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Abstract

A symmetrical finite strip containing a transverse symmetrical crack at the midplane is considered. Two
rigid plates are bonded to the ends of the strip which are subjected to tensile axial loads. The material of
the strip is assumed to be linearly elastic and isotropic. To verify the analytical solution provided previously
by the authors, the problem is first solved numerically using a general purpose finite element code family
MSC.MARC. Then, in order to see whether the verified results can be reproduced experimentally, laboratory
tests are conducted according to the ASTM standards.
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Introduction

The systematic approach to the fracture behavior of
brittle materials stems from the research by Grif-
fith (1920) on the brittle fracture of glass, which
laid the foundations of linear elastic fracture mechan-
ics. The Griffith theory of fracture has been applied
extensively to the fracture of metals, plastics and
composites. Strip problems are of particular interest
in engineering fracture mechanics. For this type of
boundary value problem, analytical and numerical
solutions are extensive. Analytical methods are gen-
erally based on integral equations (see Yetmez and
Gecit (2005) or Yetmez (2002) for representative ex-
amples).

Among the numerical methods, the finite element
method (FEM) dominates. Although other numer-
ical methods give more accurate stress results (for
example at the crack tip), its user friendly and avail-
able codes make the FEM useful for many academic
and practical fracture mechanics analyses. One may
conclude that for strips or panels designed to oper-
ate in the fractured area, isoparametric quadrilateral
and constant strain triangular elements are efficient
tools. In addition, it is clear that the whole strip

structure may be analyzed using absolutely standard
8-noded elements. Harrop (1982) considered the op-
timum size of quarter-point crack tip elements. It
was concluded that it is impossible to recommend
a particular crack tip element size suitable for all
situations. However, this is not the main problem
in setting up a suitable finite element mesh. The
emphasis so far has been on altering the crack tip
element size while keeping all other aspects of the
mesh the same. He realized that in setting up a
mesh design one should aim at a balance between
the representation of both singular and finite stress
component terms. Any subsequent mesh refinement
should retain this balance and in practice that im-
plies adding elements. Normally extra elements are
needed within a distance from the crack tip of the
order of the net ligament and crack length. This as-
sumes that the stress pattern in the uncracked body
is already adequately represented. Details on the
FEM of center-cracked plate problems are given by
Yetmez (2002).

Notable developments in experimental fracture
mechanics started with the evolution of ASTM test
methods (see Yetmez (2002)). The standard test
method ASTM E338 (1993) covers the determina-
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tion of a comparative measure of the resistance of
sheet materials to an unstable fracture originating
from a very sharp stress-concentrator or crack. This
test method is restricted to sheet materials not less
than 0.64 mm and not exceeding 6 mm. The stan-
dard test method ASTM E399 (1997) is designed for
the determination of the plane-strain fracture tough-
ness of metallic materials by tests using a variety of
fatigue-cracked specimens having a thickness of 1.6
mm or greater. The standard test method ASTM
D5045 (1993) appears to characterize the toughness
of plastics in terms of the critical stress intensity fac-
tor and critical strain energy release rate at fracture
initiation. The significance of the standard and many
conditions of testing are identical to those of ASTM
E399 (1997).

With these ASTM methods and strain gage tech-
niques, fracture analyses of any cracked strip may be
determined. More information for well-defined strain
gage applications in fracture research is available in
full detail in Dally and Berger (1993).

Numerical Solution

A symmetrical finite strip with a length of 2L and
a width of 2h, containing a transverse symmetrical
crack of width 2a at the midplane, has been consid-
ered by Yetmez and Gecit (2005). Two rigid plates
are bonded to the ends of the strip, which are as-
sumed to be subjected to axial tension of magnitude
P= 2hp0. The material of the strip is assumed to be
linearly elastic and isotropic. Both edges of the strip
are free of stresses. A solution to this finite strip
problem is obtained by means of an infinite strip of
width 2h that contains a crack of width 2a at y = 0
and 2 rigid inclusions of width 2c at y = ±L and
that is subjected to uniformly distributed axial ten-
sile loads of magnitude P= 2hp0 at y = ±∞ . Field
equations of the linear elasticity theory are solved
subject to the following boundary conditions:

σy(x, ±∞) = p0 (1)

σy(x, 0) = 0 , (|x| < a) (2)

σx(±h, y) = 0 , τxy(±h, y) = 0 (3a,b)

u(x, ±L) = 0 , v(x, ±L) = constan t , ( |x| < c)
(4a,b)

in which σ and τ denote normal and shearing
stresses, and u and v denote the displacements. Gen-
eral expressions containing a sufficient number of un-
knowns are obtained by use of Fourier sine/cosine
transforms alternately in the x and y directions. Ex-
pressions satisfying (1) and (3) contain 3 unknowns,
namely the crack surface displacement derivative

m(x) =
1
2

∂

∂x

[
v

(
x, 0+

)
− v

(
x, 0−

)]
(5)

and the jumps in the stresses through the inclusions

p1(x) = τxy

(
x, L+

)
− τxy

(
x, L−)

(6)

p2(x) = σy

(
x, L+

)
− σy

(
x, L−)

(7)

These unknown functions are calculated by solv-
ing 3 singular integral equations resulting from the
boundary conditions on the crack and the inclusions.
When the width of the rigid inclusions approaches
the width of the strip, i.e. when c → h , the portion
of the infinite strip between the rigid inclusions be-
comes identical with the finite strip problem. The
unknown functions m, p1 and p2 are singular at
x = ±a and x = ±h, respectively:

m(x) = M(x)
/(

a2 − x2
)α

, 0 < Re(α) < 1 (8)

pi(x) = Pi(x)
.�

h2 − x2
�β

, (i = 1, 2) , 0 < Re(β) < 1

(9a,b)

where M , P1 and P2 are Hölder-continuous functions
in the respective intervals.

The strength of the singularities may be calcu-
lated if the integral equations are examined near the
end points using the complex function technique de-
scribed by Muskhelishvili (1953) and the procedure
given by Cook and Erdogan (1972):

α = 1/2, 2κ cosπβ + 4(β − 1)2 − κ2 − 1 = 0
(10a,b)

where
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κ = 3 − 4ν for plane stress (11)

κ = (3 − ν)/(1 + ν) for plane strain (12)

with ν being Poisson’s ratio. The singular integral
equations are reduced to a system of linear algebraic
equations, using the Gauss-Jacobi and the Gauss-
Lobatto integration formulas (Erdogan et al., 1973;
Krenk, 1975), which is solved numerically. After-
wards, all quantities of practical interest can be cal-
culated numerically.

Now consider a finite strip with a length of 2L
and a width of 2h, containing a transverse symmet-
rical crack of width 2a at the midplane. Two rigid
plates are bonded to the ends of the strip, which are
assumed to be subjected to axial tension of magni-
tude

P = 2hp0. The material of the strip is assumed
to be linearly elastic and isotropic. If one imagines
fixed grip conditions, the formal boundary conditions
of the linear elasticity problem will be Eqs. (2), (3a)
and (3b) and

u(x, ±L) = 0 , v(x, ±L) = v0 , ( |x| < h)
(13a,b)

where (see Yetmez (2002))

v0 =
κ + 1
16µ

L

h
P , (14)

µ is the shear modulus.
For a numerical solution of the problem, a

cracked finite strip model with high mesh density
is considered. Referring to Harrop (1982), 8-noded
quadrilateral plane stress/strain full integration ele-
ments are used to provide successful performance for
both crack tip and inclusion edge singularities. The
range of converged singularity ratios for the anal-
yses is presented. The numerical results obtained
are compared with the analytical solutions. A spe-
cific crack element is briefly discussed for its capac-
ity to obtain accurate results with a coarse mesh.
Throughout the numerical solution of a cracked finite
strip (Figure 1), the general purpose finite element
code MSC.MARC, with its pre- and post-processor
MSC.MARC MENTAT, is used. In order to analyze

the stress field of the strip with a reasonable accu-
racy, fine meshed models are used for various strip
and crack geometries. Due to symmetry, only one-
fourth of the cracked finite strip (Figure 2) needs to
be modeled.

2 L

p0

p0

rigid block

elastic strip

rigid block

2 a

2 h

Figure 1. General illustration of a cracked finite strip.

In order to determine the stress field of a cracked
finite strip, the finite element model shown in Figure
2 is used (see Yetmez (2002)). The model involves
focusing a tremendous amount of attention on the
crack tip and the inclusion edge in order to obtain
the stress field accurately. The primary objective of
the analysis of the cracked finite strip is the calcula-
tion of appropriate normal and shearing stresses in
the vicinity of both the crack tip and inclusion edge.
Therefore, highly refined meshes are to be defined
and used to represent the singularities properly and
to obtain reasonably correct stress distributions in
the strip. Given in Figure 2, the optimum mesh can
be obtained by a trial and error procedure. The pro-
cedure indicates that an inclusion length of L/10 is
sufficient for the analysis. The MSC.MARC 8-node
distorted quadrilateral elements, QUAD8, are used
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for the cracked finite strip analysis. The singularity
in QUAD8 is achieved by placing the mid-side node
near the crack tip and the inclusion edge. The mesh
characteristics of the 8-node quadrilateral plane ele-
ment model are given in Table 1.

p0

L /10

L

a

h

7 8 9

4 5 6

3 2 1

araldite

steel

Figure 2. Finite element model and gage installation
nodes.

Boundary conditions for the model are deter-
mined by symmetry conditions. The whole left edge
along the axial direction is constrained in the trans-
verse direction. The right edge along the inclusion in
the axial direction is also constrained in the trans-

verse direction. The edge along the crack is con-
strained in the axial direction. Thus, the unit load
p0 = P /2h is applied along the far edge of the in-
clusion as a uniform negative pressure. In all the
models, element thickness is equal to 1. Material
properties of the finite element model: (1) Young’s
modulus, E= 2 × 1011 N/cm2, Poisson’s ratio ν =
10−3 for the rigid inclusion, and (2) E= 2 × 107

N/cm2, ν = 0.01-0.49 for the strip.

Experimental Work

The main goal or expectation of this part is to de-
termine the experimental behavior of the cracked fi-
nite strips at small strain levels. In order to deter-
mine the test method and its rudimentary sequences
of such strips including their loading and bound-
ary conditions, ASTM test standards are taken into
consideration. After selecting the materials and in-
stalling devices, such as machines and strain gages,
8 cracked finite strip specimens are tested and both
numerical and pictorial data are obtained. All ana-
lytical, numerical and experimental results are com-
pared graphically.

The cracked finite strip specimens consist of 2
types of material. A low-carbon steel and a dimen-
sionally stable, stiff polymer are used for the in-
clusion and the strip materials, respectively. The
low-carbon steel, ERDEMIR ST 3237 A1, or shortly
ERD 3237, is produced by Eregli Iron and Steel
Works Co., Turkey. On the other hand, the polymer,
ARALDITE, is produced by CIBA Specialty Chem-
icals Inc., Switzerland. These 2 types of material are
assumed to be linearly elastic and isotropic. Their
mechanical properties are given in Table 2. Eight
cracked finite strip specimens are prepared by con-
sidering the standard ASTM E338 (ASTM E338

Table 1. Refined mesh characteristics for the quarter cracked finite strip models.

a = 0 a = 0.01h 0.01h < a < 0.99h a = 0.99h
L/h Node # Elem. # Node # Elem. # Node # Elem. # Node # Elem. #
0.25 5353 1728 9737 3168 8471 2752 9053 2944
0.5 5243 1692 13043 4260 8078 2623 9053 2944
1 5529 1786 10248 3337 8633 2806 9635 3136
2 5815 1880 10893 3550 9188 2989 10217 3328
4 6101 1974 11538 3763 9743 3172 10799 3520
8 6387 2068 12183 3976 10298 3355 11381 3712
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1993) as shown in Figure 3. By starting with central
slots, cracks with sharp ends are prepared accord-
ing to the standard ASTM D5045 (ASTM D5045
1993). Finally, strain gages are glued to the strip
specimens (see Yetmez (2002)). For the purpose of
strain measurements in the x- and y-directions, 5
mm foil resistance strain gages and an adhesive are
used. The FLA-5-11 strain gages (gage factor: 2.13
± 0.01 and gage resistance: 120 ±0.3Ω) are products
of TML, Tokyo Sokki Kenkyojo Co., Ltd., Japan.
The adhesive is produced by Bison Power Glue, Hol-
land. Throughout the experimental procedure, mea-
surements are taken on one-fourth of the specimens
(0 < x < h, 0 < y < L) only. The unidirectional
strain gages are mounted by considering 9 critical
points on this fourth. The sequence of the gage in-
stallation is shown in Figure 2.

Static tension tests are performed such that the
cracked finite strip specimens are under small strain
conditions, i.e. ε ≤ 0.3%. Therefore, a constant ax-
ial tensile load of 700 N is applied. For the strain
measurements in the principal directions, a mini-
mum 2 mm/min loading rate is used to reach the ap-
plied maximum load, 700 N, using a computer aided
screw-driven testing machine, Lloyd LS500 (Lloyd
Instruments, UK). NEXYGEN 2.0 software (Lloyd)
is used for this purpose.

The 9-channel strain measurements are com-
pleted using a Portable Strain Indicator with its
Switch and Balance Unit (Model: P-350A, Vishay
Instruments, Vishay Measurement Group, USA).
Prior to the measurements, it is observed that tem-

perature effects in the actual strain gages cause sig-
nificant changes in resistance, which can lead to er-
roneous readings. Therefore, a convenient method of
temperature compensation is used. For this purpose,
one specimen is used as the dummy, while the other
is tested as the active one.

Cracked finite strip specimens may be assumed
to be under plane stress conditions. Therefore, for-
mulas of plane stress state are used:

σx =
E

1 − ν2
{εx + νεy} (15)

σy =
E

1 − ν2
{εy + νεx} (16)

where E is the Young’s modulus and ε denotes nor-
mal strain.

Results

The cracked finite strip is completely defined by the
dimensionless parameters L/h, a/h and Poisson’s ra-
tio ν . In the numerical work, instead of ν , κ defined
in Eqs. (11) and (12) is used. Thus, the numerical
results obtained for one particular value of the mate-
rial constant κ can be used for plane strain or plane
stress geometry with the corresponding Poisson’s ra-
tio calculated from Eq. (11) or (12). Distances and
stresses are normalized with the width of the strip,

Table 2. Mechanical properties of the selected materials.

Material ρ (g/cm3) E (GPa) ν σyield (MPa)
ERD 3237 7.86 207 0.3 288

ARALDITE 1.61 1.04 0.35 43.33

25 mm

25 mm

88 mm 124 mm 5 mm

75 mm

aralditesteel steel

Figure 3. Details of a cracked finite strip specimen according to ASTM E338-93.
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h, and the mean value of the axial load applied to the
strip, p0 = P/2h. For numerical solution a cracked
finite strip model with high mesh density is consid-
ered. Eight-noded quadrilateral plane stress/strain
full integration elements are used to provide suc-
cessful performance for both crack tip and inclusion
edge singularities. The numerical results obtained
are compared with the analytical solutions. A spe-
cific crack element is briefly discussed for its capacity
to obtain accurate results with a coarse mesh. Some
of the computed results for a/h = 0.5 are shown in
Figures 4-10, together with the results of the analyti-
cal solution for verification. It can be seen that there
is an almost perfect agreement between the results
of the analytical and numerical solutions.

Figures 4-7 show normal and shearing stress dis-
tributions at y = L. In these figures, L = h or 8h; ν
= 0.3 (plane strain), 0.42857 (plane stress); and a =
0.5h. There is a better agreement between analyti-
cal and numerical results when the aspect ratio L/h
increases. Note also that the stresses become infinity
at the corner x = h, y = L.

Eight cracked finite strip specimens are tested
and both numerical and pictorial data are obtained

(see Yetmez (2002)). All analytical, numerical and
experimental results are compared graphically. The
average values of the strains for the 8 specimens with
their measurement nodes are given in Table 3. No
εx measurement is obtained at nodes 7, 8 or 9. This
is due to the fact that there will be negligibly small
εx values at nodes 7, 8 and 9, which are very close
to the rigid plate (ERD3237). Hence, it is assumed
that εx at these nodes is zero without obtaining mea-
surements.

Experimental stress distributions calculated from
Eqs.(15) and (16) are compared with related analyt-
ical and numerical results. The analytical, numerical
and experimental results are presented graphically in
Figures 8-10. These figures show that the experimen-
tal findings are acceptable since they have the same
trends as the analytical or numerical results, but al-
ways give somewhat smaller values for the stresses.
This may partly be due to unavoidable deformations
in the adhesive used to fasten the strain gages to
the specimens. Experimental results slightly on the
lower side may be due to the use of relatively long
strain gages also.
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Figure 4. Normal stress σy at y = L for L = h, a= 0.5h; ν = 0.3 (plane strain) or ν = 0.42857 (plane stress).
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Figure 5. Normal stress σy at y = L for L = 8h, a = 0.5h; ν = 0.3 (plane strain) or ν = 0.42857 (plane stress).
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Figure 6. Shearing stress τxy at y = L for L = h, a = 0.5h; ν = 0.3 (plane strain) or ν = 0.42857 (plane stress).
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Figure 7. Shearing stress τxy at y = L for L = 8h, a = 0.5h; ν = 0.3 (plane strain) or ν = 0.42857 (plane stress).
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Figure 8. Normal stress σy at y = L for L = 1.653h, a = 0.333h; ν = 0.35 (plane stress).
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Figure 9. Normal stress σy at y = 0 for L = 1.653h, a = 0.333h; ν = 0.35 (plane stress).
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Figure 10. Normal stress σx at x = 0 for L = 1.653h, a = 0.333h; ν = 0.35 (plane stress).

391



YETMEZ, GEÇİT

Table 3. Averaged strain measurements of 8 cracked fi-
nite strip specimens.

Node # εx (µstrain) εy (µstrain)
1 -512 1145
2 -342 2038
3 -583 181
4 -348 1116
5 -523 1158
6 -539 1094
7 - 767
8 - 772
9 - 1289

Nomenclature

L half length of finite strip
h half width of finite strip
a half width of crack
c half width of rigid inclusions
P axial load applied to the rigid end plates
p0 mean axial normal stress
u transverse displacement
v axial displacement
ρ material density
ε normal strain
σ normal stress
σyield yield stress
τ shearing stress
E Young’s modulus
ν Poisson’s ratio
M ,P1,P2 Hölder-continuous density functions
µ shear modulus
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