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Abstract

The vibration of generally orthotropic rectangular elastic plates having viscoelastic point supports at the
corners is analyzed. Lagrange’s equations are used to examine the free vibration characteristics and steady
state response to a sinusoidally varying moment affecting the center of a viscoelastically point-supported,
generally orthotropic elastic plate of rectangular shape. For applying the Lagrange’s equations, the trial
function denoting the deflection of the plate is expressed in polynomial form. By using the Lagrange’s
equations, the problem is reduced to the solution of a system of algebraic equations. The influence of the
off-axis angle, of the mechanical properties, and of the damping of the supports to the steady state response
of the viscoelastically point-supported rectangular plates is investigated numerically for a concentrated
moment at the center for various values of the mechanical properties characterizing the anisotropy of the
plate material, for various off-axis angles and for various damping of supports for a given stiffness of supports.
The results are given for the considered frequency range of the external periodical moment. Convergence
studies are performed. The validity of the results obtained is demonstrated by comparing them with the
solutions of specially orthotropic plates based on the Kirchhoff-Love plate theory.

Key words: Viscoelastic point-supports, Elastic point-supports, Generally orthotropic plates, Viscoelasti-
cally point-supported plates, Steady state response.

Introduction

Free and forced vibrations of point-supported rectan-
gular or square plates are of considerable interest to
engineers designing panels at isolated points. These
problems are encountered in various engineering ap-
plications from printed circuit boards in electronics
to the plates used in naval and ocean engineering
systems. Therefore, the vibration problems of these
plates are of practical importance. Free vibration
analysis of rectangular plates supported at various
points and based on the Kirchhoff-Love plate theory

has been performed by many researchers and is well
known (for example Narita (1984), Venkateswara
Rao et al. (1973), Kocatürk and İlhan (2003)). How-
ever, it appears that there are only a limited number
of studies on the steady state response of viscoelas-
tically point-supported plates.

Although there are many studies on the free
vibration analysis of rectangular plates supported
at various points, there are only a limited number
of studies on the steady state response of point-
supported rectangular plates. The steady state re-
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sponse to a sinusoidally varying force was determined
for a viscoelastically point-supported square or rect-
angular plate by Yamada et al. (1985), using the
generalized Galerkin method. A generalization of
this study to specially orthotropic rectangular plates
was investigated by Kocatürk (1998), and Kocatürk
and Altıntaş (2003a, 2003b). The steady state re-
sponse to sinusoidally varying moment was deter-
mined for a viscoelastically point-supported specially
orthotropic square or rectangular plate by Kocatürk
et al. (2004), using the Lagrange’s equations with
trial functions denoting the displacements of the
plate.

In the present study, Lagrange’s equations are
used to examine the free vibration characteristics
and steady state response to sinusoidally varying mo-
ment affecting the center of a viscoelastically point-
supported generally orthotropic elastic plate of rect-
angular shape. By analyzing the steady state re-
sponse of the considered problem, the peak values of
the moment transmissibilities are obtained.

Analysis

Consider a viscoelastically point-supported rectan-
gular elastic generally orthotropic plate of side
lengths a and b and thickness h under effect of si-
nusoidally varying moment M (t) at the center of
the plate as shown in Figure 1, where X1X2X3 is
the principal material coordinate system, X′1X

′
2X
′
3

is the geometric coordinate system, θ is the off-axis
angle, ki is the spring constant, ci is the damping
coefficient, and Pi (X′1i, X′2i) is the support force of
a point support at the i th support. The axes of the
elastic symmetry of the plate material form an angle
θ with the OX′1 and OX′2 axes. Therefore the plate
is generally orthotropic. The coordinate axes OX′1
and OX′2 are oriented along the edges of the plate
with the origin at O. Because the plate is generally
orthotropic and the supports are viscoelastic, there
are many parameters to be considered. Therefore,
although it is possible to take many point supports
at arbitrary points, in the numerical investigations
here, for brevity, it will be considered that the plate
is supported symmetrically at the 4 corner points
and ki and ci are taken to have the same respec-
tive values at all the supports denoted by ki = k
and ci = c. Under the above conditions, the steady
state responses of the viscoelastically corner point
supported plate to a sinusoidally varying moment
for various damping values will be determined using

the Lagrange’s equations.
For a plate undergoing sinusoidally varying mo-

ment M(t) = Q. eiωt, where ω is the frequency, the
strain energy of bending in Cartesian coordinates is
given by
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Figure 1 Viscoelastically point-supported rectangular
elastic generally orthotropic plate under a si-
nusoidally varying moment.
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In Eq. (1),
−
D11,

−
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−
D16,

−
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−
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−
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expressed as follows:
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where the components of the reduced stiffness matrix
−
Qij are defined by Choo (1990) as follows:

−
Q11 = Q11c

4 + 2(Q12 + 2Q66)s2c2 + Q22s
4

−
Q12 = (Q11 +Q22 − 4Q66)s2c2 + Q12(s4 + c4)

−
Q22 = Q11s

4 + 2(Q12 + 2Q66)s2c2 +Q22c
4

−
Q16 = (Q11 −Q12 − 2Q66)c3s + (Q12 −Q22 + 2Q66)s3c

−
Q26 = (Q11 −Q12 − 2Q66)s3c+ (Q12 −Q22 + 2Q66)c3s

−
Q66 = (Q11 − 2Q12 + Q22 − 2Q66)s2c2 + Q66(c4 + s4)

(3)

s = sin θ ; c = cos θ

where

Q11 =
E11

1− ν12ν21

Q12 =
ν12E22

1− ν12ν21

Q22 =
E22

1− ν12ν21
(4)

Q66 = G12

ν21E11 = ν12E22

where G1 2 is the shear modulus in the X1X2 plane,
E11 and E22 are Young’s moduli in the OX1 and
OX2 directions, respectively, and ν21 is the Poisson’s
ratio for the strain response in the X1 direction due
to an applied stress in the X2 direction. The poten-
tial energy of the external moment is

Fe = −M (t)
∂W (0, 0, t)

∂ X1
(5)

With rotary inertia neglected, the kinetic energy
of the vibrating plate is
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1
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where ρ is the mass density per unit volume and
the additive strain energy and dissipation function
of viscoelastic supports are

Fs = 1
2

4∑
i=1

kW 2
Si

D = 1
2

4∑
i=1

c(ẆSi)2

(7)

Introducing the following non-dimensional pa-
rameters

x1 =
X′1
a
, x2 =

X′2
b
, α =

b

a
, e =

E22

E11
,

w̄(x1, x2, t) = W/a (8)

and assuming the shear modulus, G12, as given by
Szilard (1974) as follows;

G12 ≈
E11
√
e

2
(

1 + ν21

√
1/e
) (9)

the above energy expressions can be written at time
t as follows:
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It is known that some expressions satisfying
geometrical boundary conditions are chosen for
w̄ (x1, x2, t) and by using the Lagrange’s equations
the natural boundary conditions are also satis-
fied. By using the Lagrange’s equations, by as-
suming the displacement w̄ (x1, x2, t) to be rep-
resentable by a linear series of admissible func-
tions and adjusting the coefficients in the series
to satisfy the Lagrange’s equations, an approxi-
mate solution is found for the displacement func-
tion. For applying the Lagrange’s equations, the
trial function w̄ (x1, x2, t) is approximated by space-
dependent polynomial terms x0

1, x
1
1, x

2
1, ...., x

M
1 and

x0
2, x

1
2, x

2
2, ...., x

N
2 , and time-dependent generalized

displacement coordinates Āmn (t). Thus

w̄ (x1, x2, t) =
M∑
m=0

N∑
n=0

Āmn (t)xm1 x
n
2 (11)

where ŵ(x1, x2, t) is the steady state response (the
transverse deflection) of the plate to sinusoidally
varying moment M(t) = Q. eiωt. Each term, xm1
and xn2 , must satisfy the geometrical boundary con-
ditions. However, in the considered problem, there
is no geometrical boundary condition to be satisfied.
There is no need for these functions to satisfy the
natural boundary conditions. However, if the natu-
ral boundary conditions are also satisfied when se-
lecting the functions, then the rate of convergence

will be high.
The function w̄ (x1, x2, t), which is given by Eq.

(11), is substituted in Eqs. (10a-e). Then the ap-
plication of Lagrange’s equations yields a set of lin-
ear algebraic equations. Lagrange’s equations for the
considered problem are given as

d
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where the overdot stands for the partial derivative
with respect to time. Introducing the following non-
dimensional parameters,

κ =
k a3

bD11
, γ =

c a

b
√
ρhD11

,
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ρhω 2a4

D11
, q =

Qa
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and considering that when the moment is expressed
as M(t) = Q. eiωt, then the time-dependent gener-
alized functions can be expressed as follows:

Āmn(t) = Amne
i ω t (14)
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In Eq. (14), Amn is a complex variable contain-
ing a phase angle. The dimensionless complex am-
plitude of the displacement of a point of the plate
can be expressed as

w (x 1, x 2) =
M∑
m=0

N∑
n=0

Amn x
m
1 x

n
2 (15)

By using Eq. (12), the following set of linear alge-
braic equations is obtained, which can be expressed
in the following matrix form

[A]{Amn}+ iλγ[B]{Amn} − λ2[C]{Amn} = α{q}
(16)

where [A], [B] and [C] are coefficient matrices ob-
tained by using Eq. (12).

For free vibration analysis, when the external
force and damping of the supports are zero in Eq.
(18), this results in a set of linear homogeneous equa-
tions that can be expressed in the following matrix
form:

[A]{Amn} − λ2[C]{Amn} = {0} (17)

By increasing the polynomial terms, the accuracy
can be increased.

The maximum moment caused by the couple of
the reaction forces of the supports is given by
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and therefore the moment transmissibility is determined by
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The number of unknown coefficients is (M +1)×
(N +1). Again, the number of equations that can be
written for each Amn coefficient by using Eq. (12) is
(M + 1)× (N + 1), which is given in matrix form by
Eq. (16). Therefore, the total number of these equa-
tions is equal to the total number of unknown dis-
placements and these unknowns can be determined
by solving the equations above.

The eigenvalues (characteristic values) λ are
found from the condition that the determinant of the
system of equations given by Eq. (17) must vanish.

Numerical Results

The steady state response to sinusoidally varying
moment M(t) = Q. eiωt acting at the center of a
generally orthotropic square plate, viscoelastically
point-supported at the 4 corners, is calculated nu-
merically. Because of the structural symmetry and

symmetry of the external force, only symmetrical vi-
brations arose in the studies by Kocatürk and İlhan
(2003), Yamada et al. (1985) and Kocatürk (1998);
therefore it was possible to reduce the number of
polynomial terms. However, because the principal
material coordinate system X1X2X3 does not coin-
cide with the geometric coordinate system,X′1X′2X′3,
in the case of a generally orthotropic viscoelastically
point-supported plate, there is no symmetry prop-
erty to reduce the number of polynomial terms.

A short investigation of the free vibration of
an elastically point-supported generally orthotropic
plate is made for θ = 0 for comparing the obtained
results with the existing results of the elastically
point-supported specially orthotropic plate. The
natural frequencies of the elastically point-supported
generally orthotropic plate are determined by calcu-
lating the eigenvalues λ of the frequency Eq. (19).

In Table 1, the calculated frequency parameters
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λ, which are in the considered frequency range of
the external force, are compared with those given by
Kocatürk and İlhan (2003). Furthermore, the con-
vergence is tested in the table by taking various num-
bers of terms as given in Table 1. It is seen that the
present converged values show excellent agreement
with those of Kocatürk and İlhan (2003).

It is shown that the convergence with respect
to the number of the polynomial terms is excellent
in the considered cases. As observed from Table 1,
the frequency parameter decreases as the number of
polynomial terms increases.

In Table 2, the eigenfrequencies are determined
for various off-axis angles for κ = 100, e = 0.6, 0.8

and 1.0 and ν21 = 0.3.

From here on, in the calculation of the results
of the present study, 8 × 8 terms of the polynomial
series are used, giving a determinant of size 64× 64.

The moment transmissibilities are determined for
various damping parameters γ and off-axis angles θ
for κ = 100 by using Eq. (19). In all of the numerical
calculations, ν21 is taken as 0.3.

Figures 2a, b, c and d show the moment trans-
missibilities in the considered range of the external
moment for various values of the off-axis angles for
κ = 100, e = 0.6 for γ = 0, γ = 1, γ = 5 and γ = 10,
respectively.

Table 1. Comparison of the obtained results with the existing results and convergence study of frequency parameters λ
for corner point supported square plates, ν21 = 0.3, α = 1, e = 0.6.

Determinant λ1 λ2 λ3 λ4 λ5 λ6

size
36x36 5.8397 12.1384 12.9754 16.6897 29.4600 37.2302
49x49 5.8392 12.1387 12.9749 16.5800 29.4600 36.2777

Present study 64x64 5.8392 12.1384 12.9748 16.5799 29.4516 36.2726
κ = 100 81x81 5.8392 12.1384 12.9748 16.5799 29.4516 36.2726
θ = 0 100x100 5.8392 12.1384 12.9748 16.5799 29.4516 36.2726

121x121 5.8392 12.1384 12.9748 16.5799 29.4516 36.2725
144x144 5.8392 12.1384 12.9748 16.5799 29.4516 36.2725

Present study
κ = 100 144x144 5.8392 12.1384 12.9748 16.5799 29.4516 36.2725
θ = π/2
Kocatürk and
İlhan (2003) 5.8392 12.1383 12.9748 16.5799 29.4513 36.2726

Table 2. The eigenfrequencies for various off-axis angles for κ = 100, e = 0.6, 0.8, 1.0 and ν21 = 0.3.

e = 0.6 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

θ = 0 5.8392 12.1383 12.9750 16.5800 29.4520 36.2780 38.2251 43.5528
θ = π

12
5.8751 11.9090 13.1940 16.5210 29.2380 36.5270 38.5761 43.0370

θ = π
6 5.9477 11.6050 13.4770 16.4050 28.8420 36.9950 39.5062 42.0185

θ = π
4

5.9846 11.4850 13.5850 16.3470 28.6560 37.2180 40.5727 40.9281
e = 0.8 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

θ = 0 6.3633 13.4810 13.8418 18.1990 31.7380 38.6590 43.5281 45.8028
θ = π

12 6.3708 13.3670 13.9541 18.1880 31.6900 38.7120 43.6797 45.6438
θ = π

6 6.3854 13.2190 14.0979 18.1660 31.5950 38.8170 44.0897 45.2207
θ = π

4 6.3928 13.1620 14.1538 18.1550 31.5480 38.8680 44.5863 44.7184
e = 1 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

θ = 0 6.72357 - - 19.5963 33.3695 40.6246 69.2786 80.6074
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Figures 3a, b, c and d show the moment trans-
missibilities in the considered range of the external
moment for various values of the off-axis angles for
κ = 100, e = 0.8 for γ = 0, γ = 1, γ = 5 and γ = 10,
respectively.

Figure 4 shows the moment transmissibilities in
the considered range of the external moment for var-
ious values of γ for κ = 100, e = 1.0.

It is observed from Figures 2 and 3 that when θ is
different from zero the third and seventh modes ap-
pear. The frequencies of the second and third modes
and also the sixth and seventh modes are very close
to each other. When θ = 0, namely when the plate
is specially orthotropic as in the study by Kocatürk
et al. (2004), the third and seventh modes do not
appear. This situation can also be observed in Table
3.

Figures 2 and 3 show that within the frequency
range of the figures, when the E2/E1 ratio is differ-
ent from unity and γ = 0, 4 resonant peaks appear,
and antiresonant peaks or lowest values appear be-
tween adjacent frequencies. By choosing appropriate
damping parameters, resonant peaks of the moment

transmissibilities and of the displacements disappear
and the related peak quantities become small. The
damping of the supports is especially effective on the
third and seventh modes. Within a certain range
of the frequencies, the moment transmissibilities are
less than unity, which indicates the possibility of vi-
bration isolation.

It can be deduced from Table 2 and Figures 2
and 3 that when e is different from unity, in the case
when the supports are elastic, i.e. γ = 0, then there
are 2 resonant peaks for off-axis angle θ = 0 and 4
resonant peaks for off-axis angle θ 6= 0. It is seen
from Tables 2 and 3 and Figures 2 and 3 that these
resonant peaks correspond to the second and eighth
modes of the considered system in the case θ = 0,
and to the second, third, seventh and eighth modes
of the considered system in the case θ 6= 0. It means
that these modes of the system are excited for the
related off-axis angles within the frequency range of
the external moment. It is seen from Figures 2b, c
and d (except at θ = π/12 when γ = 1 and 10) and
3b, c and d that, in the case of viscoelastic supports,

101

100

101

100

101

100

101

100

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 50

(a) (b)

(c) (d)

T
M

λ

Figure 2. The moment transmissibilities for various values of θ for e = 0.6, κ = 100 for (a) γ = 0, (b)γ = 1, (c) γ = 5,
(d) γ = 10, θ = 0 −−−−−, θ = π/12, θ = π/6− · − ·−, θ = π/4 · · · · · · .
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Table 3. The frequencies at which the peak values of the moment transmissibilities for the second, third, seventh and
eighth modes occur for various values of off-axis angles θ, of damping ratio γ, of orthotrophy ratio e, for κ = 100.

κ = 100, ν21 = 0.3, e=1
Modes

θ = 0 θ = π/12 θ = π/6 θ = π/4

λ2

γ = 0 14.52 - - -
γ = 1 14.54 - - -
γ = 5 14.90 - - -
γ = 10 15.35 - - -

λ8

γ = 0 47.60 - - -
γ = 1 48.67 - - -
γ = 5 50.28 - - -
γ = 10 50.36 - - -

κ = 100, ν21 = 0.3, e=0.8
Modes

θ = 0 θ = π/12 θ = π/6 θ = π/4

λ2

γ = 0 13.48 13.37 13.22 13.16
γ = 1 13.49 13.37 13.22 13.16
γ = 5 13.76 13.62 13.43 13.35
γ = 10 14.10 13.95 13.75 13.66

λ3

γ = 0 - 13.95 14.10 14.15
γ = 1 - 14.01 14.14 14.19
γ = 5 - - 14.48 14.57
γ = 10 - - 14.90 14.99

λ7

γ = 0 - 43.68 44.09 44.59
γ = 1 - - - -
γ = 5 - - - -
γ = 10 - - - -

λ8

γ = 0 45.80 45.64 45.22 44.72
γ = 1 47.41 47.11 46.25 45.39
γ = 5 48.91 48.63 47.87 46.90
γ = 10 48.92 48.66 47.94 47.00

κ = 100, ν21 = 0.3, e=0.6
Modes

θ = 0 θ = π/12 θ = π/6 θ = π/4

λ2

γ = 0 12.14 11.91 11.60 11.48
γ = 1 12.15 11.92 11.61 11.49
γ = 5 12.31 12.05 11.72 11.59
γ = 10 12.54 12.27 11.92 11.78

λ3

γ = 0 - 13.19 13.48 13.59
γ = 1 - 13.23 13.50 13.61
γ = 5 - 13.56 13.85 13.94
γ = 10 - 13.89 14.20 14.29

λ7

γ = 0 - 38.57 39.51 40.57
γ = 1 - 38.11 - -
γ = 5 - - - -
γ = 10 - 39.72 - -

λ8

γ = 0 43.45 43.04 42.02 40.93
γ = 1 41.01 39.82 43.17 41.32
γ = 5 47.24 46.45 44.60 42.61
γ = 10 46.92 46.26 44.63 42.75
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Figure 3. The moment transmissibilities for various values of θ for e = 0.8, κ = 100 for (a) γ = 0, (b) γ = 1, (c) γ = 5,
(d) γ = 10, θ = 0 −−−−−, θ = π/12 −−− −, θ = π/6 − · − ·−, θ = π/4 · · · · · · · .
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Figure 4. The moment transmissibilities for e = 1.0,
κ = 100, for γ = 0 −−−−−, γ = 1 − − − −,
γ = 5− · − ·−, γ = 10 · · · · · · .

the peak of the seventh mode disappears, and as can
be seen from Figures 2a, b, c and d and 3a, b, c and
d when θ = 0 the third and seventh peaks disappear,
and the third peak disappears when γ = 5 and 10
at θ = π/12. It can be deduced from this that by
choosing appropriate damping parameters the peaks

of the third and seventh modes can be eliminated.
By choosing appropriate damping parameter γ es-
pecially the third and seventh peaks of the moment
transmissibilities disappear.

It is seen from Figure 4 that when e = 1 it is obvi-
ous that there is no significance of the off-axis angle
and in this case there are only 2 resonant peaks in
the considered frequency range of the external mo-
ment. These resonant peaks are only for the second
and eighth modes. In Figure 4, the solid lines rep-
resent the response curve of a plate with undamped
elastic point supports(γs = 0), and the dotted lines a
plate for γs = 10. The intersection points of these 2
lines are fixed points, through which all the response
curves pass, regardless of the damping parameters.
This result was also determined by Yamada et al.
(1985) for isotropic viscoelastically point-supported
plates. By choosing a suitable value for the damping
parameter γ, it is possible to reduce the peak values
of the moment transmissibilities to the values of the
moment transmissibilities corresponding to the inter-
section points shown in Figure 4. The existence of
such points is useful for an optimum design of a sys-
tem by choosing an appropriate damping parameter.
This subject was studied in detail by Kocatürk and
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Altıntaş (2003a), by Kocatürk and Altıntaş (2003b)
for viscoelastically point-supported rectangular spe-
cially orthotropic plates under a concentrated exter-
nal force and by Kocatürk et al. (2004) for viscoelas-
tically point-supported specially orthotropic plates
under concentrated external moment. It is seen from
Figures 2, 3 and 4 that the peak values of the mo-
ment transmissibilities occur at different values of λ
while changing the damping parameter γ. However,
the frequency parameter λ remains between the fre-
quency parameters λ obtained for γ = 0 and γ =∞.
In Table 3, the frequencies at which the peak val-
ues of the moment transmissibilities for the second,
third, seventh and eighth modes occur are deter-
mined by using Eq. (19) for various values of the off-
axis angles θ, of damping ratio γ, of orthotrophy ra-
tio e, for κ = 100. When θ = 0 in Table 3, the results
obtained for κ = 100, γ = 0, 1, 5, 10, e = 1, 0.8, 0.6
are identical with the related results given in Table
3 of the study by Kocatürk et al. (2004).

In the isotropic case, for γ = 5, κ = 100,
ν21 = 0.3, the frequency for the peak value of the
moment transmissibility shown in Table 3 is 14.90 in
the present study; the same value was obtained by
Kocatürk et al. (2004). When E2/E1 is unity, the
fourth and fifth vibration modes do not arise in the
plate. Therefore, in the case of the fourth and fifth
modes, the peak values of the moment transmissibil-
ities do not occur for the isotropic case and the lines
for these modes are not shown in Table 3. Further-
more, it is an expected result that when E2/E1 is
unity the off-axis angle θ does not affect the eigen-
values, mode shapes or peak values of the moment
transmissibilities. Therefore, the peak values of the
moment transmissibilities remain unchanged with re-
spect to variation of the off-axis angle θ in Table 3.
The hypen sign (-) in Table 3 shows that there is no
resonant peak for the considered parameters.

Conclusions

By using Lagrange’s equations, the natural frequen-
cies in the considered frequency range of the external
moment for the elastically point-supported generally
orthotropic square plates and the steady state re-
sponse of a viscoelastically point-supported generally
orthotropic square plate to sinusoidally varying mo-
ment were studied and compared with the existing
results. To use Lagrange’s equations with the trial
function in the polynomial form is a very good way of
studying the structural behavior of plates with point
supports.

By the application of the above-mentioned solu-
tion technique, the first 8 values of the natural fre-
quencies are determined, and the converge character-
istics of the frequency parameters are investigated
numerically for specially orthotropic square plates
elastically supported at 4 points at the corners and
compared with the existing results. It is seen that
the rate of convergence is very high.

The response curves to sinusoidally varying mo-
ment acting at the center are determined numerically
for generally orthotropic square plates viscoelasti-
cally supported at 4 points at the corners. The effect
of the off-axis angle of the plate, orthotropy of the
plate, viscosity of the supports for a given stiffness
of the supports on the frequency parameters and re-
sponse curves is investigated and shown in the figures
and tables. It is seen that because of the off-axis an-
gle the third mode is excited within the frequency
range of the external load. A small off-axis angle
causes excitation of the third mode. Therefore, this
must be considered in the design of such systems.

All of the obtained results are very accurate and
may be useful for designing mechanical systems un-
der external dynamic loads.
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