermal conductivity, α the coefficient of
thermal expansion and η the hardening parameter.
The equations given below are written in terms of
these variables. For convenience, the overbar will be
dropped.

A state of generalized plane strain and small de-
formations are presumed. The strain displacement
relations: εr = u′, εθ = u/r, the equation of equilib-
rium in the radial direction

σθ = (rσr)′, (1)

the compatibility relation

εr = (rεθ)′, (2)

and generalized Hooke’s law

εr = εpr + σr − ν (σθ + σz) + α∆T, (3)

εθ = εpθ + σθ − ν (σr + σz) + α∆T, (4)

εz = εpz + σz − ν (σr + σθ) + α∆T, (5)

are valid both in elastic (with plastic strain εpi = 0)
and in plastic regions. In the equations above, ∆T
represents the temperature difference between the lo-
cal and reference temperatures and a prime indicates
differentiation with respect to the nondimensional
radial coordinate r. For purely elastic deformations
εpi = 0. Furthermore, in a state of generalized plane
strain εz = ε0 = constant and from Eq. (5) the axial
stress is determined as

σz = ε0 + ν(σr + σθ)− α∆T. (6)

Introducing the stress function Y (r) in terms of ra-
dial stress as Y (r) = rσr, we obtain from the equa-
tion of equilibrium (1), σθ = Y ′(r). Hence, the total
strains become

εr =
1
r

(1− ν2)Y − ν(1 + ν)Y ′ − νε0 + α(1 + ν)∆T,

(7)
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εθ = −ν
r

(1 + ν)Y + (1− ν2)Y ′ − νε0 + α(1 + ν)∆T.

(8)

The elastic equation is obtained upon substitution
of εr and εθ in the compatibility relation (2). The
result is

r2 d
2Y

dr2
+ r

dY

dr
− Y = − α

1− ν r
2 dT

dr
. (9)

This is a Cauchy-Euler nonhomogeneous differential
equation and its analytical solution will be used to
determine elastic limit heat loads later.

The plastic equation

In the plastic region, the axial stress takes the form

σz = ε0 − εpz + ν(σr + σθ) − α∆T. (10)

Eliminating the axial stress from the total strain ex-
pressions (3) and (4) and substituting the results in
the compatibility relation (2) leads to the governing
differential equation for the plastic region.

r2 d
2Y

dr2
+ r

dY

dr
− Y = − α

1 − ν r
2 dT

dr
+

r

1− ν2

[
εpr − εpθ − r

(
dεpθ
dr

+ ν
dεpz
dr

)]
.

(11)

Note that in the elastic region the plastic strains
εpj and hence their derivatives (εpj )

′ vanish and this
equation reduces to the elastic equation given by Eq.
(9). Therefore, the stress function Y and its first
order derivative Y ′ are continuous at the elastic-
plastic interface, and as a result the continuity of
the stress components and the displacement at the
elastic-plastic border is satisfied. For this reason,
Eq. (11) is, in fact, the governing equation to be
integrated for the analysis of thermoelastoplastic re-
sponse as it switches between elastic and plastic
equations. Since the plastic strains are not known a
priori, Eq. (11) is not convenient to handle the plas-
tic region, and an alternate form, containing explicit
expressions for the plastic strains will be derived next
using the deformation theory of plasticity.

For plane strain, von Mises’ yield criterion takes
the form

σy =

√
1
2

[(σr − σθ)2 + (σr − σz)2 + (σθ − σz)2].

(12)

In the absence of plastic predeformation, using total
deformation theory and plastic incompressibility one
obtains the plastic strains as

εpr =
εEQ
σy

[
σr −

1
2

(σθ + σz)
]
, (13)

εpθ =
εEQ
σy

[
σθ −

1
2

(σr + σz)
]
, (14)

εpz =
εEQ
σy

[
σz −

1
2

(σr + σθ)
]
, (15)

where εEQ represents the normalized equivalent plas-
tic strain and according to Swift’s hardening law it
is related to the yield stress σy as

σy = (1 + HεEQ)1/m, (16)

and the inverse relation is

εEQ = (σmy − 1)
1
H
, (17)

where m is a material parameter intended to sim-
ulate nonlinear hardening for the values of m 6= 1.
The total strain components are obtained by super-
position of plastic, elastic and thermal contributions.
They become

εr =
(σmy − 1)
Hσy

[
σr −

1
2

(σθ + σz)
]

+

[σr − ν(σθ + σz)] + α∆T,

(18)

εθ =
(σmy − 1)
Hσy

[
σθ −

1
2

(σr + σz)
]

+

[σθ − ν(σr + σz)] + α∆T,

(19)

εz = ε0 =
(σmy − 1)
Hσy

[
σz −

1
2

(σr + σθ)
]

+

[σz − ν(σr + σθ)] + α∆T.

(20)

Some algebraic manipulations are necessary before
the total strains are substituted in the compatibility
relation to obtain the governing equation. First, the
derivative of the yield stress σy is written in the form

dσy
dr

= N1 + N2
dσz
dr

+ N3
dσθ
dr

, (21)
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where

N1 =
[

2σr − σθ − σz
2σy

]
dσr
dr

, (22)

N2 =
2σz − σr − σθ

2σy
, (23)

N3 =
2σθ − σr − σz

2σy
. (24)

Then Eq. (20) is differentiated with respect to the
radial coordinate r by making use of Eq. (21) and
ε′0 = 0 to give

dσz
dr

=
1
N8

[
N1N4N5 − 2Hασ2

y

dT

dr
+ N6σy

dσr
dr

+

(N3N4N5 + N6σy)
dσθ
dr

]
,

(25)

in which the following variables have just been de-
fined:

N4 = σmy (m− 1) + 1, (26)

N5 = σr + σθ − 2σz, (27)

N6 = σmy + 2Hνσy − 1, (28)

N7 = σmy + Hσy − 1, (29)

N8 = 2N7σy −N2N4N5. (30)

Substituting the total strains from Eqs. (18) and
(19) in the compatibility relation (2) and employing
the relations (21) and (25) results in

−rN1N4N9

2Hσ2
y

− rN1N4N5N10

2HN8σ2
y

+ rα

[
1 +

N10

N8

]
dT

dr

+
[

3− 2H(1 + ν)σy − 3σmy
2Hσy

]
σr

+
[
1 + ν +

3(σmy − 1)
2Hσy

]
σθ −

[
rN6(N8 + N10)

2HN8σy

]
dσr
dr

−
[
r[N3N4(N8N9 + N5N10) − σy(2N7N8 −N6N10)]

2HN8σ2
y

]
×dσθ
dr

= 0, (31)

where

N9 = σr + σz − 2σθ, (32)

N10 = N2N4N9 +N6σy. (33)

If all stresses are expressed in terms of the stress
function using σr = Y/r, σθ = Y ′, then Eq. (31) can
be cast into the general form

d2Y

dr2
= z(r, Y,

dY

dr
). (34)

The substitution of the axial stress σz on the right
hand side of this equation is achieved by the use of
either Eq. (6) or Eq. (20) depending on whether
the region is elastic or plastic. In the case of using
Eq. (20), a nonlinear iteration is carried out. Eq.
(34) constitutes a nonlinear 2-point boundary value
problem and can be solved numerically, subject to
the following boundary conditions:

Y (a) = 0 and Y (1) = 0 for a ≥ 0. (35)

Note that while this relation holds for both a = 0
and a > 0, in the case a = 0, σr(0) = Y ′(0), whereas
for a > 0 then σr(a) = Y (a)/a. For accurate in-
tegration of Eq. (34), a nonlinear shooting method
using Newton iterations with numerically approxi-
mated tangents is used. To this end, we define 2
new variables as φ1(r) = Y and φ2(r) = dY/dr so
that one may obtain the system

dφ1

dr
= φ2, (36)

dφ2

dr
= z(r, φ1, φ2). (37)

Equations (36) and (37) form a system of initial
value problems (IVP) and should be solved start-
ing with the initial conditions φ1(a) = Y (a) = 0 and
φ2(a) = dY/dr|r=a. Since normally the gradient of
Y at r = a is not known, a Newton iteration scheme
is used to obtain the correct value of this gradient
by requiring φ1(1) = Y (1) = 0. A double precision
version of the state-of-the-art ODE solver LSODE
by Hindmarsh (1983) is used for the numerical so-
lution of IVP with the stiff option turned on. An
outer iteration loop is performed to determine the
value of ε0 in the case that a free end condition is
considered. At each iteration, the problem is solved
3 times using εk0 , εk0 + ∆ε and εk0 −∆ε respectively,
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and corresponding net axial forces
∫
σz dA are calcu-

lated. A better approximation εk+1
0 to the constant

axial strain is then obtained from

εk+1
0 = εk0 −

(2∆ε)
∫
σz(εk0) dA∫

σz(εk0 + ∆ε) dA−
∫
σz(εk0 −∆ε) dA

,

(38)

where ∆ε stands for a small increment of the order of
εk0/100. Starting with a reasonable initial estimate
of ε00, this iteration scheme converges to the result
with a sufficient accuracy in only a few iterations.

Preliminary Calculations

The general solution of Eq. (9) is

Y (r) =
C1

r
+ C2r −

α

2(1− ν)

[
rT − Ip(r)

r

]
, (39)

in which Ci represents an arbitrary integration con-
stant, a the inner radius, and

Ip(r) =
∫ r

a

T ′(ξ)ξ2dξ. (40)

Hence, the stresses and radial displacement are de-
termined as

σr =
C1

r2
+ C2 −

α

2(1− ν)

[
T − Ip(r)

r2

]
, (41)

σθ = −C1

r2
+C2 −

α

2(1− ν)

[
T +

Ip(r)
r2

]
, (42)

σz = 2νC2 + ε0 −
αT

1− ν , (43)

u = (1 + ν)
{
−C1

r
+ (1 − 2ν)rC2 −

rνε0
1 + ν

+
α

2(1− ν)

[
rT − Ip(r)

r

]}
.

(44)

For a generalized plane strain problem, the axial
strain ε0 is constant and its value is determined by
requiring that the net axial force Fz must vanish,
that is

Fz =
∫
σz dA = 2π

∫ 1

a

σzrdr = 0, (45)

which gives

ε0 = −2νC2 +
2α

(1− a2)(1− ν)

∫ 1

a

T (r)rdr. (46)

The solution is completed by the application of
boundary conditions. For a cylinder, the stresses
and displacement must be finite at the axis and the
surface may be assumed to be free of traction, that
is σr(1) = 0. These conditions lead to

C1 = 0 and C2 =
α[T (1)− Ip(1)]

2(1− ν)
. (47)

For a tube of inner radius a, the boundary conditions
used are σr(a) = σr(1) = 0 giving

C1 =
a2α[T (a)− T (1) + Ip(1)]

2(1− a2)(1− ν)
,

C2 = −α[a2T (a) − T (1) + Ip(1)]
2(1− a2)(1− ν)

.

(48)

On the other hand, the steady temperature distribu-
tion in a uniform heat generating cylinder whose sur-
face is kept at constant reference temperature T0 = 0
is given by Orcan (1994a)

T (r) =
Q

4α
(1− r2). (49)

Using this temperature distribution and considering
a cylinder with fixed ends, ε0 = 0, the elastic stresses
are determined as

σr = −Q(1− r2)
16(1− ν)

, σθ = −Q(1− 3r2)
16(1− ν)

,

σz = −Q(2− ν − 2r2)
8(1− ν)

.

(50)

Yielding commences at the axis of the fixed end
cylinder as soon as σy ≥ 1. Since the stress state
at this location satisfies σr = σθ > σz, von Mises’
yield criterion (12) at the limit σy = 1 reduces to

1 = σr(0) − σz(0) = σθ(0)− σz(0). (51)

Accordingly, the elastic limit heat load Q = Q1 is
obtained as

Q1 =
16(1− ν)

3− 2ν
. (52)

It is noted that Tresca’s yield criterion leads to an
identical result (Eraslan and Orcan, 2004).

For a cylinder with free ends, using Eq. (46)
the constant axial strain is determined as ε0 = Q/8.
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The above expressions given by Eq. (50) for the ra-
dial and circumferential stresses are still valid but
the axial stress, which depends on ε0, takes the form

σz = −Q(1 − 2r2)
8(1− ν)

. (53)

In this case, yielding first begins at the surface
(r = 1) of the cylinder where the stresses satisfy
σθ = σz > σr = 0. Von Mises’ yield criterion simpli-
fies to

1 = σθ(1) = σz(1), (54)

which leads to the elastic limit

Q1 = 8(1− ν), (55)

a result identical to the one obtained by Tresca’s
criterion (Orcan, 1994a). Hence, for cylinders hav-
ing the temperature distribution prescribed by Eq.
(49) and traction free surface, both von Mises’ and
Tresca’s criteria predict identical elastic limits for
fixed as well as free end conditions.

On the other hand, the temperature distribution
in a uniform heat generating tube with the inner face
insulated and the other kept at zero reference tem-
perature is given by Orcan and Gülgeç (2001)

T (r) =
Q

4α
(1− r2 + 2a2 ln r). (56)

This temperature distribution results in the follow-
ing expressions for stresses in a tube with fixed ends
(ε0 = 0):

σr =
Q
{

4a4(1− r2) ln a+ (1 − a2)[(a2 − r2)(1− r2) − 4a2r2 ln r]
}

16r2(1− a2)(1− ν)
, (57)

σθ = −Q
{

4a4(1 + r2) ln a+ (1− a2)[a2 − 3r4 + r2(1 + 5a2 + 4a2 ln r)]
}

16r2(1− a2)(1 − ν)
, (58)

σz = −Q
[
4a4ν lna+ (1− a2)(2− 2r2 − ν + 3a2ν + 4a2 ln r)

]
8(1− a2)(1 − ν)

. (59)

Yielding commences at the inner surface (r = a) of the tube where σr = 0 > σθ > σz. Substituting the stresses
from Eqs. (57)-(59) in

1 =
√
σθ(a)2 − σθ(a)σz(a) + σz(a)2, (60)

and simplifying, the elastic limit heat load is determined to be

Q1 = 8(1− a2)(1− ν)/
√
D, (61)

where

D = (1− a2)2
{

3− ν(3− ν)− 2a2[3− ν(7− 3ν)] + a4[7− 3ν(5− 3ν)]
}

+4a2(1− a2) lna
{

3− ν + a4(1 − ν)(5− 6ν)− 2a2[2− ν(4− ν)]
}

+16a4(lna)2[1− a2(1− ν) + a4(1− ν)2]. (62)

Note that, according to Tresca’s yield criterion, the yield condition reads 1 = σr(a) − σz(a), which gives the
limit

Q1 =
8(1− a2)(1− ν)

(1− a2)[2− ν − a2(2− 3ν)] + 4 lna[a2 − a4(1− ν)]
. (63)

If the ends of the tube are free, then the axial strain is calculated as

ε0 =
Q

8

[
1− 3a2 − 4a4 ln a

1− a2

]
. (64)
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Then the axial stress component becomes

σz = −Q
�
4a4 lna+ (1− a2)(1 + 3a2 − 2r2 + 4a2 ln r)

�

8(1− a2)(1− ν)
.

(65)

For a tube with free ends, yielding commences at
the outer surface where the stresses satisfy the in-
equality σθ = σz > σr = 0. This stress state leads
to the elastic limit heat load for both von Mises’ and
Tresca’s criteria

Q1 =
2(1− a2)(1− ν)

1/4− a2 + 3/4a4 − a4 lna
. (66)

Taking the Poisson’s ratio as ν = 0.3, the elastic limit
heat loads for cylinders and tubes of different inner
radii are calculated and the results are presented in
Table 1.

Table 1. Elastic limit heat loads.

Fixed End Free End
a von Mises Tresca Both criteria
0 4.6667 4.6667 5.6

0.1 4.0352 3.5074 5.7677
0.2 4.6258 4.0136 6.2870
0.3 5.5963 4.8497 7.2458
0.4 7.1519 6.1943 8.8650
0.5 9.7595 8.4523 11.641

A run is performed to compute the stresses and
displacement in a cylinder with free ends at the elas-
tic limit loadQ1 = 5.6. Iterations start with ε00 = 0.5
and converge to ε0 = 0.70000 within 3 iterations.
The analytical result is ε0 = 0.7. The corresponding
stresses and displacement are plotted in Figure 1(a).
In this figure, solid lines represent numerical results
and dots analytical results. Perfect agreement with
the analytical solution is obtained. The stress vari-
able φ in this figure is computed from

φ =

√
1
2

[(σr − σθ)2 + (σr − σz)2 + (σθ − σz)2],

(67)

which is simply the yield stress σy in the plastic zone.
Note that φ = 1 at the elastic-plastic border and
φ < 1 in the elastic region. As seen in Figure 1(a),
for a cylinder with free ends φ = 1 at the surface
(r = 1) and hence plastic deformation commences at
this location for loads Q > Q1 and the plastic re-
gion formed here propagates toward the center with
increasing thermal loads.

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

radial coordinate

st
re

ss
es

 a
n

d
 d

is
p

la
ce

m
en

t

φ

rσ

u

θσ

z
σ

(a)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5 0.6 0.7 0.8 0.9 1.0

radial coordinate

st
re

ss
es

 a
n

d
 d

is
p

la
ce

m
en

t

rσ

θσ

zσ

u

φ

(b)

Figure 1. Stresses and displacement in (a) a cylinder
with free ends at elastic limit heat load Q =
5.6, (b) a tube with free ends at elastic limit
heat load Q = 11.641.
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For a tube of inner radius a = 0.5 with free
ends, the elastic limit heat load, as given in Table
1, is Q1 = 11.641. The stresses and displacement at
this load are calculated and plotted in Figure 1(b).
Again, numerical and analytical solutions agree per-
fectly. Furthermore, it is evident from this figure
that φ = 1 at the outer surface pointing the location
of formation of plastic deformation. These sample
calculations reveal that the numerical solution algo-
rithm performs very well and that the computer code
that implements this algorithm is functioning prop-
erly.

Results and Discussion

Before the results of nonlinear hardening structures
are presented, comparisons will be made with pub-
lished analytical solutions based on Tresca’s yield
criterion. The stresses in a uniform heat generating,
elastic ideally plastic cylinder with free ends were cal-
culated by Orcan (1994a). Since the present model
is not specifically designed for ideally plastic materi-
als, it is impossible to take H = 0 exactly for compu-
tational reasons. However, material behavior of this
type may be simulated by assigning m = 1 and using
sufficiently small H . Using the parameters of Orcan
(1994a), Q = 16.2, ν = 0.295 and also m = 1 and
H = 10−5, the corresponding stresses, displacement
and plastic strains are computed. Figures 2(a) and
(b) show the results of this computation (solid lines)
in comparison to those of Orcan (1994a) (dots). The
stresses and displacement, as shown in Figure 2(a),
compare well. Conversely, as seen in Figure 2(b),
the comparison concerning the plastic strains is poor.
The fact that the cylinder is composed of 3 regions,
an inner plastic, an elastic and an outer plastic is
evident from Figure 2(a), through a look at the vari-
ation of φ. In addition φ = 1 in both plastic regions
is the result of nonhardening behavior of material.

Another analytical solution for an ideally plastic
material was derived by Orcan and Gülgeç (2001)
for a tube with free ends using the temperature dis-
tribution given by Eq. (56). The results of the cal-
culations are compared with their solution for the
stresses and displacement in Figure 3(a) and plastic
strains in Figure 3(b). Again, dots represent the an-
alytical solution. The parameters used are a = 0.2,
Q = 20.0, ν = 0.295, H = 10−5. In contrast to the
free end cylinder solution, the agreement between 2
solutions as to plastic strains is satisfactory.
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Figure 2. (a) Stresses and displacement, (b) plastic
strains in elastic ideally plastic cylinder with
free ends at Q = 16.2. Dots represent the ana-
lytical solution of Orcan (1994a).
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Figure 3. (a) Stresses and displacement, (b) plastic
strains in elastic ideally plastic tube with free
ends at Q = 20. Dots represent the analytical
solution of Orcan and Gülgeç (2001).

The thermoplastic response of a linear strain
hardening cylinder with fixed ends was studied by
Sener and Eraslan (2003). All stages of elastic-
plastic deformation were treated analytically, from
purely elastic to fully plastic, by Sener and Eraslan
(2003), employing the temperature field (49). Tak-
ing Q = 5.6054, ν = 0.295, m = 1 and H = 0.25
the stresses and displacement are calculated and
compared with the analytical result from Sener and
Eraslan (2003) in Figure 4(a). Moreover, the propa-
gation of the elastic-plastic border with the increas-
ing values of heat load is also calculated and the
result is plotted in Figure 4(b). The dots belong to
the analytical result of Sener and Eraslan (2003). As
seen in this figure, plastic deformation commences at
the center of the cylinder at Q = 4.6667 (see Table
1) and propagates toward the surface as the heat
load is increased. When the heat load reaches an-
other critical value, Qs, a second plastic region de-
velops at the surface. The present model predicts
Qs = 6.2795, while the analytical finding is 5.6103.
Moreover, the cylinder becomes just fully plastic at
Qfp = 6.9773, though Qfp = 6.8412 is reported in
Sener and Eraslan (2003), based on the analytical so-
lution. Figure 4(b) also shows that the elastic-plastic
border advances more rapidly by Tresca’s criterion
than by that of von Mises’, and hence more conser-
vative limit heat loads are predicted.

The work of Orcan (1994a) was recently extended
to linear hardening by Sener (2003). A final com-
parison is made with the results of Sener (2003).
These comparisons are shown in Figures 5(a) and
(b). Model predictions for the stresses and dis-
placement corresponding to the parameters Q = 10,
ν = 0.295, m = 1 and H = 0.25 are compared to
those of Sener (2003) in Figure 5(a), and for the plas-
tic strains in 5(b). This comparison and the ones dis-
cussed above verify the present elastoplastic model
on a different class of problems and for a wide range
of values of parameters.

To give an example regarding nonlinearly harden-
ing thermal stress calculation, we consider a uniform
heat generating cylinder with fixed ends. The defor-
mation behavior of this cylinder has been explained
above with reference to the analytical work of Or-
caw (1994) and temperature distribution (49). The
cylinder with fixed ends becomes partially plastic for
the loads Q > 4.6667. Taking ν = 0.3, H = 0.4 and
m = 0.5, and assigning Q = 6.85, the elastic-plastic
stresses and displacement in a nonlinearly hardening
cylinder are computed and plotted

121



ERASLAN, ARGESO

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0.0 0.2 0.4 0.6 0.8 1.0

radial coordinate

st
re

ss
es

 a
n

d
 d

is
p

la
ce

m
en

t

r
σ

θσ

zσ

u

φ

(a)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

0.0 0.2 0.4 0.6 0.8 1.0

border radius

h
ea

t 
lo

ad

(b)

Figure 4. (a) Stresses and displacement at Q = 5.6054,
(b) propagation of elastic-plastic border radius
in a linearly hardening cylinder with fixed ends.
Dots represent the analytical solution of Sener
and Eraslan (2003).
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Figure 5. (a) Stresses and displacement, (b) plastic
strains in a linearly hardening cylinder with
free ends at Q = 10. Dots represent the ana-
lytical solution of Sener (2003).
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Figure 6. Stresses and displacement in a nonlinearly
hardening cylinder with fixed ends at Q = 6.85.

in Figure 6. Under this load, the cylinder is com-
posed of 3 different regions: an inner plastic re-
gion in 0 ≤ r ≤ 0.74169, an elastic region in
0.74169 ≤ r ≤ 0.90811 and an outer plastic region in
0.90811 ≤ r ≤ 1. An elastic-plastic border in Figure
6 is designated by the symbol rep. Additional runs
are performed for this system to investigate the effect
of material parameters H and m on plastic strains.
The results of these calculations are depicted in Fig-
ures 7 and 8. In both, ν = 0.3 and Q = 6.85. Figure
7 exemplifies the effect of the hardening parameter
H on plastic strains corresponding to m = 0.5, while
Figure 8 demonstrates the effect of m corresponding
to H = 0.4. As seen in these figures, both parame-
ters affect plastic strains significantly and there are
correspondingly larger plastic strains for smaller val-
ues of H and larger values of m. It is also seen that
the widths of inner and outer plastic zones are both
notably affected by the change in either H or m.
The propagation of an elastic plastic border with in-
creasing values of heat load is shown in Figure 9. In
Figure 9(a), H is kept constant at 0.4 and m is used
as a parameter. As seen in this figure, the fully plas-
tic limit heat load Qfp increases in the direction of
decreasing m. The hardening parameter H is used

as a parameter for m = 0.5 in Figure 9(b). As seen
in Figure 9, the effect of parameters H and m on
the propagation of elastic-plastic interface becomes
significant as the fully plastic limit is approached.

The fully plastic limit of the cylinder with fixed
ends corresponding to the values of parameters ν =
0.3, H = 0.4, m = 0.5 is calculated as Qfp = 7.0099.
The stresses and displacement at this limit heat load
are presented in Figure 10. The elastic region shrinks
to a surface at r = rep where both plastic regions join
each other. A parametric analysis is carried out to
investigate the effect of material parameters H and
m on the plastic limit heat load Qs as well as on the
fully plastic limit heat load Qfp. Note again that,
Qs is the critical load at which plastic deformation
sets in at the free surface. Figure 11 shows the re-
sult of this analysis. Variation of Qs with m using
H as a parameter is plotted in Figure 11(a) whereas
variation of Qfp is plotted in Figure 11(b). As seen
in these figures, although both Qs and Qfp increase
with increasing H and decreasing m, these effects are
more pronounced on the fully plastic limit Qfp.
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Figure 7. (a) Radial, (b) circumferential and (c) axial
plastic strains in a nonlinearly hardening cylin-
der with fixed ends for different values of H and
m = 0.5 at Q = 6.85.
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Figure 7. Contunied.
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Figure 8. (a) Radial, (b) circumferential and (c) axial
plastic strains in a nonlinearly hardening cylin-
der with fixed ends for different values of m and
H = 0.4 at Q = 6.85.
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Figure 8. Contunied.

In engineering applications, the system is sub-
jected to repeated stress cycles by loading and un-
loading. The residual stresses occurring during the
unloading process and the possibility of alternating
the plastic response of the system is also investigated.
To this end, the residual stresses due to complete un-
loading of the thermal load Q = 6.85 (Figure 6) are
calculated by subtracting the stresses and displace-
ment corresponding to unrestricted elastic behavior
from elastic-plastic ones at the same load parameter.
Of course, this calculation procedure holds true only
when the residual stresses do not exceed the yield
limit (Orcan, 1994b). Residual stresses and displace-
ment are plotted in Figure 12(a). In this figure, the
nondimensional stress components are designated by
σ0
j and displacement by u0 to imply stand-still. The

stress variable φR is calculated from Eq. (67) with
σj replaced by σ0

j . Since φR < 1, unloading occurs
elastically and reversed plastic flow (secondary plas-
tic flow) does not take place. The residual plastic
strains are not altered and are as given in Figure 7.
The axial stress is again maximum at the axis, but
this time it is tensile. Upon reloading, superposition
of the stresses due to the applied thermal load on the
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Figure 9. Propagation of elastic-plastic border radius for
(a) different values of m and H = 0.4, (b) for
different values of H and m = 0.5 in a nonlin-
early hardening cylinder with fixed ends.
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Figure 10. Stresses and displacement at fully plastic limit Qfp = 7.0099 in a nonlinearly hardening cylinder with fixed
ends.
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Figure 11. Dependence of the plastic flow limits (a) Qs, (b) Qfp on material parameters H and m for a cylinder with
fixed ends.
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Figure 12. Residual stresses and displacement upon re-
moval of (a) elastic-plastic heat load Q =
6.85, (b) fully plastic limit heat load Qfp =
7.0099 in a nonlinearly hardening cylinder
with fixed ends.

state of residual stress does not lead to an exten-
sion of the yield surface. The residual stresses and
residual displacement on unloading of the fully plas-
tic load Qfp = 7.0099 are shown in Figure 12(b).
As seen in this figure, φR is still less than 1 and
hence secondary plastic flow does not occur. Resid-
ual stresses are not excessive and shakedown to elas-
tic response takes place upon unloading and reload-
ing.

Concluding Remarks

Taking nonlinear hardening into account, an easy-to-
handle unified computational model is developed to
solve a class of plane strain thermal stress problems
of engineering interest. The model is based on von
Mises’ yield criterion, the deformation theory of plas-
ticity, and a Swift-type hardening law. A nonlinear
shooting method using Newton iterations with nu-
merically generated tangents is developed and used
throughout this work for the simultaneous solution
of governing equations. The computational model
is verified in comparison to analytical results in the
elastic and elastic-plastic states.

This paper represents an extension of the previ-
ous studies in theoretical analysis of elastic-plastic
plane strain thermal stress problems to include von
Mises’ yield criterion and nonlinear isotropic strain
hardening. Von Mises’ yield criterion is known to
comply better with experimental observations, but
its use is essentially numerical because of its nonlin-
ear form. This numerical treatment allows the incor-
poration of nonlinear hardening laws to handle more
realistic elasto-plastic deformations. In this paper,
Swift’s hardening law is used. However, the model is
designed in such a way that any other hardening law
or polynomial strain-yield stress relations can eas-
ily be incorporated. The results presented in this
work were obtained by a comparatively easy proce-
dure based on a single nonlinear ordinary differential
equation, and thus they may also serve as a coun-
tercheck for purely numerical studies by the finite
element method.

Finally, it should be pointed out that the con-
sideration of temperature dependent material prop-
erties in thermal stress calculations results in more
dependable predictions (Orcan and Eraslan, 2001).
The success of the present model promises the incor-
poration of temperature dependent material proper-
ties in the near future.
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Gülgeç, M. and Orcan, Y., “On the Elastic-Plastic
Deformation of a Centrally Heated Cylinder Ex-
hibiting Linear Hardening”. Journal of Applied
Mathematics and Mechanics (ZAMM) 79, 493-498,
1999.

Hindmarsh, A.C., ODEPACK: A Systematized Col-
lection of ODE Solvers. In: Scientific Computing,
(Stepleman, R.S., ed.) North Holland, Amsterdam,
1983.

Orcan, Y. and Gamer, U., “Elastic-Plastic Defor-
mation of a Centrally Heated Cylinder”. Acta Me-
chanica 90, 61-80, 1991.

Orcan, Y., “Thermal Stresses in a Heat Generating
Elastic-Plastic Cylinder with Free Ends”. Interna-

tional Journal of Engineering Science 32, 883-898,
1994a.

Orcan, Y., “Residual Stresses and Secondary Plastic
Flow in a Heat Generating Elastic-Plastic Cylinder
with Free Ends”. International Journal of Engineer-
ing Science 33, 1689-1698, 1994b.

Orcan, Y. and Eraslan, A.N., “Thermal Stresses in
Elastic-Plastic Tubes with Temperature-Dependent
Mechanical and Thermal Properties”. Journal of
Thermal Stresses 24, 1097-1113, 2001.
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