
Turkish J. Eng. Env. Sci.
29 (2005) , 185 – 193.
c© TÜBİTAK
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Abstract

The investigation of the stability behavior of slender columns with cracks is an important problem
and finds applications in structural, mechanical and aerospace engineering. This study investigates the
buckling of slender prismatic columns with a single nonpropagating edge crack subjected to concentrated
vertical loads. The transfer matrix method and fundamental solutions of intact columns (columns without
any cracks) are combined for determining the buckling loads of cracked columns. The cracked section is
modeled by a massless rotational spring whose flexibility depends on the local flexibility induced by the
crack. Eigenvalue equations are obtained explicitly for columns with various end conditions, from second
order determinants. Numerical examples show that the effects of a crack on the buckling load of a column
depend on the depth and the location of the crack. As expected, buckling load decreases conspicuously
as the crack depth increases. For a constant crack depth, a crack located in the section of the maximum
bending moment causes the largest decrease in the buckling load. On the other hand, if the crack is located
just in the inflexion point at the corresponding intact column, it has no effect on the buckling load. The
study showed that the transfer matrix method is a simple and efficient method with which to analyze cracked
columns.
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Introduction

Stability represents one of the main problems in solid
mechanics, and must be controlled to ensure the
safety of structures against collapse. It has a cru-
cial importance, especially for structural, aerospace,
mechanical, nuclear, offshore and ocean engineering
(Bažant and Cedolin, 1991; Bažant, 2000).

In classical stability analysis, an elastic column
is said to be stable if for any arbitrarily small dis-
placement from its equilibrium position the column
either returns to its original undisturbed position or
acquires an adjoined stable position when left to it-
self (Aristizábal-Ochoa, 2004). Buckling is one of
the fundamental forms of instability of column struc-
tures. Buckling of a column is defined as the change

of its equilibrium state from one configuration to an-
other at a critical compressive load. The concept
of the critical load of an elastic column was intro-
duced by Euler in 1744. The solutions for the elas-
tic buckling analysis of columns under various load-
ing, restraint and boundary conditions are well doc-
umented in the literature (Timoshenko and Gere,
1961; Handbook of Structural Stability, 1971).

Columns and compression members may con-
tain various imperfections. For example, columns
may be subjected to unintended small lateral loads,
they may be initially curved rather than perfectly
straight, the axial load may be slightly eccentric,
or disturbing moments and shear forces may be ap-
plied at column ends. Unlike beams subjected to
transverse loads and small axial forces, columns are
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quite sensitive to imperfections (Bažant and Cedolin,
1991). Imperfections have been recognized for a long
time and their effects on structural stability have
been well investigated. Columns and other struc-
tural elements may also have real damage such as
cracks. The cracks may develop from flaws due to
applied cyclic loads, mechanical vibrations, aerody-
namic loads etc. (Kishen and Kumar, 2004). It is
obvious that cracks lower structural integrity and
should be certainly taken into account in the sta-
bility, safety and vibration analyses of structures.

The study of the stability behavior of cracked
columns is an important problem and finds applica-
tions in structural, mechanical and aerospace engi-
neering. Research performed to date on the stability
of cracked columns lags far behind that performed on
uncracked ones. Here, some previous studies directly
related to the present study are briefly reviewed.

Liebowitz et al. (1967) carried out experimental
studies on the axial load carrying capacity of notched
and unnotched columns. For notched columns,
Liebowitz and Claus (1968) proposed a theoretical
failure criterion based on the stress intensity fac-
tor and fracture toughness. Okamura et al. (1969)
identified the compliance of a cracked column to a
bending moment to study the load carrying capacity
and fracture load of a slender column with a single
crack. The buckling of cracked columns subjected
to follower and vertical loads was investigated by
Anifantis and Dimarogonas (1983). Nikpour (1990)
studied the buckling of cracked composite columns.
Li (2001) investigated the buckling of multi-step
columns with an arbitrary number of cracks, taking
into account the effects of shear deformations.

In this paper, using the transfer matrix
method and fundamental solutions of intact columns
(columns without any cracks), buckling analysis of
slender prismatic columns of rectangular cross sec-
tion, with a single nonpropagating edge crack, is per-
formed. The transfer matrix method is an efficient
and attractive tool for the solution of the eigenvalue
problem for 1-dimensional structures with nonuni-
form mechanical properties. The cracked section is
replaced with a massless rotational spring whose flex-
ibility is a function of the crack depth and the height
of the cross section of the column. Utilizing this
procedure, the eigenvalue equations (buckling con-
ditions) for the buckling of such columns with any
2 end conditions can be obtained from a system of
2 linear equations. For the common end conditions,

namely fixed-free, pinned-pinned, fixed-pinned and
fixed-fixed, eigenvalue equations are obtained explic-
itly. Taking 2 example columns, these equations are
solved and their smallest roots, which are the buck-
ling loads of the columns, are determined. Moreover,
the effects of the crack depth and location are inves-
tigated and the results are given in figures.

Problem Formulation and Governing Equa-
tions

A slender prismatic column with a rectangular cross
section and having a nonpropagating edge crack is
shown in Figure 1(a). The mathematical model of
the column is shown in Figure 1(b), in which after
the local flexibility caused by the crack is considered,
the cracked section is represented by a massless ro-
tational spring with flexibility C. This quantity is a
function of the crack depth and height of the cross
section of the column and can be written as (Shifrin
and Ruotolo, 1999)

C = 5.346 hf(ξ) (1)

where h is the height of the cross section of the col-
umn and ξ = a/h, where a is the depth of the crack,
as seen in Figure 1(a). f(ξ) is called the local flex-
ibility function and is given by Shifrin and Ruotolo
(1999)

f (ξ) = 1.8624ξ2− 3.95ξ3 + 16.375ξ4

−37.226ξ5 + 76.81ξ6 − 126.9ξ7 + 172ξ8

−143.97ξ9 + 66.56ξ10

(2)

It can be seen from Figure 1(b) that the column is
divided into 2 segments, segment 1 (0 ≤ x ≤ xc) and
segment 2 (xc ≤ x ≤ L), by the rotational spring.

The differential equation for buckling of segment
1 can be written as (Timoshenko and Gere, 1961)

d4y1

dx4
+ k2 d

2y1

dx2
= 0 (3)

where k2 = P /EI, and P and EI are the axial com-
pressive force and the flexural rigidity, respectively.
In this case, the relationships among the displace-
ment, slope, bending moment and shear force are
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a

Figure 1. (a) A slender column with a nonpropagating edge crack, (b) Its mathematical model.

θ1(x) =
dy1

dx

M1(x) = −EI d
2y1

dx2

V1(x) =
dM1

dx
− P dy1

dx


(4)

The general solution of Eq. (3) is given by

y1(x) = A1 + A2x+ A3 sin(kx) +A4 cos(kx) (5)

Using Eqs. (4) and (5), the following relationship
can be written:



y1(x)

θ1(x)

M1(x)

V1(x)


= [B(x)]



A1

A2

A3

A4


(6)

where

[B(x)] =



1 x sin(kx) cos(kx)

0 1 k cos(kx) −k sin(kx)

0 0 P sin(kx) P cos(kx)

0 −P 0 0


(7)

The relationship between the parameters written
above at the 2 ends of segment 1 can be expressed
as



y1(xc)

θ1(xc)

M1(xc)

V1(xc)


= [T1]



y1(0)

θ1(0)

M1(0)

V1(0)


(8)

in which

[T1] = [B(xc)][B(0)]−1 (9)

[T1] is called the transfer matrix for segment 1,
because this matrix transfers the parameters at the
upper end (x = 0) to those at the lower end (x = xc)
of segment 1.

There is continuity among the displacements,
bending moments and shear forces, at the boundary
of segment 1 and segment 2, but there is a discon-
tinuity between slopes at this point, caused by the
bending moment and rotation of the spring repre-
senting the cracked section (Figure 2),

y1(xc) = y2(xc)

y′′1 (xc) = y′′2 (xc)

y′′′1 (xc) = y′′′2 (xc)


(10a)
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θ2(xc) − θ1(xc) = y′2(xc) − y′1(xc)

= ∆θ(xc) = Cy′′1 (xc) = −CM1(xc)
EI

(10b)

Equation (10b) is written by imposing equilib-
rium between the transmitted bending moment and
the rotation of the spring.

Figure 2. Continuity of displacements, bending moments
and shear forces, discontinuity of slopes at the
rotational spring.

Equations (10a) and (10b) can be written in ma-
trix form as



y2(xc)

θ2(xc)

M2(xc)

V2(xc)


=



1 0 0 0

0 1 − C
EI 0

0 0 1 0

0 0 0 1





y1(xc)

θ1(xc)

M1(xc)

V1(xc)


(11)

Substitution of Eq. (8) into Eq. (11) yields



y2(xc)

θ2(xc)

M2(xc)

V2(xc)


= [T1C]



y1(0)

θ1(0)

M1(0)

V1(0)


(12)

in which

[T1C ] =



1 0 0 0

0 1 − C
EI 0

0 0 1 0

0 0 0 1


[T1] (13)

The equation for segment 2 can be obtained by
using Eqs. (12) and (8)



y2(L)

θ2(L)

M2(L)

V2(L)


= [T2]



y2(xc)

θ2(xc)

M2(xc)

V2(xc)



= [T2] [T1C ]



y1(0)

θ1(0)

M1(0)

V1(0)


= [T ]



y1(0)

θ1(0)

M1(0)

V1(0)


(14)

in which

[T ] = [T2] [T1C] (15)

The matrix [T ] has the following form:

[T ] =



T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


(16)

Eigenvalue Equations and Eigenvalues

The eigenvalue equations can be established by using
Eq. (14) and the end conditions as follows:

(a) Fixed-free ended column: for this case Eq.
(14) becomes
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0

0

M2(L)

V2(L)


=



T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44





y1(0)

θ1(0)

0

0


(17a)

Equation (17a) reduces to the following form:

 0

0

 =

 T11 T12

T21 T22

 y1(0)

θ1(0)

 (17b)

For a nontrivial solution, by setting the determi-
nant of the matrix in Eq. (17b) equal to zero, one
obtains

T11T22 − T12T21 = 0 (18)

It can be seen that the eigenvalue equation is ob-
tained from a second order determinant.

Following the same procedure, the eigenvalue
equations for other boundary conditions are obtained
as

(b) Pinned-pinned column,

T12T34 − T14T32 = 0 (19)

(c) Fixed-pinned column,

T12T24 − T14T22 = 0 (20)

(d) Fixed-fixed column,

T13T24 − T14T23 = 0 (21)

After determining the elements Tij of the matrix
[T ] and then using Eqs. (18), (19), (20) and (21), the
eigenvalue equations are obtained in explicit form as

(a) Fixed-free ended column,

cos(kL) −Ck sin(βkL) cos [(1− β)kL] = 0 (22)

(b) Pinned-pinned column,

sin(kL) −Ck sin(βkL) sin [(1− β)kL] = 0 (23)

(c) Fixed-pinned column,

[(kL) cos(kL) − sin(kL)] + Ck sin(βkL)

{sin [(1− β)kL]− (kL) cos [(1− β)kL]} = 0
(24)

(d) Fixed-fixed column,

4 sin(kL/2)[sin(kL/2)− (kL/2) cos(kL/2)]+

Ck{sin(kL)− (kL) cos(βkL) cos [(1− β)kL]} = 0
(25)

In Eqs. (22) to (25) β = xc/L (Figure 1(a)) and
k2 = P /EI as stated earlier. By using any of a
number of root-finder algorithms, the roots (eigen-
values) of the above transcendental equations can be
obtained.

It must be noted that, by setting C = 0 in the
above equations, one obtains the buckling condi-
tions, i.e. eigenvalue equations, of the corresponding
intact columns.

Numerical Examples and Discussion

In the first part of this section, 2 specimen columns
are considered to analyze the effects of cracks on the
critical buckling loads of the columns.

Example 1. As a first example, a fixed-free ended
column shown in Figure 3(a) is considered. For the
column, the following data are taken: h = b = 20
cm, L = 3 m, E = 2 × 106 N/cm2, a = 0.3 h = 6
cm and xc = 0.7 L = 2.10 m. Consequently ξ and β
become ξ = a/h = 0.3 and β = xc/L = 0.7, respec-
tively. Using Eq. (2) f(ξ) = f(0.30) = 0.14023 is
obtained and then Eq. (1) provides a C = 0.149934
m value. Substituting the values of L, β and C into
Eq. (22), the following equation is obtained:

cos(3k)− (0.149934k) sin(2.1k) cos(0.9k) = 0 (26)

Solving this eigenvalue equation gives k =
0.503861. Remembering that k2 = Pcr/EI, then the
critical buckling load of this column is calculated as
Pcr,(1) = k2EI = 0.253876EI. The Euler buckling
load for the intact column is PE = π2EI /(2 × 3)2

= 0.274155EI. It is calculated that Pcr,(1) is 7.4%
smaller than PE , i.e. this crack, which has specified
properties in the above, causes a reduction of 7.4%
in the buckling load of the column.
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Figure 3. Columns considered as numerical examples; (a) Fixed-free ended column, (b) Pinned-pinned column.

If the depth of the crack is increased to a = 0.45
h = 9 cm from 0.3 h = 6 cm, then following the
same steps, the critical buckling load is calculated as
Pcr,(2) = 0.22625EI. This value is 10.88% and 17.47%
smaller than Pcr,(1) and PE , respectively. It is seen
that a greater crack depth causes more reduction in
the critical buckling load, as expected.

If the location of the crack is shifted to xc = 0.95
L = 2.85 m from xc = 0.7 L = 2.10 m, then the buck-
ling load is obtained as Pcr,(3) = 0.24898EI, which is
1.93% and 9.18% smaller than Pcr,(1) and PE, re-
spectively. This result shows that, for a fixed-free
ended column, a crack nearer to the fixed end causes
a greater reduction in the critical buckling load, and
is therefore more critical in the stability behavior of
the column.

Example 2. As a second example, a pinned-
pinned column depicted in Figure 3(b) is considered.
For this column, the following data are taken: h =
15 cm, b = 20 cm, L = 4.5 m, E = 2 × 106 N/cm2,
a = 0.25 h = 3.75 cm and xc = 0.5 L = 2.25 m.
Therefore, ξ and β become 0.25 and 0.5, respectively.
Equation (1) gives f(0.25) = 0.095438 and then Eq.
(1) yields a C = 0.076532 m value. Substitution of
the values of L, β and C into Eq. (23) gives the
following equation:

sin(4.5k)− (0.076532k) sin2(2.25k) = 0 (27)

The first root of this eigenvalue equation is k =
0.686459. Therefore, the critical buckling load is
Pcr,(1) = k2EI = 0.471226EI. The Euler buckling
load for the intact column is PE = π2EI /(4.5)2 =
0.487388EI. Pcr,(1) is 3.32% smaller than PE, i.e. the
crack causes a 3.32% reduction in the buckling load
of the column.

If the depth of the crack is increased to a = 0.5
h = 7.5 cm from 0.25 h = 3.75 cm, then the critical
buckling load becomes Pcr,(2) = 0.411745EI, which is
12.62% and 15.52% smaller than Pcr,(1) and PE , re-
spectively. It is again seen that a deeper crack causes
more reduction in the buckling load.

When the location of the crack is changed to
xc = 0.85 L = 3.825 m from xc = 0.5 L = 2.25
m, then the buckling load is obtained as Pcr,(3) =
0.483937EI. Pcr,(3) is 2.63% greater than Pcr,(1) and
0.71% smaller than PE , respectively. This result
shows that, for a pinned-pinned column, a crack
nearer to the mid-length of the column causes a
greater reduction in the critical buckling load, and
is therefore more critical in the stability behavior of
the column.
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In the second part of this section, in order to
see more clearly the effects of the crack depth (a =
ξh) and the location (xc = βL), 4 compression rods
having fixed-free, pinned-pinned, fixed-pinned and
fixed-fixed support conditions are considered. The
rods have the same cross-sectional dimensions of h
= b = 0.03 m, but different lengths of 0.65 m, 1.30
m, 1.85 m and 2.60 m, respectively. With these geo-

metric properties, all rods buckle in the elastic range.
For these rods, the first critical buckling load to the
Euler buckling load ratio (Pcr/PE) versus crack loca-
tion parameter (β = xc/L) curves, corresponding to
the 0.15, 0.35 and 0.50 values of the crack depth pa-
rameter (ξ = a/h), are drawn and shown in Figures
4(a) to (d).

Figure 4. Variation of the first critical buckling load to the Euler buckling load ratio (Pcr/PE) depending on the di-
mensionless crack depth (ξ) and the dimensionless crack location (β); (a) Fixed-free, (b) Pinned-pinned, (c)
Fixed-pinned and (d) Fixed-fixed supported rods.
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It is evident from the figures that for all rods,
when the crack depth and thus crack depth parame-
ter increases, the buckling load and thus the Pcr/PE
ratio decrease. This is an expected result. The
largest decrease is in the fixed-free ended rod, with a
decrease of 20.50% (Pcr/PE = 0.795), and the small-
est decrease occurs in the fixed-fixed rod, with a de-
crease of 5.84% (Pcr/PE = 0.9416).

The crack location has different effects depending
on the end conditions. For a constant crack depth, in
a fixed-free ended rod, a crack at the fixed end causes
the largest decrease in the buckling load, while in a
pinned-pinned rod a crack located at mid-length has
the largest effect. In a pinned-pinned rod, when the
crack shifts towards any of the supports, its effect
diminishes. For fixed-pinned and fixed-fixed rods a
crack at xc = 0.35 L and xc = 0.50 L, respectively,
causes the largest reduction in the buckling load. As
is well known from fracture mechanics and strength
of materials, strain energy stored in an elastic body
under a bending effect is directly related to the mag-
nitude of the bending moments. Therefore, as the
calculated results show, for all rod types, a crack lo-
cated in the section of maximum bending moments
of the corresponding intact rods causes maximum
energy losses and consequently the largest decrease
in the buckling loads. Naturally, a crack located in
the inflexion points (moment zero points) of the cor-
responding intact rods has no effect on the critical
buckling load.

Conclusions

Buckling analysis of slender prismatic columns with
a single nonpropagating open edge crack subjected
to axial loads has been presented and the following
conclusions are drawn:

1) The transfer matrix method is a simple and
efficient method with which to analyze the buckling
of cracked columns with various support conditions.
The eigenvalue equations of cracked columns can be
easily established from a system of 2 linear equations.

2) Using the derived eigenvalue equations (buck-
ling conditions) in explicit form, one can readily ob-
tain the buckling loads of slender prismatic columns
with a single nonpropagating open edge crack or
notch.

3) The effects of a crack on the buckling load of
a column depend on the depth and the location of
the crack.

4) In columns under axial compression, the effect
of a crack is to decrease the buckling load. As ex-
pected, the load carrying capacity decreases as the
crack depth increases. On the other hand, the ef-
fect of crack location depends on the end conditions
of the columns. Generally, a crack located in the
section of maximum bending moments causes the
largest decrease in the buckling loads. If a crack is
located just in the inflexion points of the correspond-
ing intact columns, it has no effect on the buckling
load.

5) The analysis of the present study is mainly
for columns having only 1 crack. However, exten-
sion to columns with multiple cracks can be carried
out trivially by modeling each cracked section with
a rotational spring. Other possible extensions of the
present analysis are the inclusion of elastic support
conditions and non-prismatic columns, as well as the
propagation of cracks, which are left for future stud-
ies.

Nomenclature

Ai constants
a depth of the crack
b width of the cross section
C flexibility of rotational spring
E modulus of elasticity
EI flexural rigidity
f(ξ) local flexibility function
h height of the cross section
I second moment of area of the cross section
L length of the column
M bending moment
P concentrated axial compressive force
Pcr critical buckling load
PE Euler buckling load
[T1] transfer matrix
V shear force
x axial coordinate
xc axial coordinate of the cracked section
y displacement
β dimensionless crack location parameter
θ slope
ξ dimensionless depth of the crack
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GÜREL, KISA

References

Anifantis, N. and Dimarogonas, A., “Stability of
Columns with a Single Crack Subjected to Follower
and Vertical Loads”, International Journal of Solids
and Structures, 19(4), 281-291, 1983.
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Bažant, Z.P. and Cedolin, L., Stability of Structures:
Elastic, Inelastic, Fracture and Damage Theories,
Oxford University Press. New York, 1991.

Handbook of Structural Stability. Corona: (Tokyo,
Japan) Column Research Committee of Japan,
1971.

Kishen, J.M.C. and Kumar, A., “Finite Element
Analysis for Fracture Behavior of Cracked Beam-
Columns”, Finite Elements in Analysis and Design,
40, 1773-1789, 2004.

Li, Q.S., “Buckling of Multi-Step Cracked Columns
with Shear Deformation”, Engineering Structures,
23, 356-364, 2001.

Liebowitz, H., Vanderveldt, H. and Harris, D.W.
“Carrying Capacity of Notched Columns”, Interna-
tional Journal of Solids and Structures, 3, 489-500,
1967.

Liebowitz, H. and Claus Jr, W.D., “Failure of
Notched Columns”, Engineering Fracture Mechan-
ics, 1, 379-383, 1968.

Nikpour, K., “Buckling of Cracked Composite
Columns”, International Journal of Solids and
Structures, 26(12), 1371-1386, 1990.

Okamura, H., Liu, H.W. and Chu, C.S., “A Cracked
Column under Compression”, Engineering Fracture
Mechanics, 1, 547-564, 1969.

Shifrin, E.I. and Ruotolo, R., “Natural Frequencies
of a Beam with an Arbitrary Number of Cracks”,
Journal of Sound and Vibration, 222(3), 409-423,
1999.

Timoshenko, S.P. and Gere, J.M., Theory of Elastic
Stability, McGraw-Hill. New York, 1961.

193


