
Turkish J. Eng. Env. Sci.
30 (2006) , 14 – 21.
c© TÜBİTAK

Hall Effect on the Flow of a Dusty Bingham Fluid in a Circular Pipe

Hazem Ali ATTIA
Department of Mathematics, College of Science, Al-Qasseem University,

P.O. Box 237, Buraidah 81999, Kingdom of SAUDI ARABIA
Department of Engineering Mathematics and Physics, Faculty of Engineering,

El-Fayoum University, El-Fayoum-EGYPT
e-mail: ah1113@yahoo.com

Received 24.12.2004

Abstract

In this paper, the transient flow of a dusty viscous incompressible electrically conducting non-Newtonian
Bingham fluid through a circular pipe is studied taking the Hall effect into consideration. A constant pressure
gradient in the axial direction and a uniform magnetic field directed perpendicular to the flow direction are
applied. The particle phase is assumed to behave as a viscous fluid. A numerical solution is obtained for the
governing nonlinear equations using finite differences. It is found that the magnetic field decreases the fluid
and particle velocities; however, the Hall parameter leads to an increase in the average velocities of both the
fluid and particle phases and, consequently, in their flow rates and the velocity gradients at the wall.
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Introduction

The flow of a dusty and electrically conducting fluid
through a circular pipe in the presence of a transverse
magnetic field has important applications such as
magnetohydrodynamic (MHD) generators, pumps,
accelerators, and flowmeters. The performance and
efficiency of these devices are influenced by the pres-
ence of suspended solid particles in the form of ash or
soot as a result of the corrosion and wear activities
and/or the combustion processes in MHD generators
and plasma MHD accelerators. When the particle
concentration becomes high, mutual particle inter-
action leads to higher particle-phase viscous stresses
and can be accounted for by endowing the parti-
cle phase by the so-called particle-phase viscosity.
There have been many articles dealing with theoret-
ical modeling and experimental measurements of the
particle-phase viscosity in a dusty fluid (Soo, 1969;
Grace, 1982; Gidaspow et al., 1986; Sinclair et al.,
1989).

The flow of a conducting fluid in a circular pipe
has been investigated by many authors (Dube et

al., 1975; Ritter et al., 1977; Gadiraju et al., 1992;
Chamkha, 1994). Gadiraju et al. (1992) investigated
steady two-phase vertical flow in a pipe. Dube et al.
(1975) and Ritter et al. (1977) reported solutions for
unsteady dusty-gas flow in a circular pipe in the ab-
sence of a magnetic field and particle-phase viscous
stresses. Chamkha (1994) obtained exact solutions
that generalize the results reported in Dube et al.
(1975) and Ritter et al. (1977) by the inclusion of
the magnetic and particle-phase viscous effects. It
should be noted that in the above studies the Hall
effect is ignored.

A number of industrially important fluids such as
molten plastics, polymers, pulps and foods exhibit
non-Newtonian fluid behavior (Metzner et al. 1965;
Nakayama et al., 1988). Due to the growing use of
these non-Newtonian materials, in various manufac-
turing and processing industries, considerable efforts
have been directed towards understanding their flow
characteristics. It is of interest in this paper to study
the influence of the magnetic field as well as the non-
Newtonian fluid characteristics on the dusty fluid
flow properties in situations where the particle phase
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is considered dense enough to include the particulate
viscous stresses (Attia, 1998).

In the present study, the unsteady flow of a
dusty non-Newtonian Bingham fluid through a cir-
cular pipe is investigated considering the Hall effect.
The carrier fluid is assumed viscous, incompressible,
and electrically conducting. The particle phase is
assumed to be incompressible pressureless and elec-
trically non-conducting. The flow in the pipe starts
from rest through the application of a constant axial
pressure gradient. The governing nonlinear momen-
tum equations for both the fluid and particle phases
are solved numerically using the finite difference ap-
proximations. The effect of the Hall current, the
non-Newtonian fluid characteristics and the particle-
phase viscosity on the velocity of the fluid and par-
ticle phases are reported.

Governing Equations

Consider the unsteady, laminar, and axisymmetric
horizontal flow of a dusty conducting non-Newtonian
Bingham fluid through an infinitely long pipe of ra-
dius a driven by a constant pressure gradient. A
uniform magnetic field is applied perpendicular to
the flow direction. The Hall current is taken into
consideration and the magnetic Reynolds number is
assumed to be very small; consequently, the induced
magnetic field is neglected (Sutton et al., 1965). We
assume that both phases behave as viscous fluids and
that the volume fraction of suspended particles is fi-
nite and constant (Chamkha, 1994).

Figure 1. Sketch of the problem.

To formulate the governing equations for this in-
vestigation, the balance laws of mass and linear mo-
mentum are considered along with information about
interfacial and external body forces and stress ten-
sors for both phases. The balance laws of mass (for

the fluid and particulate phases, respectively) can be
written as

∂tφ− ~∇.((1− φ)~V ) = 0, (1a)

∂tφ+ ~∇.(φ~Vp) = 0 (1b)

where t is time, φ is the particulate volume frac-
tion, ~∇ is the gradient operator, ~V is the fluid-phase
velocity vector, and ~Vp is the particulate-phase ve-
locity vector. The true densities for both phases are
assumed constant.

The balance laws of linear momentum (for the
fluid and particulate phases, respectively) can be
written as

ρ(1− φ)(∂t~V + ~V .~∇~V ) = ~∇.↔σ − ~f +~b, (2a)

ρpφ(∂t~Vp + ~Vp.~∇~Vp) = ~∇.↔σp − ~f +~bp (2b)

whereρ is the fluid-phase density, ↔σ is the fluid-phase
stress tensor, ~f is the interphase force per unit volume
associated with the relative motion between the fluid
and particle phases, ~bis the fluid-phase body force
per unit volume, and ~bp is the particle-phase body
force per unit volume.

Along with Eqs. (1) and (2), the following con-
stitutive equations are used

↔
σ = (1− φ)(−P

↔
I + µ(~∇~V + ~∇~V T )), (3a)

↔
σp = φµp(~∇~Vp + ~∇~V Tp )), (3b)

f = Nρpφ(V − Vp), (3c)

~b = −1/ρ( ~J ∧ ~Bo), (3d)

~bp = ~0 (3e)

where P is the fluid pressure,
↔
I is the unit tensor,

µ is the fluid dynamic viscosity, µp is the particle-
phase dynamic viscosity, N is the inverse relaxation
time (the inverse time required by a particle to re-
duce its velocity relative to that of the fluid by e−1

from its initial value (Chamkha, 1994), ~J is the elec-
tric current density vector, ~Bo is the uniform applied
magnetic induction field vector, and a transposed T
denotes the transpose of a second-order tensor.
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If the Hall term is retained, the current density
~J is given by (Sutton et al., 1965)

~J = ε[~V × ~Bo − β( ~J × ~Bo)] (4)

where ε is the electric conductivity of the fluid and
β is the Hall factor (Sutton et al., 1965). Equation
(4) may be solved in ~J to obtain the electromagnetic
Lorentz force in the form (Sutton et al., 1965)

~J × ~Bo = − εB2
o

1 + m2
V ~k (5)

where m=εβBo is the Hall parameter, Bo is the mag-
netic induction, and ~k is a unit vector along the z-
direction. Solving Eq. (5) for ~J and substituting in
Eqs. (1)-(3) with expanding yields

ρ
∂V

∂t
= −∂P

∂z
+

1
r

∂

∂r

(
µr
∂V

∂r

)

+
ρpφ

1− φN(Vp − V ) − εB2
oV

1 + m2

(6)

ρp
∂Vp
∂t

=
1
r

∂

∂r

(
µpr

∂Vp
∂r

)
+ ρpN(V − Vp) (7)

In the present work φ, ρ, ρp, µp and Nwill all be
treated as constants while µ is the apparent viscosity
of the Bingham fluid, which is assumed to be

µ = µo +
τo∣∣∂V
∂r

∣∣
where µo is the plastic viscosity of a Bingham fluid
and τo is the yield stress. The last three terms on the
right-hand side of Eq. (6) represent, respectively, the
electromagnetic Lorentz force per unit volume, the
interphase force per unit volume acting on the fluid
phase and the viscous forces of the non-Newtonian
Bingham fluid. It should be pointed out that the par-
ticle phase pressure is assumed negligible and that
the particles are being dragged along with the fluid
phase.

The initial and boundary conditions of the prob-
lem are given as

V (r, 0) = 0, Vp(r, 0) = 0, (8a)

∂V (0, t)
∂r

= 0,
∂Vp(0, t)

∂r
= 0, V (a, t) = 0, Vp(a, t) = 0

(8b)

Equations (6)-(8) constitute a nonlinear initial-
value problem that can be made dimensionless by in-
troducing the following dimensionless variables and
parameters

r̄ =
r

d
, t̄ =

tµo
ρd2

, Go = −∂P
∂z

, k =
ρpφ

ρ(1− φ)
, µ̄ =

µ

µo

V̄ (r, t) =
µoV (r, t)
Goa2

, V̄p(r, t) =
µoVp(r, t)
Goa2

,

α = Na2ρ/µo is the inverse Stokes’ number,
B = µp/µo is the viscosity ratio,
τD = τo/Goa is the Bingham number (dimension-

less yield stress),
Ha = Boa

√
ε/µo is the Hartmann number (Sut-

ton et al., 1965).

By introducing the above dimensionless variables
and parameters as well as the expression of the fluid
viscosity defined above, Eqs. (6)-(8) can be written
as (the bars are dropped),

∂V

∂t
= 1 +

∂2V

∂r2
+
µ

r

∂V

∂r
+ kα(Vp − V ) − Ha2V

1 + m2

(9)

∂Vp
∂t

= B

(
∂2Vp
∂r2

+
1
r

∂Vp
∂r

)
+ α(V − Vp) (10)

µ = 1 +
τD∣∣∂V
∂r

∣∣
V (r, 0) = 0, Vp(r, 0) = 0, (11a)

∂V (0, t)
∂r

= 0,
∂Vp(0, t)

∂r
= 0, V (1, t) = 0, Vp(1, t) = 0

(11b)

Of special interest are the fluid-phase volume flow
rate, the particle phase volume flow rate, and the
fluid phase skin-friction coefficient. They are given,
respectively, by the following relations (Chamkha,
1994):
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Q = 2π

1∫
0

rV (r, t)dr, Qp = 2π

1∫
0

rVp(r, t)dr,

C = −∂V (1, t)
∂r

, Cp = −Bk∂Vp(1, t)
∂r

(12)

where the expressions for Q andQp are derived from
the integral of the velocity of fluid phase and parti-
cle phase, respectively, over the cross-sectional area
of the pipe. The quantities C andCp are related to
the velocity gradient at the wall of both phases. It
should be mentioned that the above expressions for
flow rates do not depend on the volume fractions
because of the constant volume fraction assumption
employed in this problem (Chamkha, 1994, 1995).
There are more elaborate constitutive theories that
predict nonuniform particulate volume fraction dis-
tributions that will eventually be needed for model-
ing more complex multiphase problems (Chamkha,
1995). The particle phase with a constant viscosity
is a step in that direction.

Results and Discussion

Equations (9) and (10) represent a coupled system
of non-linear partial differential equations that are
solved numerically under the initial and boundary
conditions (11) using the finite difference approxi-
mations. A linearization technique is first applied to
replace the nonlinear terms at a linear stage, with
the corrections incorporated in subsequent iterative
steps until convergence is reached. The computa-
tional domain is divided into meshes each of dimen-
sion ∆tand ∆r in time and space, respectively. Then
the Crank-Nicolson implicit method is used at two
successive time levels (Mitchell et al., 1980; Evans
et al., 2000). An iterative scheme is used to solve
the linearized system of difference equations. The
solution at a certain time step is chosen as an ini-
tial guess for the next time step and the iterations
are continued untill convergence, within a prescribed
accuracy. Finally, the resulting block tri-diagonal
system is solved using the generalized Thomas al-
gorithm (Mitchell et al., 1980; Evans et al., 2000).
Computations have been performed for α = 1 and
k = 10. Grid-independence studies show that the
computational domain 0 < t < ∞ and 0 < r < 1
can be divided into intervals with step sizes ∆t =
0.0001 and ∆r = 0.005 for time and space, respec-
tively. Smaller step sizes do not show any significant

change in the results. Convergence of the scheme is
assumed when all of the unknowns V , Vp, ∂V/∂r,
and ∂Vp/∂r for the last two approximations differ
from unity by less than 10−6 for all values of r in 0 ¡
r¡ 1 at every time step. It should be mentioned that
the results obtained herein reduce to those reported
by Dube et al. (1975) and Chamkha (1994) for the
cases of non-magnetic, inviscid particle-phase (B=
0), and Newtonian fluid. These comparisons lend
confidence to the accuracy and correctness of the so-
lutions.

The imposing of a magnetic field normal to the
flow direction gives rise to a drag-like or resistive
force and it has the tendency to slow down or sup-
press the movement of the fluid in the pipe, which,
in turn, reduces the motion of the suspended particle
phase. This is translated into reductions in the av-
erage velocities of both the fluid and particle phases
and, consequently, in their flow rates. In addition,
the reduced motion of the particulate suspension in
the pipe as a result of increasing the strength of the
magnetic field causes lower velocity gradients at the
wall. This has the direct effect of reducing the skin-
friction coefficients of both phases. Including the
Hall parameter decreases the resistive force imposed
by the magnetic field due to its effect in reducing the
effective conductivity. Therefore, the Hall parame-
ter leads to an increase in the average velocities of
both the fluid and particle phases and, consequently,
in their flow rates and the velocity gradients at the
wall.

Figures 2 and 3 present the time evolution of the
profiles of the velocity of the fluid V and dust parti-
cles Vp, respectively, for various values of the Bing-
ham number τD and for m= 0, Ha = 0.5 and B=
0.5. Both V and Vp increase with time and V reaches
the steady state faster than Vp for all values of τD.
It is clear from Figures 2 and 3 that increasing τD,
which decreases the driving force for V , decreases V
and, consequently, decreases Vp while its effect on
their steady-state times can be neglected.

Figures 4 and 5 present the time evolution of the
profiles of the velocity of the fluid V and dust parti-
cles Vp, respectively, for various values of the Bing-
ham number τD and for m= 1, Ha = 0.5 and B=
0.5. It is seen in the figures that increasing m in-
creases V and, in turn, Vp due to the decrease in the
effective conductivity (σ/(1 + m2)) which reduces
the damping magnetic force on V .
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Figure 2. Time development of V for various values of
τD(m= 0).

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

0 0.2 0.4 0.6 0.8 1

r

Vp

t=0.5 t=1 t=2

 
(a) �D =0.0 
 

0.00E+00

1.00E-02

2.00E-02

3.00E-02

0 0.2 0.4 0.6 0.8 1

r

Vp

t=0.5 t=1 t=2

(b) �D  = 0.025 
 

0.00E+00

1.00E-02

2.00E-02

3.00E-02

0 0.2 0.4 0.6 0.8 1

r

Vp

t=0 t=1 t=2

(c) �D  = 0.05 

Figure 3. Time development of Vp for various values of
τD(m = 0).
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Figure 4. Time development of V for various values of
τD(m = 1).
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Figure 5. Time development of Vp for various values of
τD(m = 1).
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Table 1 presents the steady-state values of the
fluid-phase volumetric flow rateQ, the particle-phase
volumetric flow rate Qp, the fluid-phase skin friction
coefficient C, and the particle-phase skin friction co-
efficient Cp for various values of the parameters τD
and m for Ha = 0.5 and B= 0.5. It is clear that
increasing the parameter m increases Q, Qp, C, and
Cp for all values of τD. This comes from the fact that
increasing m increases the velocities and their gra-
dients which increases the average velocities of both
the fluid and particle phases and, consequently, in-
creases their flow rates and skin-friction coefficients
of both phases. It is also shown that increasing τD
decreases Q, Qp, C, and Cp for all values of m as a
result of decreasing the velocities of both phases.

Table 2 presents the steady-state values of the
fluid-phase volumetric flow rateQ, the particle-phase
volumetric flow rate Qp, the fluid-phase skin friction
coefficient C, and the particle-phase skin friction co-
efficient Cp for various values of the parameters m
and B for Ha = 0.5 and τD= 0. It is clear that
increasing m increases Q, Qp, C, and Cp for all val-
ues of B and its effect becomes more pronounced for
smaller values of B. Increasing the parameter B de-
creases the quantities Q, Qp, and C, but increases
Cp for all values of m. This can be attributed to the
fact that increasing B increases viscosity and there-
fore the flow rates of both phases as well as the fluid
phase wall friction decrease considerably. However,
since Cpis defined as directly proportional to B, it
increases as B increases at all times.

Table 1. The steady-state values of Q,Qp, C, Cp for

various values of m and τD (Ha = 0.5 and B = 0.5).

τD = 0 m= 0 m= 1 m= 2
Q 0.1764 0.1779 0.1789
Qp 0.0426 0.0430 0.0433
C 0.2818 0.2834 0.2844
Cp 0.2111 0.2129 0.2140

τD = 0.025 m= 0 m= 1 m= 2
Q 0.1649 0.1663 0.1673
Qp 0.0396 0.0400 0.0402
C 0.2704 0.2719 0.2729
Cp 0.1975 0.1995 0.2005

τD = 0.05 m= 0 m= 1 m= 2
Q 0.1525 0.1535 0.1564
Qp 0.0364 0.0369 0.0372
C 0.2583 0.2598 0.2612
Cp 0.1834 0.1859 0.1868

Table 2. The steady-state values of Q,Qp, C, Cp for

various values m and B (Ha = 0.5 and τD = 0).

B= 0 m= 0 m= 1 m= 2
Q 0.3032 0.3075 0.3101
Qp 0.2582 0.2615 0.2635
C 0.4125 0.4167 0.4193
Cp 0 0 0

B= 0.5 m= 0 m= 1 m= 2
Q 0.1764 0.1779 0.1789
Qp 0.0426 0.0430 0.0433
C 0.2818 0.2834 0.2844
Cp 0.2111 0.2129 0.2140

B= 1 m= 0 m= 1 m= 2
Q 0.1640 0.1654 0.1662
Qp 0.0226 0.0228 0.0229
C 0.2702 0.2716 0.2724
Cp 0.2231 0.2249 0.2260

Conclusion

The transient MHD flow of a particulate suspension
in an electrically conducting non-Newtonian Bing-
ham fluid in a circular pipe is studied considering
the Hall effect. The governing nonlinear partial dif-
ferential equations are solved numerically using fi-
nite differences. The effect of the magnetic field pa-
rameter Ha, the Hall parameter, the non-Newtonian
fluid characteristics (Bingham number τD), and the
particle-phase viscosity B on the transient behavior
of the velocity, volumetric flow rates, and skin fric-
tion coefficients of both fluid and particle phases is
studied. It is shown that increasing the magnetic
field decreases the fluid and particle velocities, while
increasing the Hall parameter increases both veloc-
ities. It is found that increasing the parameter m
increases Q, Qp, C, and Cp for all values of τD. The
effect of the Hall parameter on the quantities Q, Qp,
C, and Cp becomes more pronounced for smaller val-
ues of B.

Nomenclature

a pipe radius,
Bo magnetic induction,
C fluid-phase skin-friction coefficient,
Cp particle-phase skin-friction coefficient,
Ha Hartmann number,
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m Hall parameter,
N momentum transfer coefficient,
P pressure gradient,
Q fluid-phase volumetric flow rate,
Qp fluid-phase volumetric flow rate,
r distance in the radial direction,
t time,
V fluid-phase velocity,
Vp particle-phase velocity,
z axial direction,

B viscosity ratio,
φ particle-phase volume fraction,
k particle loading,
µ fluid-phase viscosity,
µp particle-phase viscosity,
ρ fluid-phase density,
ρp fluid-phase density,
ε fluid electrical conductivity,
τo yield stress
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