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Fuzzy Optimization of Geometrical Nonlinear Space Truss Design
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Received 10.01.2005

Abstract

This paper presents a general algorithm for nonlinear space truss system optimization with fuzzy con-
straints and fuzzy parameters. The analysis of the space truss system is performed with the ANSYS pro-
gram. The algorithm of multiobjective fuzzy optimization techniques was formed with ANSYS parametric
dimensional language. In the formulation of the design problem, weight and minimum displacement are
considered the objective functions. Three design examples are presented to demonstrate the application of
the algorithm.
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Introduction

As the mathematical representation of everyday lan-
guage, fuzzy set theory was first introduced by Zadeh
(1965). The theory and methods of fuzzy program-
ming have been developed. The primary works of
fuzzy mathematical programming have been pre-
sented by Zimmermann (1978, 1983). Since then,
several papers have appeared on linear fuzzy mem-
bership (Rao, 1987; Jung et al., 1996; Eshwar et
al., 2004) and nonlinear fuzzy membership function
(Dhingra et al., 1992; Kim, 1994; Shih, 2003) for
structural optimization, used to represent the fuzzy
nature of failure. This paper deals with the appli-
cation of the nonlinear fuzzy membership function
model to space truss system design problems.

An optimization problem is generally recognized
to be nondeterministic as well as fuzzy in nature and
the nondeterministic condition is not only in the de-
sign variables, it can also be in the allowable lim-
its. One can use the expected value and the chance
constrained programming technique (Rao, 1980) to
transform the stochastic problem into its determin-

istic form. Thus we can substitute this form in the
fuzzy mathematical formulation.

Many modeling, design, control and decision-
making problems can be formulated in terms of
mathematical optimization. The classical framework
for the optimization is the minimization (or max-
imization) of the objectives, given the constraints
for the problems to be solved. Many design prob-
lems, however, are characterized by multiple objec-
tives. The first note on multicriterion optimization
was by Rao; since then the determination of the com-
promise set of a multiobjective problem has become
known as fuzzy optimization (Rao, 1987; Rao et al.,
1992; Chen et al., 2000).

In this paper, an algorithm is developed for the
multiobjective fuzzy optimum design of space trusses
that takes into account geometrical nonlinearities.
The optimum design algorithm developed is obtained
by coupling nonlinear analysis techniques with fuzzy
sets and fuzzy parameters. In the design a mul-
tiobjective fuzzy optimal decision is used. Objec-
tive functions, volume of the minimum weight and
minimum displacement are considered in the numer-
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ical examples. The volume of construction weight,
displacement, geometrical property, cross-sectional a
reas, membership degrees, and upper and lower limit
values of the stress elements are used as constraints.
This paper shows that multiobjective λ formulation
of fuzzy engineering systems can be used for opti-
mum design.

Multiobjective Fuzzy Optimization Method
Developed by ANSYS Programming

Fuzzy optimization

A fuzzy nonlinear programming problem associates
fuzzy input data with fuzzy membership functions.
A fuzzy nonlinear programming model assumes that
objectives and constraints in an imprecise and uncer-
tain situation can be represented by fuzzy sets. The
fuzzy objective function can be maximized or mini-
mized. In fuzzy nonlinear programming the fuzziness
of available resources is characterized by the mem-
bership functions over the tolerance range. In the
present study objective functions are considered as
fuzzy sets and inflows are considered in the form of
chance constraints.

Fuzzy approach for multiobjective optimiza-
tion

One can define a multiobjective fuzzy vector f(x)
dependent in the design variable vector xas follows:

minf(x) = {f1(x), f2(x), ..., fk(x)}T (1)

subject to the design constraints:

g(x) ≤ bu
j , j = 1, 2, ...,m− 1 (2)

g(x) ≥ bl
j, j = m, ..., p, (3)

where the wave symbols indicate that the constraints
contain fuzzy information, and bl

j and bu
j are the al-

lowable upper and lower limits of the jth constraint,
respectively.

The membership function µj(x) of the fuzzy al-
lowable interval may be characterized as shown in
Figure 1, where bl

j and bu
j are respectively the lower

and upper limits of the allowable interval for the
highest design level. These may even be more strict
than the specification codes. dl

j and du
j are the

lengths of the transition stages, namely the permis-
sible deviations or tolerances for the lower and upper
limits.

g(x) ≤ bu
j + du

j , j = 1, 2, ..., m− 1 (4)

g(x) ≥ bl
j − dl

j, j = m, ..., p (5)
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Figure 1. Nonlinear membership functions.

A membership µfi function corresponding to
each design objective is constructed by the follow-
ing:

µfi(x) =




0, if fi(x) > fmax
i

λi, if fmin
i < fi(x) ≤ fmax

i

1, if fi(x) ≤ fmin
i

(6)

The minimum and maximum possible values of
the design criteria in the continuous space are repre-
sented as fmin

i and fmax
i respectively. The maximum

value of λ makes the fuzzy decision maximum.

λi = [fmax
i − fi(x)]/[f

max
i − fmin

i ] i = 1, 2, ..., k
(7)

The Mathematical Models of Three Fuzzy
Approaches

1-Method of the product operator

This is assumed to correspond to the logical “and”.
The mathematical formulation is expressed as

maxf(x) =
k∏

i=1

µfi(x) (8)

subject to Eqs. (2) and (3). The “maximum satis-
faction” can be achieved by solving this model.
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2-Method of the addition operator

This is simply maximizes the sum of the membership
function of design objectives. The mathematical for-
mulation is represented as

max f(x) =
k∑

i=1

µfi(x) (9)

and Eqs. (2) and (3).

3-Method of the min operator

The maximum value of λi in Eq. (7) makes the fuzzy
decision maximum. The decision can be defined as
the intersection of the fuzzy sets describing the con-
straints and the objective functions. The mathemat-
ical expression is

maxf(x) = λi (10)

subject to

λi ≤ µfi(x), i = 1, 2..., k (11)

The maximum degree of “overall satisfaction”
can be achieved by maximizing a scalar λi. By us-
ing any of the above transformations, a multiobjec-
tive problem is easily converted to a single objective
problem.

General objective fuzzy optimization algo-
rithm

An algorithm that achieves optimum design of geo-
metrical nonlinear space truss systems by the AN-
SYS program was written. Fuzzy sets are added
to the algorithm developed and multiobjective fuzzy
optimization of nonlinear space truss systems is re-
alized.

The steps of the ANSYS based algorithm are
given below:

Step 1. Geometrical nonlinear analysis is cho-
sen by entering the initial cross-section. The elas-
ticity modulus of the group and elements, and the
coordinates of nodes of the bars are written.

Step 2. Analysis type is determined as static
and the freedom degree of the nodes and external
vectors at the nodes are written.

Step 3. The volume of the structure and maxi-
mum and minimum values of the displacements ob-
tained with respect to the upper limits of the cross

sections by classical optimization are written from
Eq. (6). Then axial displacements are arranged at
the free points or nodes of the system and maximum
and minimum values of the displacements and struc-
ture volume are entered into Eq. (7); thus the equa-
tions of λ1 and λ2 membership functions are formed
(set up). Finally, λ value conditions, which ensure
the equivalency of these equations, are written.

Step 4. The upper and lower limits of the state
variables and fuzzy dimensioning variables are writ-
ten. λ1 and λ2, the membership degrees, are defined
as constraints of the objective functions as the state
variables. Equating these parameters, and finding
many λ parameters, it is possible to achieve the op-
timum fuzzy decision.

Numerical Examples

Design of 9-bar space truss

The design of the 9-bar space truss shown in Fig-
ure 2 is considered with the objective of minimizing
weight and the sum of deflection of nodes 1 and 2.
The loading of the truss and the upper bounds for the
displacements of the restricted joints are given in Ta-
ble 1. The members of the space truss are collected
in 3 groups. The minimum cross-sectional area for
members is chosen as 2 cm2. The modulus of elastic-
ity is taken as 2.06× 104 kN / cm2.
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Figure 2. 9-bar space truss.
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Table 1. The loading and displacement bounds for

9-bar space truss system.

Joint Displacement
number Loading (kN) limitation (cm)

X Y Z X Y
1 80 0 -32 0.2 0.2
2 -80 48 -32 0.2 0.2

Objective functions;

min




W (x) =
9∑

i=1

ρAi�i

δ(x) =
2∑

i=1

√
δ2
ix + δ2

iy + δ2
iz

(12)

The design variables are bounded as A
(l)
i ≤ Ai ≤

A
(u)
i ; i = 1, 2, 3 where the limiting values are taken

as A
(l)
i = 2.0 cm2, (i = 1, 2, 3), A(u)

i = 10 cm2, (i =
1, 2, 3).

From the results obtained by the classical op-
timization with the upper boundary values of the
variables, Wmax = 55, 234 cm3, Wmin = 27, 760
cm3, δmax = 4.70 cm, δmin = 2.40 cm are found.

We enter these values into Eqs. (6) and (10).

µf1 (x) =




0. Wi > 55, 234
(

55,234−Wi

55,234−27,760

)
27, 760 < Wi ≤ 55, 234

1. Wi ≤ 27, 760
(13)

µf2(x) =




0. δj > 4.70
(

4.70−δj

4.70−2.40

)
2.40 < δj ≤ 4.70

1. δj ≤ 2.40

(14)

λ1 = [55, 234− Wi] / [55, 234− 27, 760] (15)

λ2 = [4.70− δj] / [4.70− 2.40] (16)

The equations of λ1 and λ2 membership functions
will enable us to achieve the optimum fuzzy decision
by finding many λ parameters, which ensure equiv-
alency. The results of fuzzy optimization are shown
in Table 2.

A flow diagram of the λ formulation approach
in fuzzy multiobjective optimization is described in
Figure 3.

Design of 120-bar space truss

The second example is a 120-bar nonlinear space
truss whose members are collected in 7 groups as
shown in Figure 4. Angle sections are adopted for
members. The loading of the truss and the upper
bounds for the displacements of the restricted joints
are given in Table 3. The modulus of elasticity and
the minimum member cross-sectional area are taken
as 2.06× 104 kN/cm2 and 2 cm2, respectively. The
result of optimum design is shown in Table 4.

min




W (x) =
120∑
i=1

ρAi�i

δ(x) =
√

δ2
1x + δ2

1y + δ2
1z

(17)

Table 2. Multiobjective fuzzy optimization solutions of 9-bar space truss system.

Fuzzy
parameter Areas (cm2) Displacement (cm) minδ min W

λ∗ A1 A2 A3 δx1 δy1 δx2 δy2 (cm) (cm3)
Linear 0.5951 7.99 2.04 6.72 1.59 0.41 1.59 0.60 3.33 38,846

Nonlinear 0.5970 7.95 2.05 6.74 1.58 0.42 1.58 0.59 3.37 38,808
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Figure 3. Flow diagram of a λ-formulation for a multiobjective fuzzy optimization problem.
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Figure 4. 120-bar space truss.

Table 3. The loading and displacement bounds for 120-bar space truss system.

Displacement
Joint number (kN) limitation (cm)

X Y Z Z
1 0 0 60 1
2 0 0 30 1
. . . . .
. . . . .
. . . . .
14 0 0 30 1
15 0 0 10 1
. . . . .
. . . . .
. . . . .
37 0 0 10 1
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Table 4. Multiobjective fuzzy optimization solutions of 120-bar space truss system.

Fuzzy
parameter Areas (cm2) minδ min W

λ∗ A1 A2 A3 A4 A5 A6 A7 (cm) (cm3)
Linear 0.4354 36.17 50.00 27.81 34.99 28.40 40.15 34.87 0.52 2,175,715

Nonlinear 0.7244 34.44 26.68 40.11 32.70 39.73 33.44 32.73 0.33 2,134,888

Figure 5. 244-bar space truss.

327
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Design of 244-bar transmission tower

The design of a 244-bar transmission tower, shown
in Figure 5, is considered as the last example. The
members of this nonlinear space truss are combined
in 32 groups. The modulus of elasticity is considered
to be 2.06×104 kN/cm2. The loading and bounds im-
posed on the displacements are given in Table 5. The
minimum cross-sectional area for members is chosen
as 2 cm2. The results of fuzzy optimization are shown
in Table 6.

min




W (x) =
244∑
i=1

ρAi�i

δ(x) =
2∑

i=1

√
δ2
ix + δ2

iy + δ2
iz

(18)

Table 5. The loading and displacement bounds for

244-bar space truss system.

Joint Displacement
number Loading (kN) limitation (cm)

X Z X Z
1 -10 -30 4.5 1.5
2 10 -30 4.5 1.5
17 35 -90 3 1.5
24 175 -45 3 1.5
25 175 -45 3 1.5

Table 6. Multiobjective fuzzy optimization solutions of 244-bar space truss system.

Design Variables Linear Nonlinear
A1 10.07 2.04
A2 10.45 3.07
A3 10.65 2.40
A4 10.24 2.04
A5 10.88 7.55
A6 13.20 5.83
A7 10.68 4.17
A8 35.60 36.44
A9 37.36 66.70
A10 10.38 2.06
A11 13.74 45.60
A12 10.26 2.13
A13 10.43 2.01
A14 12.30 9.95
A15 10.30 2.07
A16 9.57 2.12
A17 10.03 2.01
A18 9.30 62.57
A19 10.07 2.04
A20 100 100
A21 21.24 19.83
A22 13.37 4.43
A23 10.54 2.28
A24 10.19 2.03
A25 10.61 2.65
A26 10.27 2.05
A27 10.38 2.07
A28 10.64 2.11
A29 10.54 3.05
A30 10.70 2.12
A31 10.57 4.47
A32 10.13 2.05

max λ 0.7871 0.7943

min δ(x) =
2∑

i=1

√
δ2
ix + δ2

iy + δ2
iz (cm) 2.88 2.86

minW (x) =
32∑

i=1
ρAi�i (cm3) 1,709,688 1,679,200
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Conclusions

The multiobjective optimization of fuzzy engineering
systems is considered using λ formulation. An al-
gorithm was developed by ANSYS programming to
solve nonlinear space truss systems with fuzzy opti-
mization. A comparative study of the 3 procedures
is performed using 9-bar, 120-bar and 244-bar space
truss optimization problems.

Optimization with fuzzy sets was seen to be faster
for obtaining results and to require a smaller soft-

ware. Objective functions were also added to the
systems as constraints. Fuzzy set theory was seen to
be suitable for the modeling of unstable and complex
structures of the design problem. A design problem
performing a single objective optimization was trans-
formed into a multiobjective optimization problem
using fuzzy sets. A certainty assumption must be
provided for a problem able to be solved by classi-
cal optimization, yet this is not necessary for fuzzy
optimization.
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