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Abstract

Most current space missions require accurate knowledge of the satellite attitude and orbital position.
Here the navigation system design will focus on the use of only one sensor, a magnetometer. A nanosatellite
is considered as it is a straightforward solution to reduce the cost of the mission and provide space emerging
countries like Malaysia with access to space. Therefore, the development of innovative navigation algorithms
is of foremost interest as it will allow us to use fewer and cheaper sensors. This paper describes a navigation
concept applied to a nanosatellite equipped with only a magnetometer. It emphasizes the latest geomagnetic
field model available and provides a brief overview of the magnetometers used in micro- and nanosatellites.
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Introduction

The navigation of a satellite implies the determina-
tion and control of both the orbit and the attitude
of the satellite. The control of the orbit is required
to maintain the satellite on the desired trajectory
for the entire duration of the mission. The control
of the attitude is very mission dependent in terms
of requirements and it is necessary to point or slew
the satellite in space. In this paper we will focus
on the attitude determination problem and how to
estimate the attitude from the measurement of the
geomagnetic field.

The types of sensors used for low-cost nanosatel-

lites and microsatellites are preferably commercial
off-the-shelf (COTS) sensors, meaning that they
are not specifically designed for space applications.
Solid-state sensors, like microgyros or magnetoresis-
tive magnetometers are favored for their small size
and low cost. They have the double advantage of re-
ducing the total weight of the satellite, which means
it is cheaper to send into space, and has very low
power requirements. As an example a comparison
between current and past gyroscope characteristics
is made in Table 1. Note that the drift increases as
the size of the gyros is reduced. To compensate for
this loss of accuracy the algorithms used to estimate
the attitude must be more efficient.

Table 1. Comparison of gyro specifications per decade.

Gyro MASS SIZE (cm) POWER (W) DRIFT (deg/h)
1970s 17 kg ∼ 28 x 30 x 33 ∼ 22 0.003
1980s 5 kg ∼ 28 x 20 x 10 ∼ 18 0.01
2000s < 30 g 1.5 x 1.5 x 3 ∼ 1 ∼ 10
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Mission Design

A satellite is easily differentiated from other objects
by its weight and by the type of trajectory it is fol-
lowing. A classification of satellites according to
their mass is given in Table 2. The satellite cho-
sen for this mission is a nanosatellite. It is generally
agreed that this type of satellite weighs between 1
kg and 10 kg.

Table 2. Classification of satellites according to their
mass (from Surrey Satellite Technology).

SSTL Classification
Large > 400 kg
Small 100 – 400 kg
Micro 10 – 100 kg
Nano 1 – 10 kg
Pico 0.1 – 1 kg

The main justification for choosing a nanosatel-
lite is that the cost of sending something into space
is proportional to its mass: between USD 5,000 and
USD 50,000 per kilogram, depending on the launcher
and if the satellite is sent as a primary or secondary
payload.

The orbit required to validate our navigation sys-
tem would be around 500 km of altitude, circular,
with an inclination of nearly 2 degrees. The orbital
plane is therefore close to the equatorial plane. This

type of orbit is of particular interest to equatorial
countries for remote sensing purposes.

For a given satellite the design of the attitude
determination system depends on the attitude accu-
racy required to achieve the mission objectives. The
requirement that we would like to achieve is an ac-
curacy of better than 5◦ (3σ) about each axis of the
satellite. As stated earlier we will limit the attitude
determination hardware to a minimum to abide with
the constraints of the low cost and small size of the
satellite. The small size implies that the available
power is limited by the reduced area of the solar pan-
els, which are usually placed on the satellite sides,
and also by the smaller battery carried by the satel-
lite.

Earth’s Magnetic Field

The present knowledge states that the Earth’s mag-
netic field is a vector quantity depending on both
space and time and made up of a superposition of 3
main sources, namely:

• the field generated by the Earth’s outer core,
usually called the main field (Bm)

• the field generated by the Earth’s crust and
upper mantle regions, or lithosphere (Bl)

• the field generated by ionospheric and magne-
tospheric electric currents (Bc)

Figure 1. Satellite ground track in the geocentric inertial frame.
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The total magnetic field above the Earth’s sur-
face is then written as

B(r , t) = Bm(r , t) +Bl(r, t) +Bc(r , t) (1)

According to McLean (2004), the term Bm con-
tributes to over 95% of the total field.

The direction and intensity of B are dependent
of our observation point around the Earth as shown
in Figure 2.

Geographic
North Pole

Magnetic
North Pole

Figure 2. Earth’s magnetic field lines.

The intensity of B decreases with altitude and
above 6000 km it is practically impossible to use the
geomagnetic field to determine the satellite attitude.
This is partly due to the influence of the term Bc

in Eq. (1). This term is not included in the com-
mon geomagnetic model like the one discussed in the
next paragraph. At the Earth’s surface the intensity
of the field varies from approximately 50,000 nT (or
0.5 G) at the poles to 30,000 nT (or 0.3 G) at the
equator. Above 10,000 km it becomes less than 2000
nT. The geomagnetic field resembles the field created
by a bar magnet placed at the center of the Earth
and having an inclination of approximately 10.5 de-
grees to the Earth’s rotation axis. The intensity of
the Earth’s magnetic field is in reality quite irregular
in spite of the general symmetry indicated in Figure
2. Indeed the field intensity slowly varies at different
rates according to the position at the Earth’s surface.

Earth Magnetic Modeling and WMM2005

Because the Earth’s magnetic field is constantly
changing with time it is necessary to develop a math-
ematical model to predict its future, or past, behav-
ior. The derivation of the model requires the avail-
ability of measurement data and the better the qual-
ity of the data obtained the better the accuracy of
the model. Measurements mainly come from satel-
lites orbiting the Earth at low altitudes with the spe-
cific mission of gathering these data and also from
ground observatories scattered across the Earth’s
surface. Orsted and Champ are satellites having
flown this kind of mission and their data are used
to produce the model we will discuss here. These
2 categories of data (ground and space) are com-
plementary to each other: satellite data provide a
good spatial coverage but are available sparsely in
time, whereas data from observatories are available
almost continuously but only at a limited number of
positions.

The 2 main models used for practical applica-
tions are the International Geomagnetic Reference
Field (IGRF) from the International Association
for Geomagnetism and Aeronomy (IAGA) and the
World Magnetic Model (WMM) developed by the US
National Oceanic and Atmospheric Administration
(NOAA) and the British Geological Survey (BGS).
The WMM is the standard model used in military
and civilian navigation systems in both the US and
UK. The IGRF is the model preferred by the aca-
demic community and results from a voluntary effort
made by a number of modeling teams associated with
the IAGA (Macmillan, 2005). Both these models are
revised at least every 5 years and are usually valid for
5 more years after their release. The latest models
were issued in December 2004. Their denomination
is WMM2005 and IGRF-10.

The different terms in the total field of Eq. (1)
are usually modeled separately in the form of gradi-
ent of scalar potentials. The assumption is usually
made that the geomagnetic field is irrotational in the
area of interest so that we can write the vector field
as the gradient of a potential function:

B(r, λ, θ, t) = −∇V (r, λ, θ, t) (2)

where (r, λ, θ) represent respectively the radius, the
longitude and the co-latitude in a spherical, geocen-
tric reference frame.
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The mathematical model of the Earth’s magnetic
field originates from the solution of Eq. (2), where
the potential V satisfies the Laplace equation since
the divergence of B is null,

∇2V (r, λ, θ, t) = 0 (3)

The general solution to this equation can be writ-
ten as the sum of 2 series (Eq. (4)). One series of
terms is rn, which means that we are approaching
the source when r increases and that the terms rep-
resent external field contributions. The other series
of terms, (1/r)n, becomes larger when r decreases.
They represent the contribution of the Earth’s inter-
nal fields.

V (r, λ, θ, t)=a
∞∑

n=1

[( r
a

)n

Se
n(λ, θ) +

(a
r

)n+1

Si
n(λ, θ)

]

(4)

where a is the standard Earth’s magnetic reference
radius (6371.2 km), Sn is the spherical harmonics
function of the longitudeλand of the geocentric co-
latitudeθ. The superscript e stands for external and
the superscript i for internal.

In practice the contributions of the external
sources are minimal and not taken into account for
most applications. Indeed the series is not included
in the WMM or IGRF models. Olsen (2002) can be
consulted for the parameterization of the external
fields.

The spherical harmonics function Sn(λ, θ) can
be written as the product of 2 variable-independent
functions: one function of λ: cos(mλ)and sin(mλ),
and one function of θ that is called associated Leg-
endre polynomials Pm

n (cos θ).
Considering this fact and using only the terms of

the internal sources of Eq. (4), the potential can be
written as

V (r, λ, θ, t) =
N∑

n=1

n∑
m=0

Vm
n = (5)

a

N∑
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(
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(gm
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wheregm
n (t)and hm

n (t) are the time-dependent Gauss

coefficients of degree n and order m, and
�

P
m

n (cos θ)

are the Schmidt normalized associated Legendre
polynomials. Note that if the latitude is used instead
of the co-latitude in the expression of the potential
then cos θ is replaced by the sinus of the latitude.
For the purpose of modeling, the degree of the series
is limited to N , which equals 12 for the WMM2005
model and 13 for the IGRF-10 model. The reasons
for this limitation can be found in Campbell (2003)
(p.31).

The time dependence of the geomagnetic field in
Eq. (2) is modeled by the time dependence of the
Gauss coefficients. Their variation with time is usu-
ally assumed to be linear for the 5-year validity pe-
riod of the models. They are calculated from the
following relations at the date t expressed in years,

gm
n (t) = gm

n + ġm
n × (t− t0) t0 ≤ t ≤ t0 + 5 (6)

hm
n (t) = hm

n + ḣm
n × (t− t0) t0 ≤ t ≤ t0 + 5 (7)

wheregm
n andhm

n are the main field coefficients at
the reference date t0 of the model (2005 for the
WMM2005), ġm

n andḣm
n are the secular variation

(SV) coefficients for the 5-year period following the
reference date. It is these coefficients that describe
a model and they are freely available in the form of
a text file from the internet. The coefficients of the
WMM2005 are given in Table 3.

In satellite navigation the geomagnetic field
model is used for 2 different purposes. The most
obvious and the one that comes to mind immedi-
ately is when the model is stored in the navigation
system memory. Then it is used in such a way that
the real value of the geomagnetic field, measured by
onboard instrumentations, is compared to the value
given by the model. The result of this comparison
provides information on the satellite orientation. We
refer to the geomagnetic field model used this way as
the onboard model. The second common utility of the
geomagnetic field model is in the simulation of the
satellite navigation system. In that case the model
is used to generate the value of the Earth’s mag-
netic field at any simulated position of the satellite.
This value is in replacement of the one that would be
measured by the onboard magnetometer if the satel-
lite was effectively in orbit. The model is therefore
referred to as the simulation model, or truth model.
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Table 3. Coefficients of the WMM2005 model. The unit
of the main coefficients is in nT and the unit of
the SV coefficients in nT per year for the 2005-
2010 period.

n m gm
n hm

n ġm
n ḣm

n

1 0 -29556.8 8.0
1 1 -1671.7 5079.8 10.6 -20.9
2 0 -2340.6 -15.1
2 1 3046.9 -2594.7 -7.8 -23.2
2 2 1657.0 -516.7 -0.8 -14.6
3 0 1335.4 0.4
3 1 -2305.1 -199.9 -2.6 5.0
3 2 1246.7 269.3 -1.2 -7.0
3 3 674.0 -524.2 -6.5 -0.6
4 0 919.8 -2.5
4 1 798.1 281.5 2.8 2.2
4 2 211.3 -226.0 -7.0 1.6
4 3 -379.4 145.8 6.2 5.8
4 4 100.0 -304.7 -3.8 0.1
5 0 -227.4 -2.8
5 1 354.6 42.4 0.7 0.0
5 2 208.7 179.8 -3.2 1.7
5 3 -136.5 -123.0 -1.1 2.1
5 4 -168.3 -19.5 0.1 4.8
5 5 -14.1 103.6 -0.8 -1.1
6 0 73.2 -0.7
6 1 69.7 -20.3 0.4 -0.6
6 2 76.7 54.7 -0.3 -1.9
6 3 -151.2 63.6 2.3 -0.4
6 4 -14.9 -63.4 -2.1 -0.5
6 5 14.6 -0.1 -0.6 -0.3
6 6 -86.3 50.4 1.4 0.7
7 0 80.1 0.2
7 1 -74.5 -61.5 -0.1 0.6
7 2 -1.4 -22.4 -0.3 0.4
7 3 38.5 7.2 1.1 0.2
7 4 12.4 25.4 0.6 0.3
7 5 9.5 11.0 0.5 -0.8
7 6 5.7 -26.4 -0.4 -0.2
7 7 1.8 -5.1 0.6 0.1
8 0 24.9 0.1
8 1 7.7 11.2 0.3 -0.2
8 2 -11.6 -21.0 -0.4 0.1
8 3 -6.9 9.6 0.3 0.3
8 4 -18.2 -19.8 -0.3 0.4
8 5 10.0 16.1 0.2 0.1
8 6 9.2 7.7 0.4 -0.2
8 7 -11.6 -12.9 -0.7 0.4
8 8 -5.2 -0.2 0.4 0.4

Table 3. Contunied.

n m gm
n hm

n ġm
n ḣm

n

9 0 5.6 0.0
9 1 9.9 -20.1 0.0 0.0
9 2 3.5 12.9 0.0 0.0
9 3 -7.0 12.6 0.0 0.0
9 4 5.1 -6.7 0.0 0.0
9 5 -10.8 -8.1 0.0 0.0
9 6 -1.3 8.0 0.0 0.0
9 7 8.8 2.9 0.0 0.0
9 8 -6.7 -7.9 0.0 0.0
9 9 -9.1 6.0 0.0 0.0
10 0 -2.3 0.0 0.0
10 1 -6.3 2.4 0.0 0.0
10 2 1.6 0.2 0.0 0.0
10 3 -2.6 4.4 0.0 0.0
10 4 0.0 4.8 0.0 0.0
10 5 3.1 -6.5 0.0 0.0
10 6 0.4 -1.1 0.0 0.0
10 7 2.1 -3.4 0.0 0.0
10 8 3.9 -0.8 0.0 0.0
10 9 -0.1 -2.3 0.0 0.0
10 10 -2.3 -7.9 0.0 0.0
11 0 2.8 0.0 0.0
11 1 -1.6 0.3 0.0 0.0
11 2 -1.7 1.2 0.0 0.0
11 3 1.7 -0.8 0.0 0.0
11 4 -0.1 -2.5 0.0 0.0
11 5 0.1 0.9 0.0 0.0
11 6 -0.7 -0.6 0.0 0.0
11 7 0.7 -2.7 0.0 0.0
11 8 1.8 -0.9 0.0 0.0
11 9 0.0 -1.3 0.0 0.0
11 10 1.1 -2.0 0.0 0.0
11 11 4.1 -1.2 0.0 0.0
12 0 -2.4 0.0 0.0
12 1 -0.4 -0.4 0.0 0.0
12 2 0.2 0.3 0.0 0.0
12 3 0.8 2.4 0.0 0.0
12 4 -0.3 -2.6 0.0 0.0
12 5 1.1 0.6 0.0 0.0
12 6 -0.5 0.3 0.0 0.0
12 7 0.4 0.0 0.0 0.0
12 8 -0.3 0.0 0.0 0.0
12 9 -0.3 0.3 0.0 0.0
12 10 -0.1 -0.9 0.0 0.0
12 11 -0.3 -0.4 0.0 0.0
12 12 -0.1 0.8 0.0 0.0
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With a recursive algorithm implementing Eq. (5)
in Matlab r©it was possible to generate the value of
the geomagnetic field for any given orbit at the de-
sired epoch. It is this algorithm that is used for the
onboard model and for the simulation model. The
geomagnetic field vector is represented in Figure 3

along a circular orbit of altitude 540 km, inclined 2
degrees, at the epoch 2005.16 years (equivalent to
1st March 2005). Its components in the Geocentric
Equatorial coordinate system and its magnitude are
plotted in Figure 4.
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Figure 3. Earth’s magnetic field vector along a circular orbit inclined 2 degrees.
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Figure 4. Earth’s magnetic field components along a circular orbit inclined 2 degrees.
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As can be seen in Table 3, the maximum degree
of the WMM2005 model is n = 12. The maximum
accuracy in the estimation of the geomagnetic field is
obtained for this degree, meaning that all the Gauss
coefficients are accounted for in the algorithm used to
generate the field. The following section provides a
comparison of the accuracy of the WMM2005 model
when different modeling degrees are used. This anal-
ysis is useful for determining the optimal degree re-

quired by the satellite’s onboard magnetic model.
The smaller the degree used for the model the faster
the computation is realized by the microprocessor. It
is common on many CubeSat1 satellites (where the
processing capacities are greatly limited) to truncate
the model to the degree 6, as in spite of the modeling
error created by this approximation the satellite still
meets the requirements of the mission (Giesselmann,
2004).
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Figure 5. Field components differences for the WMM2005 model between degree 12 and degree 10, along a circular orbit
inclined 2 degrees of altitude 540 km.
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Figure 6. Field components differences for the WMM2005 model between degree 12 and degree 8, along a circular orbit
inclined 2 degrees of altitude 540 km.

1A CubeSat is a standardized satellite of cubic shape with length of 10 cm and maximum weight of 1 kg.
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Figure 7. Field components differences for the WMM2005 model between degree 12 and degree 6, along a circular orbit
inclined 2 degrees of altitude 540 km.

0 50 100 150
-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10 -6

Fi
el

d 
co

m
po

ne
nt

s 
di

ffe
re

nc
e 

in
 T

es
la

Simulation steps (1 step = 50 sec)

dBx

dBy
dBz

Figure 8. Field components differences for the WMM2005 model between degree 12 and degree 4, along a circular orbit
inclined 2 degrees of altitude 540 km.

If we assume that the model of degree 12 repre-
sents reality, the plots of the difference between this
model and models of lower degree indicate the error
realized on each component of the geomagnetic field.
Figures 5 to 8 show that the error on each compo-
nent of the geomagnetic field increases as well as the
standard deviation for each component (Figure 9).

This level of accuracy is usually satisfactory for

most nanosatellite missions as the magnetometer
sensor will be subjected to disturbance fields due to
magnetic materials and electric currents in the satel-
lite electronics that are also in this order of magni-
tude. If we choose the model of degree 6, the error
will be less than 1.4%, and for the model of degree 4
the error will be less than 5.6%.
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Figure 9. Standard deviation for each component as a function of the degree of the model.
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Figure 10. Field magnitude for the differences between model 12 and 8, 12 and 6, and 12 and 4, using the WMM2005
model along a circular orbit inclined 2 degrees.

Considering that the geomagnetic field amplitude
for the circular orbit considered in Figure 4 is vary-
ing between 20,000 and 35,000 nT, the error created
on the geomagnetic field amplitude by using a model
truncated to the degree 8 will be less than 0.3% , and
will stay in the interval ±100 nT (Figure 10).

Magnetometer for Space Applicatons

Space magnetometers are simple, reliable and widely
available for under USD 10,000. Magnetometers
used to measure the Earth’s magnetic field are
mainly of 3 different types: fluxgate, magnetoinduc-
tive and anisotropic magnetoresistive (AMR). Flux-

gate magnetometers are the most common type used
for navigation. Based on a primary coil excited at
a constant frequency and a secondary coil that out-
put a signal coupled to the drive voltage through
the ferromagnetic core of the sensor. The voltage at
the secondary coil is sensitive to any variation of the
external magnetic field. The 3-axis fluxgate magne-
tometer designed by Surrey Satellite Technology Ltd
has a range of ±60 µT with a very low power con-
sumption of 0.147 W. The operating temperature is
between -50 and +80 ◦C, which is sufficient to with-
stand the temperature variation of the space envi-
ronment (Figure 11).
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Figure 11. Fluxgate Magnetometer (130 x 90 x 36 mm,
295 g) from Surrey Satellite Technology.

The magnetoinductive sensor is relatively new,
with the first patent issued in 1989. It has the advan-
tages of being cheaper and smaller than the fluxgate
sensor. The TCM2 magnetometer manufactured by
Precision Navigation Inc. has a resolution of 10 nT,
a range of ±80 µT and an operating temperature
between -20 and +70 ◦C. Its dimensions are 63.5 x
50.8 x 31.75 mm and weight is 45.5 g. The power
consumption is less than 0.12 W.

The AMR magnetometer has the widest range of
application: disk drive heads, wheel speed sensing,
current sensing, compass navigation and satellite at-
titude determination.

Honeywell manufactures a variety of magnetic
sensors based on the property of a permalloy film
to change in resistance in the presence of a mag-
netic field. The HMR2300 has been used in the
Canadian nanosat CanX-1 launched on June 30 2003
and the NCUBE1 and NCUBE2 nanosatellites from
NTN University in Norway (launch date planned for
the first half of 2005). The characteristics of the
HMR2300 are as follows: range of ±200 µT, resolu-
tion of 6.7 nT and operating temperature from -40
and +85 ◦C. The magnetometer board weighs 28 g

and measures 74.9 x 30.5 x 22 mm, while consuming
a maximum power of 0.228 W.

The HMC2003 has been used in the following
missions already: HokieSat from Virginia Tech Uni-
versity (never launched), TU-Sat-1 from Taylor Uni-
versity launched on May 2002 and Dawgstar from
University of Washington (launched in the beginning
of 2003). The HMC1001 and HMC1002 have been
used in the CubeSat from Aalborg University in Swe-
den (launched on June 2003). These 2 sensors are
also the primary components of the HMR2300 and
are used to measure the magnetic field along 1 and 2
axes, respectively. The HMC1021 has been used in
the DTUSat of the Technical University of Denmark
(launched on June 2003). It is a one-axis sensor. The
HMC1022 is the equivalent 2-axis sensor.

According to Svartveit (2003), based on the atti-
tude determination design of the NCUBE nanosatel-
lite, it seems that a digital magnetometer, like the
HMR2300, priced at approximately USD 700, is
preferred to analog output magnetometer like the
HMC2003, which is about 3 times less expensive.
The features of the Honeywell magnetoresistive sen-
sors are summarized in Table 4.

Attitude Determination

The attitude of a satellite or any solid object is de-
fined as its orientation in space. To valuate this
orientation we need to have a system of references
from which we can compare the satellite’s present
orientation with a past, or initial, orientation. This
system is defined in terms of reference frames: the
geocentric reference frame (GRF), for which the fun-
damental plane is the Earth’s equatorial plane and
the principal axis is the line pointing from the center

Table 4. Comparison of Honeywell magnetoresistive sensors’ characteristics.

Resolution Range Temperature Weight Dimensions Output Axis
(nT) (µT) sensitivity (g) (mm)

(ppm/◦C)
HMC1001 2.7 ±200 - 3000 0.14 (11 x 7 x 1.5)* Analog 1
HMC1021 8.5 ±600 - 3000 NA (6 x 4.9 x 1.5)* Analog 1
HMC2003 4.0 ±200 - 600 NA 25.9 x 18.0 x 10.9 Analog 3
HMR2300 6.7 ±200 - 600 28 74.9 x 30.5 x (20)* Digital 3
* Dimensions in parentheses are approximate.
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of the Earth toward the vernal equinox, and the
satellite reference frame (SRF) that is fixed with
respect to the satellite body. The relative orienta-
tion of the satellite reference frame with the geo-
centric reference frame provides a representation of
the satellite attitude. There exist different ways to
parameterize this attitude: rotation matrix, Euler
angles, Rodriguez parameters, quaternions, etc.

The determination process of the attitude starts
from the sensors onboard the satellite that will pro-
vide a measurement of some reference vectors with
respect to the SRF, like the direction of the Sun,
the direction of the Earth’s center, the direction of
the geomagnetic field or the direction of some par-
ticular stars. For our mission only the magnetome-
ter onboard will provide data to the determination
algorithm (Figure 12). The rate of rotation of the
satellite, whose knowledge is particularly useful in
various control modes like detumbling or slew ma-
neuvers, can be inertially measured by a gyroscope.
These measured directions are then compared with
predicted values defined in the GRF. The prediction
process, realized onboard the satellite, requires the
knowledge of the satellite position in its orbit, ob-
tained from an orbit propagation model and the time
since this model was updated. It is the way of pro-
cessing these data (measured and predicted vectors)
that constitutes the specificity of the attitude deter-
mination algorithm.

There are 2 main categories of algorithms,
namely deterministic methods and statistical meth-
ods. The former category, also called single-point
methods, are based on 2 vector observations at a
single time point.

Among these methods we can make a distinction

between optimal and non-optimal algorithms. The
Cones Intersection technique (Grubin, 1977) and the
TRIAD algorithm (Lerner, 1978) are the first non-
optimal deterministic methods that have been dis-
cussed in the literature. They are simple to im-
plement but lack accuracy as they assume perfect
measurement of the reference vectors, which is never
realized.

The optimal solution is such that the error in-
herent to the measurement process, a priori differ-
ent for each sensor, is minimized. Among the most
popular optimal solutions used in real applications
are the QUEST algorithm described in Shuster and
Oh (1981), the SVD method from Markley (1988),
the FOAM method from Markley (1993), and the
ESOQ1 and ESOQ2 methods from Mortari (1997a,
1997b).

The previous methods, although providing effi-
cient algorithms, suffer from a number of shortcom-
ings considering our particular mission. First of all
they require the simultaneous measurement of at
least 2 reference vectors, which is clearly not pos-
sible if we use only a magnetometer. Secondly they
require the measurement of the satellite rate of ro-
tation, whereas for a low-cost mission it is usually
preferred to use a gyroless configuration for reasons
like power consumption and the high cost of an ac-
curate gyro.

Statistical, or recursive, methods are also consid-
ered optimal as the solution (the attitude matrix)
must minimize a cost function. They are mainly
based on the theory of Kalman filtering (Kalman,
1960) and their differences from deterministic meth-
ods are in the use of the following information in the
estimation process:

Magnetic Field

Directions in SRF

Orbital Elements
Update at Epoch

Magnetic Field
Directions in

GRF

Attitude Estimate
(  control system)

Magnetometer

ATTITUDE

DETERMINATION

ALGORITHM

Orbit Model
Geomagnetic
Field Model

Figure 12. Conceptual diagram of the nanosat attitude estimation process.
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– the dynamics of the satellite and attitude sen-
sors,

– the consideration of the measurement errors,
system noises and uncertainty in the dynamics
models,

– the use of all available measuring devices,
which leads to an over-determined problem.

A review covering the first 20 years of Kalman
filtering methods applied to the attitude estimation
is available in Lefferts et al. (1982). One of the main
problems of Kalman filtering is the need for accurate
models of the satellite, the sensors, and the different
sources of noise. If we want to estimate the state
x ∈ Rn of the system, where the vector x contains
the information required to determine the satellite
attitude, we can represent the problem using the fol-
lowing discrete equations:

xk= Axk−1+Buk + wk−1, (8)

zk = Hxk + vk. (9)

The vector z ∈ Rm represents a measurement of
the state and u ∈ Rl is an optional control input.
The process and measurement noise are respectively
represented by the random variables wk and vk, as-
sumed to be independent, Gaussian, with zero mean:

p(w) ∼ N(0, Q), (10)

p(v) ∼ N(0, R). (11)

The matrices Q and R are the covariance for the
process noise and the measurement noise, respec-
tively. They are assumed to be known and constant,
whereas in practice they can change at each time
step. The matrices A, B and H are also assumed to
be constant. The goal of the Kalman filter is then to
provide the best estimate of the state vector so that
we can derive the satellite attitude. A possible value
for x would be

x =




q1
q2
q3
q4
ωx

ωy

ωz




(12)

where the first 4 coordinates represent the quater-
nion vector and the last 3 coordinates stand for the
rate of rotation of the satellite. The filter should be
first initialized with an initial state vector x̂0 (the
hat indicates that it is an estimate) and an asso-
ciated covariance matrix. The recursive operation
starts with a prediction stage where an a priori state
estimate,x̂−k , is found based on the process model and
x̂0 (if k= 1) or x̂−k−1 (for any k > 1). The update
stage follow and gives the a posteriori estimate of
the state, x̂+

k , based on the measurement zk made at
time tk. The operation continues with the prediction
of x̂−k+1 usingx̂+

k .
Figure 13 shows the flow of the estimation pro-

cess.

Initialization

Prediction

Update

0x̂

ˆkxx̂

kz

ˆkx

Figure 13. Kalman filter operation flow.

One of the main drawbacks of the Kalman filter-
ing technique is that it requires the assumption that
white noises follow a Gaussian law. This restriction
is overcome with the Minimum Model Error (MME)
estimator introduced by Mook and Junkins (1988),
where the model error and the state vector are es-
timated simultaneously. The inconvenience of this
algorithm is that it is off-line and must utilize post-
experiment measurements. Crassidis and Markley
(1997) developed an on-line equivalent of the MME
estimator specifically for a gyroless satellite.
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Conclusion

After mentioning the specificities of nanosatellites
and justifying their relevance with respect to other
types of satellite, we described the main source of ref-
erence used to determine the satellite attitude: the
Earth’s magnetic field. The existing types of COST

magnetometers and their usage in nanosatellite are
presented. The attitude determination process is
briefly explained along with the 2 main categories
of attitude determination algorithms. The Kalman
filtering technique, which is extensively utilized in
the design of navigation systems, is also presented.
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