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Abstract

Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube prob-
lems are obtained in the framework of small deformation theory. The modulus of elasticity of the tube
material is assumed to vary radially according to a 2 parametric model in a general parabolic form. The
analytical plastic model is based on Tresca’s yield criterion, its associated flow rule and ideally plastic ma-
terial behavior. Exact solutions of field equations for elastic and plastic deformations are obtained. It is
shown that the elastoplastic response of the functionally graded pressurized tube is affected notably by the
radial variation of modulus of elasticity. It is also shown mathematically that the nonhomogeneous solution
presented here reduces to that of a homogeneous one by the appropriate choice of the material parameters.

Key words: Stress analysis, Elastoplasticity, Pressure chamber, Functionally graded material, Tresca’s
criterion, Ideal plastic.

Introduction

A sufficiently long tube subjected to pressure in the
radial direction is usually referred to as a pressure
chamber or pressure vessel and is one of the clas-
sical problems in engineering mechanics. A thick-
walled tube under either internal or external pressure
was treated comprehensively in purely elastic stress
state by Timoshenko (1956), Timoshenko and Good-
ier (1970), Uğural and Fenster (1987), and Boresi et
al. (1993), in the fully plastic stress state by Boresi et
al. (1993), Mendelson (1968), and Nadai (1931), and
in the elastic-plastic stress state by Parker (2001)
and Perry and Aboudi (2003). Recent studies on
the subject by Horgan and Chan (1999), Tutuncu
and Ozturk (2001), Jabbari et al. (2002), and Ma et
al. (2003) include tubes made of functionally graded
materials (FGM) under pressure. However, it is ev-
ident from the list of existing literature that elastic-

plastic treatment of the problem for FGM by analyti-
cal means has not been performed yet. It is therefore
the objective of the present investigation to derive a
consistent analytical solution in order to predict the
elastic-plastic deformation behavior of a pressurized
FGM tube.

A long tube of inner radius a with axially con-
strained ends is taken into account. The tube is sub-
jected to internal pressure pin, and is nonhomoge-
neous in composition so that its modulus of elastic-
ity E varies radially according to a general parabolic
form given by

E = E0

[
1− n

(r
b

)k]
. (1)

Here E0 is the reference value of E, r the radial coor-
dinate, b the radius and n and k are material param-
eters. With this form, a wide range of nonlinear and
continuous profiles to describe reasonable variation
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of E in the material may be achieved. Concave, con-
vex and linear E profiles may be selected by choos-
ing suitable n and k values. In a related theoretical
study by Horgan and Chan (1999) the variation of E
is described by the nonlinear function E = E0(r/b)n.
However, their model is not as flexible as the general
parabolic model used in this work.

First a plane strain analytical solution to elastic
deformation of the tube is obtained. Displacement
formulation is performed and the resulting hyperge-
ometric differential equation is solved by the intro-
duction of appropriate transformation. Then a plas-
tic deformation model based on Tresca’s yield crite-
rion, its associated flow rule and ideally plastic ma-
terial behavior is developed and solved analytically.
The reduction of these nonhomogeneous solutions to
homogeneous counterparts is performed by setting
n = 0. The results indicate that both elastic and
elastoplastic responses of the tube subjected to in-
ternal pressure are affected notably by the material’s
nonhomogeneity.

Elastic Deformation

Cylindrical polar coordinates (r, θ, z) are considered.
A state of plane strain and infinitesimal deforma-
tions are presumed. Furthermore, the notation of
Timoshenko and Goodier (1970) is used. Hence, in
the formulation, σj and εj denote a normal stress

and a normal strain component, respectively, and u
is the radial component of the displacement vector.
Strain-displacement relations for small strains, and
the equations of generalized Hooke’s law together
with the equation of equilibrium in the radial direc-
tion (Timoshenko and Goodier, 1970)

d

dr
(rσr)− σθ = 0, (2)

form the basis for the entire analysis. In a state of
plane strain, i.e. εz = 0, stress-displacement rela-
tions take the forms for the radial, circumferential,
and axial components, respectively, as

σr =
E(r)

r(1 + ν)(1− 2ν)

[
νu+ r(1− ν)

du

dr

]
, (3)

σθ =
E(r)

r(1 + ν)(1− 2ν)

[
(1− ν)u+ rν

du

dr

]
, (4)

σz =
E(r)

r(1 + ν)(1− 2ν)

[
νu+ rν

du

dr

]
, (5)

where ν is Poisson’s ratio. Substitution of Eqs. (3)
and (4) into Eq. (2), and the use of Eq. (1) lead
to the governing differential equation for the radial
displacement u

r2

[
1− n

(r
b

)k] d2u

dr2
+ r

[
1− n(1 + k)

(r
b

)k] du
dr
− 1− ν − n [1− ν(1 + k)]

(
r
b

)k
1− ν u = 0. (6)

Equation (6) is a hypergeometric differential equation (Eraslan, 2003) and is reduced to standard form using a
new variable x = n (r/b)k and applying the transformation u(r) = ry(x). The result is

x(1− x)
d2y

dx2
+

2 + k − 2(1 + k)x
k

dy

dx
− 1
k(1− ν)

y = 0. (7)

The solution is found elsewhere (Abramowitz and Stegun, 1966) as

y(x) = C1F (α, β, δ; x) + Ĉ2x
−2/kF (α− δ + 1, β − δ + 1, 2− δ; x), (8)

with Ci being an arbitrary constant and F the hypergeometric function defined by

F (α, β, δ; x) = 1 +
αβ

δ · 1!
x+

α(α+ 1)β(β + 1)
δ(δ + 1) · 2!

x2 +
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

δ(δ + 1)(δ + 2) · 3!
x3 + · · ·. (9)

The arguments α, β, and δ of F in Eq. (8) are determined as

α =
2

(2 + k)(1− ν) +
√

(1 − ν)[(2 + k)2(1− ν)− 4k]
, (10)
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β =
2

(2 + k)(1− ν)−
√

(1− ν)[(2 + k)2(1− ν)− 4k]
, (11)

δ = 1 +
2
k
. (12)

From u(r) = ry(n (r/b)k), the solution to the elastic equation, Eq. (6), is obtained as

u(r) = C1P (r) + C2Q(r), (13)

where

P (r) = rF
(
α, β, δ;n (r/b)k

)
, (14)

Q(r) =
1
r
F
(
α− δ + 1, β − δ + 1, 2− δ;n (r/b)k

)
. (15)

Hence, the stresses become

σr =
E(r)

r(1 + ν)(1− 2ν)

{
C1

[
νP + r(1− ν)

dP

dr

]
+ C2

[
νQ+ r(1− ν)

dQ

dr

]}
, (16)

σθ =
E(r)

r(1 + ν)(1− 2ν)

{
C1

[
(1− ν)P + rν

dP

dr

]
+ C2

[
(1− ν)Q+ rν

dQ

dr

]}
, (17)

σz =
νE(r)

r(1 + ν)(1− 2ν)

{
C1

[
P + r

dP

dr

]
+ C2

[
Q+ r

dQ

dr

]}
. (18)

It should be noted that, for n = 0 from Eq. (1) E = E0, from Eq. (9) F (α, β, δ; 0) = 1, from Eqs. (14) and
(15) P (r) = r ; Q(r) = 1/r, and therefore Eqs. (13) and (16)-(18) reduce to

u(r) = C1r +
C2

r
, (19)

σr(r) =
E0

1 + ν

[
C1

1− 2ν
− C2

r2

]
, (20)

σθ(r) =
E0

1 + ν

[
C1

1− 2ν
+
C2

r2

]
, (21)

σz(r) =
2νE0C1

(1 + ν)(1− 2ν)
. (22)

Equations (19)-(22) are nothing but the displacement and stress expressions for a homogeneous tube with
axially constrained ends (Eraslan and Akis, 2005).

The boundary conditions to evaluate integration constants C1 and C2 are σr(a) = −pin ; σr(b) = 0, and
upon application, one finds

C1 = a(1 + ν)(1− 2ν)pin[νQ(b) + b(1− ν)Q′(b)]/D, (23)
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C2 = −a(1 + ν)(1− 2ν)pin[νP (b) + b(1− ν)P ′(b)]/D, (24)

where

D = E(a) {[νQ(a) + a(1 − ν)Q′(a)][νP (b) + b(1− ν)P ′(b)]− [νP (a) + a(1− ν)P ′(a)]
×[νQ(b) + b(1− ν)Q′(b)]} . (25)

Homogeneous elastic solutions (Eraslan and Akis, 2005) indicate that the inner surface of the tube is critical
where the stress state satisfies σθ > σz > σr. Therefore, according to Tresca’s yield criterion, the tube undergoes
plastic deformation as soon as the pressure reaches the critical value pe so that σθ−σr = σ0 at the inner surface.
Here σ0 stands for the uniaxial yield limit of the material. Carrying out the algebra, the nondimensional elastic
limit pressure pe is determined to be

pe =
pe
σ0

= {[νP (b) + b(1− ν)P ′(b)][νQ(a) + a(1− ν)Q′(a)]− [νP (a) + a(1− ν)P ′(a)]

×[νQ(b) + b(1− ν)Q′(b)]} / {(1− 2ν)[P (a)− aP ′(a)][νQ(b) + b(1− ν)Q′(b)]
−(1 − 2ν)[νP (b) + b(1− ν)P ′(b)][Q(a)− aQ′(a)]} . (26)

It should be noted at this point that the hypergeometric function defined by the series, Eq. (9), converges
slowly. Care must be exercised in calculating these functions. Several thousand terms may be required to be
added in order to get a numerical value with sufficient accuracy. To be able to add such a large number of
terms, each term should be factorized. For example, the fourth term T4 in the series is obtained by the following
calculation sequence:

t1 =
α

δ
; t2 =

α+ 1
δ + 1

; t3 =
α+ 2
δ + 2

; t̂1 =
β

1
; t̂2 =

β + 1
2

; t̂3 =
β + 2

3
. (27)

Then

T4 =
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

δ(δ + 1)(δ + 2) · 3!
x3 = t1 × t2 × t3 × t̂1 × t̂2 × t̂3 × x× x× x. (28)

This calculation procedure avoids the evaluation
of factorials of large numbers, which is practically
not possible. The computer program HYPER, de-
veloped by one of the authors (Eraslan, 2002), im-
plements this factorization technique. In this pro-
gram the last term added, Tk, is determined such
that the next term, Tk+1, satisfies Sk + Tk+1 = Sk
in the 12-digit calculation, with Sk being the result
of summing the first k terms. Further details may
be found in the article by Orcan and Eraslan (2002).
The code HYPER is used throughout this work for
the calculation of hypergeometric functions.

To present some results pertaining to the elastic
solution, the following formal nondimensional vari-
ables are used. Radial coordinate: r = r/b, inner
radius: a = a/b, stress: σj = σj/σ0, and displace-
ment: u = uE0/(bσ0). Furthermore, Poisson’s ratio
ν is taken as 0.3 throughout.

The elastic limit pressure for a homogeneous
pressurized tube (n = 0) of inner radius a = 0.7
is calculated from Eq. (26) as pe = 0.255000. From

Eqs. (23) and (24) the corresponding integration
constants in nondimensional forms are determined
as C1 = C1 = 2.61170 × 10−4 and C2 = C2/b

2 =
6.52925×10−4. On the other hand, for an FGM tube
of the same inner radius and under the same pressure
having material parameters n = −0.4 and k = 0.6,
integration constants are C1 = 2.72204× 10−4 and
C2 = 5.19743×10−4. Using these values, the stresses
and displacement in the tube are calculated for both
FGM and homogeneous tubes and are plotted in Fig-
ure 1. Solid lines show FGM and dashed lines show
homogeneous results. A few points should be men-
tioned. The largest discrepancy between FGM and
homogenous solutions is observed in the radial dis-
placement. The axial stress in the homogeneous tube
is constant throughout (see Eq. (22)), while it varies
slowly in the FGM tube. The variation of elastic
limit pressure pe with material parameter n is calcu-
lated using k as a parameter and is plotted in Figure
2. The inner radius is a = 0.7. Point n = 0 corre-
sponds to the homogeneous tube and the limit for it
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is 0.255000. For k = 0, E = E0(1 − n) = constant ;
hence, the tube is homogeneous, irrespective of the
value of n.
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Figure 1. Comparison of stresses and displacement in an
FGM tube (n = −0.4, k = 1.4; solid lines) to
those in a homogeneous tube (n = 0; dashed
lines) under internal pressure p = 0.255.

1. Elastic-plastic Deformation

In the plastic model, total strains are expressed as
the superposition of elastic and plastic parts in the
form εj = εej + εpj , where the superscripts e and p de-
note elastic and plastic, respectively. The total axial
strain, for example, becomes

εz = 0 =
1

E(r)
[σz − ν(σr + σθ)] + εpz. (29)

Since σθ > σz > σr throughout the tube, Tresca’s
yield criterion reads

σθ − σr = σ0, (30)

and the flow rule associated with this yielding is
εpθ = −εpr and εpz = 0 (see for example Mendelson
(1968) page 157). From Eq. (30) σθ = σr + σ0 and

from Eq. (29) σz = ν(σ0 + 2σr) as since εpz = 0.
Using the equation of equilibrium, Eq. (2), and ap-
plying the boundary condition σr(a) = −pin we end
up with the solution for the stresses in the plastic
region. They are
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Figure 2. Variation of elastic limit pressure pe with n us-
ing k as a parameter in FGM pressurized tubes
of inner radius a = 0.7.

σr = −pin + (ln r/a)σ0, (31)

σθ = −pin + (1 + ln r/a)σ0, (32)

σz = −2ν [pin− (1/2 + ln r/a)σ0]. (33)

Making use of Eqs. (31)-(33), strain-displacement
relations: εr = u′ ; εθ = u/r, and the associated flow
rule εpr + εpθ = 0, the sum εr + εθ is evaluated and
simplified to give

du

dr
+
u

r
=

D1

1− n
(
r
b

)k +
D2 ln r

1− n
(
r
b

)k , (34)
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where

D1 = −(1 + ν)(1− 2ν)[2pin− (1− 2 lna)σ0]/E0,
(35)

D2 = 2(1 + ν)(1− 2ν)σ0/E0. (36)

After some algebraic manipulations, the general so-
lution of Eq. (34) is obtained and put into the form

u =
C3

r
+
D1r

2
F
(

2/k, 1, 1 + 2/k;n (r/b)k
)

+
D2r

2

{
ln rF

(
1, 2/k, 1 + 2/k;n (r/b)k

)
− 2
k2

[
k2

4
+
∞∑
i=1

[n (r/b)k]i

(i+ 2/k)2

]}
, (37)

where F is again the hypergeometric function defined by Eq. (9). Finally, plastic strains are obtained by
subtracting elastic strains from total strains, i.e. εpj = εj − εej . The result is

εpθ = −εpr =
C3

r2
+
D1

2
F
(

2/k, 1, 1 + 2/k;n (r/b)k
)

+
D2

2

{
ln rF

(
1, 2/k, 1 + 2/k;n (r/b)k

)
− 2
k2

[
k2

4
+
∞∑
i=1

[n (r/b)k]i

(i + 2/k)2

]}
+

(1 + ν) {(1 − 2ν)pin − [1− ν + (1− 2ν) lnr/a]σ0}
E0

[
1− n

(
r
b

)k] . (38)

It should be noted that Eqs. (37) and (38) reduce by the substitution of n = 0 to

u =
C3

r
+
r[2D1 +D2(2 ln r − 1)]

4
, (39)

εpθ =
C3

r2
+
D1

2
+
D2[2 ln r − 1]

4
+

(1 + ν) {(1− 2ν)pin− [1− ν + (1− 2ν) ln r/a]σ0}
E0

. (40)

This is the plastic solution for a plane strain homo-
geneous tube and may easily be verified by starting
out with

du

dr
+
u

r
= D1 +D2 ln r. (41)

The plastic region formed at the inner surface of
the tube under the pressure pin = pe propagates
toward the outer surface for the values pin > pe.
For pin > pe the tube consists of an inner plastic
region in a < r ≤ rep, and an outer elastic region
in rep ≤ r < b, with rep being the plastic-elastic
border. The solution requires the evaluation of 4 un-
knowns C3, rep, C1, and C2. At the interface r = rep,
the 2 stress components and radial displacements on
both sides must be equal, i.e. σpr (rep) = σer(rep) ;
σpθ (rep) = σeθ(rep) ; up(rep) = ue(rep). These conti-
nuity conditions are adjoined with the formal bound-
ary condition σer(b) = 0 to get 4 nonredundant equa-
tions. Although these equations are linear in inte-
gration constants C3, C1, and C2, the system as a
whole is nonlinear. Newton iterations are used for
the numerical solution.

An FGM tube of inner radius a = 0.7 with ma-
terial parameters n = −0.4 and k = 0.6 undergoes
plastic deformation when internal pressure reaches
pe = 0.260594. The tube behaves elastic-plastic for
pin > pe. Assigning pin = 0.33 > pe, Newton it-
erations are carried out to compute the unknowns.
They are obtained as C3 = C3/b

2 = 9.65200× 10−4,
rep = rep/b = 0.835838, C1 = 3.87282 × 10−4,
C2 = 7.39470×10−4. The corresponding stresses and
displacement are plotted in Figure 3. In this figure,
εpj = εpjE0/σ0 is the normalized plastic strain and φ
is the stress variable calculated from φ = σθ − σr.
As seen, φ = 1 in the plastically deformed region,
verifying the ideally plastic behavior of the tube.

The propagation of elastic-plastic border radius
rep with increasing pressures from elastic to fully
plastic stress states is also investigated. The param-
eters a = 0.7 and k = 0.6 are used in these calcu-
lations. Results for 3 different n values are shown
in Figure 4. At rep = 1.0, 3 curves intersect at the
same point, corresponding to pin = 0.356675. This
is the fully plastic limit of the tubes and turns out to
be independent of the variation of E in the material.
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Figure 3. Stresses, plastic strains and displacement in a
partially plastic FGM tube (n = −0.4, k = 0.6)
of inner radius a = 0.7 under internal pressure
p = 0.33.
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Figure 4. Propagation of elastic plastic border radius rep
in an FGM tube with increasing pressures for
a = 0.7 and k = 0.6 using n as a parameter.
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