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Abstract

An integrated approach to the design of an automatic control system for canals using a Linear Quadratic
Gaussian regulator based on recursive least squares estimation was developed. The one-dimensional partial
differential equations describing open channel flow (Saint-Venant) equations are linearized about an average
operating condition of the canal. The concept of optimal control theory is applied to drive a feedback
control algorithm for constant-level control of an irrigation canal. The performance of state observers
designed using the recursive least squares technique and the Kalman filtering technique is compared with
the results obtained using a full-state feedback controller. An example problem with a multi-pool irrigation
canal is considered for evaluating the techniques used to design an observer for the system. Considering
the computational complexity and accuracy of the results obtained, the recursive least squares technique is
found to be adequate for irrigation canals. In addition, the recursive least squares algorithm is simpler than
the Kalman technique and provides an attractive alternative to the Kalman filtering.
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Introduction

With increasing demand for food and competing use
within the water sector, the pressure is on irriga-
tion professionals to manage water efficiently. In re-
sponse to this, strategic decisions and interventions
need to be made on a continuous basis. These deci-
sions should cover the full spectrum of the irrigation
water supply system, from diversion and distribu-
tion to on-farm application down to the crop root
zone. Supply-oriented systems have not been able
to provide the needed flexibility in terms of water
quantity and timing to achieve improved crop yields
and water use efficiency. This calls for a demand de-
livery of water to the farmers in the command area
of an irrigation project. Demand delivery offers the
maximum flexibility and convenience to the water
user (Reddy, 1990). In a demand delivery schedule,
under constant level control, since the demands (dis-

turbances or flow rate changes) are not known in ad-
vance, the effect of the random disturbances on the
system variables must be measured and used in the
feedback loop to control the system. The variation in
the depths of flow is used in the closed loop (feedback
loop). During the last few decades, several control al-
gorithms have been developed to derive the relation-
ship between the deviations in the system variables
(flow depth and flow rate) and the change in gate
opening (gate-control algorithm). Linear quadratic
optimal control theory has been applied for deriving
closed-loop control algorithms for real-time control
of open irrigation canals (Reddy, 1999; Reddy et al.,
1999; Seatzu et al., 2000; Seatzu, 2002; Durdu, 2003;
Durdu, 2004). However, when lumped parameter
models are used to derive control algorithms for ir-
rigation canals, the number of state variables (flow
depths and flow rates) that must be used in the feed-
back loop is large. Consequently, it is costly to mea-
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sure flow depths and flow rates at several points in
a multi-pool irrigation canal. Therefore, to mini-
mize the cost of implementing feedback control algo-
rithms, the number of measurements per pool must
be kept to an absolute minimum. Since 1 or 2 flow
depths per pool are normally measured in practice, it
is preferable (and possible) to estimate values for the
state variables that are not measured. This is done
by using an observer. Reddy (1995) demonstrated
Kalman filtering for the estimation of state variables
in the control system. The objective of this paper
is to develop an LQG regulator using the recursive
least squares method and to demonstrate the perfor-
mance of this regulator in comparison to full-state
feedback and a Kalman filter based LQG regulator.

Basic Equations

The Saint-Venant equations, presented below, are
used to model flow in a canal
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in which Q = discharge, m3/s; A = the cross-
sectional area, m2; ql = lateral flow, m2/s; y = wa-
ter depth, m; t = time, s; x = longitudinal direction
along the channel, m; g = the acceleration due to
gravity, m2/s; So = canal bottom slope (m/m); and
Sf = frictional slope, m/m, and is defined as

Sf = Q|Q|/K2 (3)

in which K = hydraulic conveyance of canal =
AR2/3/n; R = hydraulic radius, m; and n = Man-
ning friction coefficient, s/m1/3. Lateral canals in
the main canal are usually scattered throughout the
length of the supply canal. The mathematical rep-
resentation of flow through these structures is given
as follows (Reddy, 1999):

ql = Cdblwl(2g(Z − Zl))1/2 for submerged flow
(4)

ql = Cdblwl(2g(Z −Es))1/2 for free flow (5)

in which ql = lateral discharge rate, m3/s; Cd = out-
let discharge coefficient; bl = width of outlet struc-
ture, m; wl = height of gate opening of outlet struc-
ture, m; Z= water surface elevation in the supply
canal, m; Zl = water surface elevation in the lat-
eral canal, m; and Es = sill elevation of the head
regulator, m. In the regulation of the main canal,
decisions regarding the opening of gates in response
to random changes in water withdrawal rates into
lateral canals are required to maintain the flow rate
into laterals close to the desired value. This is ac-
complished either by maintaining the depth of flow
in the immediate vicinity of the turnout structures
in the supply canal constant or by maintaining the
volume of water in the canal pools at the target value
(Reddy, 1999). When the latter option is used, the
outlets are often fitted with discharge rate regulators.
The water levels or the volumes of water stored in
the canal pools are regulated using a series of spa-
tially distributed gates (control elements). Hence,
irrigation canals are modeled as distributed control
systems. Therefore, in the solution of Eqs. (1) and
(2), additional boundary conditions are specified at
the control structures in terms of the flow continuity
and the gate discharge equations, which are given by
(Reddy, 1990)

Qi−1,N = Qgi = Qi,1 (continuity) (6)

Qgi = Cdibiui(2g(Zi−1,N − Zi,1))1/2 (gate discharge)
(7)

in which, Qi−1,N = flow rate through downstream
gate (or node N) of pool i − 1, m3/s; Qgi = flow
rate through upstream gate of pool i, m3/s; Qi,1 =
flow rate through upstream gate (or node 1) of pool
i, m3/s; Cdi = discharge coefficient of gate i; bi =
width of gate i, m; ui = opening of gate i, m; Zi−1,N

= water surface elevation at node N of pool i − 1,
m; Zi,1 = water surface elevation at node 1 of pool
i, m; and i = pool index (i = 0 refers to the up-
stream constant level reservoir). The Saint-Venant
open-channel equations, Eqs. (1) and (2), are lin-
earized about and average operating conditions of
the canal to apply the linear control theory concepts
to the problem. After applying a finite-difference ap-
proximation and the Taylor series expansions to Eqs.
(1) and (2), a set of linear, ordinary differential equa-
tions is obtained for the canal with control gates and
turnouts (Durdu, 2004)
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where δQ+
j and δz +

j = discharge and water-level in-
crements from time level n + 1 at node j; δQ j and
δzj = discharge and water-level increments from time
level n at node j; and A11, A′21, . . . . A12, A22 are the
coefficients of the continuity and momentum equa-
tions, respectively, computed with known values at
time level n. Similar equations are derived for chan-
nel segments that contain a gate structure, a weir
or some other type of hydraulic structure. From the
matrix form of Eqs. (8) and (9), the state of system
equation at any sampling interval k can be written
in a compact form as follows (Durdu, 2003)

ALδx(k + 1) = ARδx(k) + Bδu(k) + Cδq(k) (10)

where A = nxn system feedback matrix, B= nxm
control distribution matrix, C = pxn disturbance
matrix, δx(k) = nxn state vector, δu(k) = mxn con-
trol vector, ∆δq = variation in demands (or distur-
bances) at the turnouts, m2/s, n = number of depen-
dent (state) variables in the system, m = number of
controls (gates) in the canal, p = number of outlets
in the canal, and k = time increment, s. The ele-
ments of the matrices A, B, and C depend upon the
initial condition. The dimensions of the control dis-
tribution matrix, B, depend on the number of state
variables and the number of gates in the canal. The
dimensions of the disturbance matrix, C, depend on
the number of disturbances acting on the canal sys-
tem and the number of dependent state variables
(Malaterre, 1997). Equation (10) can be written in a
state-variable form along with the output equations
as follows

δx(k + 1) = Φδx(k) + Γδu(k) + Ψ δq(k) (11)

δy(k) = Hδx(k) (12)

where Φ = (AL)−1 ∗ AR , Γ = (AL)−1 ∗ B, and Ψ
= (AL)−1 ∗ C, δx(k) = nxn state vector, δy(k) =
rxn vector of output (measured variables), H = rxn
output matrix, and r = number of outputs. The ele-
ments of the matrices Φ, Γ, and Ψ depend upon the
canal parameters, the sampling interval, and the as-
sumed average operating condition of the canal. In
Eq. (11), the vector of state variables is defined as
follows

δx = (δQi,1, δZi,2, δQi,2, . . . δZi,N−1, δQi,N−1, δQi,N)
(13)

Full-State Feedback Regulator

The full-state feedback (Linear Quadratic Regulator
(LQR)) control problem is an optimization problem
in which the cost function, J , to be minimized is
given as follows

J =
K∞∑
i=1

[δxT (k)Qxnxnδx(k) + δuT (k)Rmxmδu(k)]

(14)

subject to the constraint that:

−δx(k + 1) + Φδx(k) + Γδu(k) = 0k = 0, . . . , K∞
(15)

where K∞= number of sampling intervals consid-
ered to derive the steady state controller; Qxnxn =
state cost weighting matrix; and Rmxm = control
cost weighting matrix. The matrices Qx and R are
symmetric, and to satisfy the non-negative definite
condition, they are usually selected to be diagonal
with all diagonal elements positive or zero. The first
term in Eq. (3) represents the penalty on the devia-
tion of the state variables from the average operating
(or target) condition, where the second term repre-
sents the cost of control. Equations (3) and (15)
constitute a constrained-minimization problem that
can be solved using the method of Lagrange multi-
pliers (Reddy, 1999). This produces a set of coupled
difference equations that must be solved recursively
backwards in time. In the optimal steady-state case,
the solution for change in gate opening, δu(k), is of
the same form as

δu(k) = −Kδx(k) (16)
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where K is given by

K = [R+ ΓTSΓ]−1ΓTSΦ (17)

S is a solution of the discrete algebraic Riccati
equation (DARE)

ΦTSΦ −ΦTSΓ[R + ΓTSΓ]−1ΓTSΦ +Qx = S
(18)

where R = RT > 0 and Qx = QxT = HTH ≥ 0.
The control law defined by Eq. (16) brings an ini-
tially disturbed system to an equilibrium condition
in the absence of any external disturbances acting on
the system. In the presence of these external distur-
bances, the system cannot be returned to the equilib-
rium condition using Eq. (16). An integral control,
in which the cumulative (or integrated) deviation of
a selected output variable is used in the feedback
control loop, is required to return the system to the
equilibrium condition in the presence of external dis-
turbances (Kwakernaak and Sivan, 1972). Integral
control is achieved by appending additional variables
of the following form to the system dynamic equation

−δxn(k + 1) = Dδx(k) + Γδxn(k) (19)

in which δxn =integral state variables; and D = in-
tegral feedback matrix. This produces a new control
law to the form (Reddy et al., 1992)

δu(k) = −Kδx(k)−Knδxn(k) (20)

The first term in Eq. (20) accounts for initial
disturbances, whereas the second term accounts for
external disturbances. Equation (20) predicts the
desired gate openings as a function of the measured
deviations in the values of the state variables (Reddy
et al. 1992). In this paper, the water surface eleva-
tion and flow rate were considered the state variables.
Given initial conditions [δx(0)], δu, and δq, Eq. (3)
can be solved for variations in flow depth and flow
rate as a function of time. If the system is really at
equilibrium [i.e. δx (0) = 0 at time t = 0] and there
is no change in the lateral withdrawal rates (distur-
bances), the system would continue to be at equilib-
rium forever and there is then no need for any control
action. Conversely, in the presence of disturbances
(known or random), the system would deviate from
the equilibrium condition (Reddy, 1990). The actual

condition of the system may be either above or below
the equilibrium condition, depending upon the sign
and magnitude of the disturbances. If the system de-
viates significantly from the equilibrium condition,
the discharge rates into the laterals will be differ-
ent (either more or less) from the desired values. In
canal operations, however, the main objective is to
keep these deviations to a minimum so that a nearly
constant rate of discharge is maintained through the
turnouts (Reddy et al., 1992).

Gaussian Regulator with Kalman Filtering

The Linear Quadratic Gaussian (LQG) theory pro-
vides an integrated knowledge base for the devel-
opment of a flexible controller (Figure 1). Since it
is expensive to measure all the state variables (flow
rates and flow depths) in a canal system, the num-
ber of measurements per pool must be kept to an
absolute minimum. Usually the flow depths at the
upstream and downstream ends of each pool are mea-
sured. The relationship between the state variables
and the measured (or output) variables is

δy(k) = Hδx(k) + η(k) (21)

where η(k) is measurement error inputs. For a
steady-state Kalman filter, the observer gain matrix,
L, is calculated as follows

L = PHT [HPHT + RC]−1 (22)

where P is the covariance of estimation uncertainty

ΦTPΦ− ΦP HT [RC+HTPH ]−1HPΦT +Qesti=P
(23)

where RC = RC T > 0 is a tolerance value for the RC
covariance matrix, which is an identity matrix and
Qesti = QTesti ≥ 0 is a diagonal matrix. The dis-
turbances δq(k) and η(k), in Eqs. (11) and (21), are
assumed to be zero mean Gaussian white noise se-
quences with symmetric positive definite covariance
matrices Qesti and RC, respectively. Furthermore,
sequences δq(k) and η(k) are assumed to be statis-
tically independent. The system dynamic equation
is used to predict the state and estimation error co-
variance as follows: time update equations (Tewari,
2002)
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Figure 1. Linear Quadratic Gaussian (LQG) controller with a state estimator.

P−(k + 1) = ΦP (k)ΦT + ΨQestiΨT (24)

δx̂−(k + 1) = Φδx̂(k) + Γδu(k) (25)

in which δx̂(k) = estimated values of the state vari-
ables. As soon as measured values for the out-
put variables δy(k) are available, the time-update
values are corrected using the measurement update
equations as follows: measurement update equations
(Tewari, 2002)

L(k + 1) = P−(k + 1)HT [HP−(k + 1)HT + RC]−1

(26)

P (k + 1) = [I − L(k + 1)H ]P−(k + 1) (27)

δx̂(k + 1) = δx̂−(k + 1) + L(k + 1)[δy(k + 1)−

Hδx̂−(k + 1)]
(28)

If the initial conditions and the inputs (control
inputs and the disturbances) are known without er-
ror, the system dynamic equation, Eq. (2), can be
used to estimate the state variables that are not mea-
sured. Since parts of the disturbances are random
and usually are not measured, the canal parameters
are not known very accurately, and the estimated
values of the state variables would diverge from the
actual values. This divergence can be minimized
by utilizing the difference between measured output
and the estimated output (error signal), and by con-
stantly correcting the system model with the error
signal (Reddy, 1995). Therefore, the modified state
equations are given as

δx̂(k + 1) = Φδx̂(k) + Γδu(k) + L[δy(k) + Hδx̂(k)]
(29)

Gaussian Regulator with Recursive Least
Squares

This estimation technique is useful in identifying
time varying parameters and has been considerably
discussed in the literature. The optimal estimation
criterion for recursive weighted least squares is writ-
ten in the following form
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J =
k∑
j=1

β(k, j)εT (j)Λ−1(j)ε(j) (30)

where ε(j) = prediction error in vector form, and
β(k,j) = weighting function. The weighting function
is assumed to satisfy the following relationship

β(k, j) = λ(k)β(k − 1, j), 1 ≤ j ≤ k − 1, β(k, k) = 1
(31)

where λ is the weighting or forgetting factor. These
relations imply that

β(k, j) =
k

Π
ε=j+1

λ(i) (32)

The recursive estimation algorithm can be writ-
ten in a number of different equivalent forms. The
following form of the recursive least square algorithm
has many computational advantages (El-Hawary,
1989)

δx̂ = δx̂(k − 1) +K(k)r(k) (33)

in which r(k) is the innovations sequence defined by

r(k) = y(k) −H(k)δx̂(k − 1) (34)

The gain matrix K(k) is defined by

K(k) = P (k− 1)HT (k)Φ−1(k) (35)

where Φ(k) is defined by

Φ(k) = λ(k)Λ(k) + H(k)P (k − 1)HT (k) (36)

The equivalent of the state error covariance ma-
trix is given by

P (k) =
1

λ(k)
[1−K(k)H(k)]P (k − 1) (37)

The equations for the least squares method bear
many similarities to the Kalman filtering equations.
The differences between Kalman filtering and the
least squares method are: 1) in the predictor stage
of the Kalman filter, a prediction of the state based

on the previous optimal estimate is obtained by (El-
Hawary, 1989)

δx̂−(k) = Φ(k − 1)δx+(k − 1) (38)

whereas, in the least squares method, the transition
matrix is assumed to be unity and thus

δx̂−(k) = δx+(k) = δx(k) (39)

In addition, the error covariance matrix is ob-
tained by

P−(k) = Φ(k − 1)P+(k − 1)ΦT (k − 1) + ΓQesti(k − 1)ΓT

(40)

For the least squares method the matrix Qesti is
zero and the equivalent of Eq. (16) is given by

P−(k) = P+(k − 1) (41)

2) in the corrector stage of the Kalman filter, an
updated state estimate equation is obtained

δx̂+(k) = δx̂−(k) +K(k)r(k) (42)

in which r(k) is the innovation sequence and is given
by

r(k) = y(k) −Hδx−(k) (43)

Equations (12) and (13) of the least squares
method are the same as Eqs. (21) and (22). In addi-
tion, an update of the covariance matrix is obtained

P+(k) = (I −K(k)H(k))P−(k) (44)

This definition is similar to Eq. (16) except for
the division by λ(k). The Kalman gain matrix K is
given by

K(k) = P−(k)HT (k)Φ(k)−1 (45)

where

Φ(k) = R(k) + H(k)P−(k)HT (k) (46)
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Equation (24) is similar to Eq. (14), but Eq.
(25) differs from Eq. (15), since R(k) in Eq. (25)
is replaced by λ(k)Λ(k) in Eq. (15). In the least
squares method, one does not need the value of the
state-noise covariance matrix Qesti, and the mea-
surement error covariance matrix RC(k) is replaced
by the choice of the weighting function. The prob-
lem of defining the noise statistics manifested by the
Qesti and RC matrices of Kalman filtering can be
seen from references. The approaches for defining
Qesti and RC matrices involve a considerable com-
putational burden, which may be avoided by suitably
selecting the weighting function to suit the practical
application (El-Hawary, 1989). The choice of weight-
ing function β(k,j) controls the way in which each
measurement is incorporated relative to other mea-
surements. The choice should clearly be such that
measurements that are relevant to current system
properties are included. If one chooses to assign less
weight to older measurements such as in the case of
variable system parameters, then a popular choice is
given by

λ(i) = λ (47)

Therefore, Eq. (11) can be written as

β(k, j) =
k

Π
ε=j+1

λ = λk−j (48)

This is referred to as an Exponential Weighting
into the Past (EWP), with λ being a forgetting fac-
tor that shapes the estimator’s memory. Λ is chosen
to be slightly less than 1. A second possible choice
is such that the forgetting factor is time-varying and
in this case (El-Hawary, 1989)

β(k, j) = (αk)k−j (49)

where αk is defined by the first order discrete filter

αk = λ0αk−1 + (1− λ0)α (50)

Typically, α0= 0.95, λ0 = 0.99, and 0 < α < 1.
The forgetting factor starts at α0 and reaches a
steady state value of α (El-Hawary, 1989). For a
reasonably large k

λ(k) = αk−1 = λ0[λ(k − 1)− α] + α (51)

Ljung and Soderstrom (1983) take α to be unity.
The convergence of the filter is influenced by the
choice of the weighting function. Once the equations
of the optimal state feedback and the recursive least
squares method are obtained, and measured values
for one or more state variables for each pool are avail-
able, the dynamics of the linear system can be sim-
ulated for any arbitrarily selected values of external
disturbances. In this study, a multi-pool irrigation
canal was considered. The algorithm predicts the
flow rate, Q(x, t), and the depth of flow, y(x, t), given
the initial boundary conditions. The optimal state
feedback and the least squares equations were added
as subroutines to this algorithm. Given the initial
flow rate and the target depth at the downstream end
of the each pool, the algorithm computed the back-
water curve. Later on, the downstream flow require-
ment and the withdrawal rate into the lateral were
provided as a boundary condition. The model pre-
dicted the depths and flow rates at the nodal points
for the next time increment. The computed depths
at the upstream and downstream ends of each pool
were used with the least squares under constraints
to estimate the flow depths and flow rates at some
selected intermediate nodal points. These estimated
values were then used in the optimal state feedback
subroutine to compute the change in the upstream
gate opening in order to bring the depth at the down-
stream end of the pool close to the target depth.
When the estimated values of the state variables are
used in the feedback loop, the controller equation,
Eq. (16) becomes (Reddy, 1999)

δu(k) = −Kδx̂(k) −Klδxl(k) (52)

Equation (52) computes the desired change in
gate opening as a function of the estimated (instead
of measured) deviations in the state variables. Based
upon this gate opening, the new flow rate into the
pool at the upstream end was calculated and used
as the boundary condition at the upstream end of
the each pool. This process was repeated during the
entire simulation period.

Results and Analysis

To explore and compare the performance of the
Kalman estimator and recursive least squares
method, an LQG regulation problem for a discrete-
time multi-pool irrigation canal was simulated. The
data used in the simulation study are demonstrated
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in Table 1. These data were first used to calculate
the steady state values, which in turn were used to
compute the initial gate openings and the elements
of the Φ, Γ, and H matrices using a sampling in-
terval of 30 s. After computing steady state values,
the control algorithm formulates an LQG controller
with a Kalman filter and recursive least squares, re-
spectively. As a first part of the LQG controller,
a full-state feedback controller (assuming all state
variables are available) was designed to regulate the
6-pool canal system using a constant-level control
approach. The system response was simulated using
the controller in the feedback loop. In the deriva-
tion of the feedback gain matrix K, the control cost
weighting matrix, R, of dimension 6, was set equal
to 100, whereas the state cost weighting matrix, Qx,
was set equal to an identity matrix of dimension 85.
The matrix dimension 85 comes from the system di-
mension. Since the irrigation canal is divided into
49 nodes and each node has a set of 2 equations,
the dimension of the system should be equal to 98.
However, the system has 7 gates and 6 turnouts;
therefore, the system matrix dimensions numbered
85. The cost weighting matrix and the control cost
matrix must be symmetric and positive definite (i.e.
all eigenvalues of R and Qx must be positive real
numbers). A priori, we do not know what values of
Qx and R will produce the desired effect. In the
absence of a well-defined procedure for selecting the
elements of these matrices, these values are selected
based upon trial and error. At first, both Qx and
R as identity matrices were selected. By doing so,
it was specified that all state variables and control
inputs were equally important in the objective func-
tion, i.e. it was equally important to bring all the
deviations in the state variables (water surface ele-
vations and flow rate) and the deviations in the con-
trol inputs to zero while minimizing their overshoots.
Note that the existence of a unique, positive definite
solution to the algebraic Riccati equation (Eq. 18)
is guaranteed if Qx and R are positive semi-definite
and positive definite, respectively, and the system is
controllable. To test whether the system was con-
trollable, the system controllability matrix was cal-
culated and it was found that the system was control-
lable. In the derivation of the feedback gain matrix,
R was set equal to 100, whereas Qx was set equal to
an identity matrix of dimension 85 (the dimensions
of the system). After defining Qx and R matrices,
the optimal feedback gain matrix, K, was calculated.
Since measurement of all the state variables was ex-

pensive, the control algorithm first estimated state
variables using a Kalman filter. Next, the recursive
least squares method was employed to estimate the
values for the state variables in the algorithm. The
Kalman filter for the system used the control input
δu(k), generated by the optimal state feedback, mea-
sured water depths δy(k) for each pool, the distur-
bances noise δq(k), and measurement noise, η(k). In
the design of the Kalman filter, in lieu of actual field
data on withdrawal rates from the turnouts, the ran-
dom disturbances were assumed to have some pre-
specified levels of variance. The variances of the dis-
turbances, Qesti, were w1 = 12, w2 = 1.32, w3 = 0.72,
w4= 1.42, w5= 1.32, and w6 = 1.22. The actual time
series of the demands was not used in the design of
the filter; only the variance of the time-series was
required in the design of the filter. Usually the sen-
sors used to measure flow depths in an open-channel
are reasonably accurate to a fraction of a centimeter;
therefore, the variance of the measurement error is
usually very small. A value of 0.0005 was used for
the variance of the measurement matrix (RC ), and
this was an identity matrix. Using the given initial
values, the system response was simulated for 250
time increments or 7500 s. After designing the LQG
controller using a Kalman filter, the algorithm de-
signed a recursive least squares based on a defined
weighting factor (β). The analysis was started by
evaluating the system stability. All the eigenvalues
of the feedback matrix were positive and had val-
ues less than 1. The system was also found to be
both controllable and observable. In the derivation
of the control matrix elements, Γ, it was assumed
that both the upstream and downstream gates of
each reach could be manipulated to control the sys-
tem dynamics. The last pool’s downstream-end gate
position was frozen at the original steady state value,
and only the upstream gates of the given canal were
controlled to maintain the system at the equilibrium
condition. The effect of variations in the opening
of the downstream gate must be taken into account
through real-time feedback of the actual depths im-
mediately upstream and downstream of the down-
stream gate (node N). Figure 3 demonstrates the
variations in flow depths for each pool and for all 3
techniques. The variations in flow depths for recur-
sive least squares were compared to the variations in
flow depths computed using optimal state feedback
as well as a steady-state Kalman filter. Since pool 1
is the first pool of the irrigation canal, with an in-
crease in flow rate into the lateral (turnout) or down-
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stream demand, the depth of flow at the downstream
end of pool 1 decreased rapidly and approached a
maximum deviation of -0.157 m for least squares, -
0.15 m for optimal state feedback and -0.13 m for
the Kalman filter at approximately 2000 s from the
beginning of the disturbance period. By the end of
the simulation, the system returned very close to the
original equilibrium condition for all 3 techniques. In
pool 2, in the first 1700 s of the simulation, the flow
depth decreased dramatically and reached a maxi-
mum deviation of -0.144 m for optimal state feed-
back, -0.141 m for least squares and -0.118 m for the
Kalman filter. The variations in flow depth in pool 3
reached -0.162 m for least squares and -0.16 m for op-
timal state feedback and -0.127 for the Kalman filter
after around 1500 s of the simulations period. Pool
4 and pool 5 have less fluctuation in comparison to
the other pools. Pool 6 has the highest variations in
flow depth and the depth of flow at the downstream
end decreased rapidly and approached a maximum
deviation of -0.32 m for optimal state feedback, -0.28
m for least squares and -0.25 for the Kalman filter at
around 2000 s of the simulation period. The rapid
decreases in the downstream depth of flow in each
pool resulted in an attendant sudden increase in the
gate opening at the upstream end of each reach to
release more water into the pool. However, because
of the wave travel time, the depth of flow at the
downstream end did not start to rise until around
1700 s. In all the pools considered, the maximum
deviation in depth of flow occurred at the first and
last pools of the canal for all 3 design techniques.
To meet the downstream target depth, the last pool
had the highest fluctuations. The fluctuations in the
first pool were due to releasing more water into the

downstream pools and meeting the demand at the
downstream end. Figure 4 demonstrates the incre-
mental gate openings for each design technique (opti-
mal state feedback, Kalman filter and least squares)
and for each gate in the canal. The deviation in the
gate openings for recursive least squares was com-
pared with the deviation in gate opening computed
using optimal state feedback as well as the steady-
state Kalman filter. At the beginning, gate 1 had
sharp peaks for all 3 design techniques. Since opti-
mal state feedback has the best stability properties,
the state feedback curves will be the target loop. At
gate 1, incremental gate opening for recursive least
squares was closer to optimal state feedback (target
loop function) than were those for the Kalman filter.
After 6000 s, gate 1 reached an equilibrium position
for all 3 techniques. At gates 2, 3, 4, 5 and 6, in-
cremental gate opening values for the Kalman filter
were far away from the optimal state feedback values
in comparison to the least squares values. At the end
of the simulation, the variations in the gate openings
(for all gates) approached a constant value, indicat-
ing that a new equilibrium condition was established.
It is obvious from the figures that the variations in
flow depth and in gate openings for recursive least
squares are closer to the target loop function (opti-
mal state feedback) than are those for the Kalman
estimator. In other words, the recursive least squares
filter has better stability properties than the Kalman
filter in the control of irrigation canals. Moreover, in
the computation of estimation, one does not need to
find the disturbance covariance matrix, Qesti, and
measurement covariance matrix, RC. Therefore, a
computational burden may be avoided by selecting
the appropriate weighting function.

Pool 1
Pool 2

Pool  3
Pool  4

Pool  5

Gate 1
Gate 2

Gate 3
Gate 4

Gate 5
Gate 6

Supply
Reservoir

Pool  6

52,500  m

Gate 7

downstream
Q=5 m3/s

Figure 2. Schematic of multi-pool irrigation canal.
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Figure 3. Comparison of flow depth variations for a full-state feedback regulator using Kalman filtering and a regulator
using recursive least squares.
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Figure 4. Comparison of incremental gate openings for a full-state feedback regulator using Kalman filtering and a
regulator using recursive least squares.
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Table 1. Data used in the simulation study.

parameter pool 1 pool 2 pool 3 pool 4 pool 5 pool 6
length, m 9000 9000 9000 9000 9000 9000
width, m 5 5 5 5 5 5

bottom slope 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
side slope 1.5 1.5 1.5 1.5 1.5 1.5

initial lateral flow depth, m3/s 2.5 2.5 2.5 2.5 2.5 2.5
initial downstream depth, m 4 3.2 2.86 2.5 2.12 1.81

parameter gate 1 gate 2 gate 3 gate 4 gate 5 gate 6
width, m 5 5 5 5 5 5

discharge coefficient 0.8 0.8 0.8 0.8 0.8 0.8
initial opening, m 1.13 1.37 1.16 0.97 0.85 0.63
disturbances, m3/s 2.5 2.5 2.5 2.5 2.5 2.5

Conclusions

In this paper, recursive least squares estimation has
been employed in the control of multi-pool irrigation
canals to estimate the state variables (flow depth and
flow rate) at intermediate nodes based on the mea-
sured variables. The performance of the recursive
least squares was compared to the performance of
the optimal state feedback and the Kalman filter in
terms of variations in the depths of flow and the up-
stream gate opening. Since the full-state feedback
(assuming all state variables are measured) has the

best robustness and stability properties, it was cho-
sen as a target loop function. The results obtained
from simulations indicate that the least squares al-
gorithm provides good stability and performance in
the control of irrigation canals. The algorithm is sim-
pler than Kalman filtering in terms of the knowledge
of covariance matrices required and provides an at-
tractive alternative to Kalman filtering. Overall, the
performance of the recursive least squares technique
for constant-level control was better than the perfor-
mance of the Kalman filter.
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