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Abstract

Both walls and columns are main structural elements of monumental buildings. In resisting seismic forces,
the lateral stiffness of these elements is an essential parameter. Earthquakes may cause cracks in the masonry,
and this reduces the lateral stiffness of the walls and columns. Using an efficient numerical model, this study
investigates the effects of cracking on the lateral stiffness of unreinforced masonry cantilever columns with
circular cross-section. On the basis of the obtained lateral force versus lateral displacement relationships,
the behavior of the columns is characterized by 3 limit states corresponding to the first cracking, maximum
resistance and ultimate state. For an example column, the lateral stiffness values at these limit states are
determined and compared with each other. The results show that the lateral stiffness is directly related to
the displacement level and hence the level of cracking. Implementing a parametric analysis, the effects of the
column slenderness, vertical load to column self weight ratio, and the parameter related to the mechanical
and physical properties on the lateral stiffness are also investigated.
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Introduction

Besides wood, masonry is the oldest and most impor-
tant construction material in the history of mankind.
It has been used in a wide variety of forms, as a ba-
sic material for residential and public buildings and
other structures since the earliest days of civiliza-
tion (Drysdale et al., 1994; Tomaževič, 1999). Even
today, masonry is used extensively in many parts
of the world for residential and low-rise commercial
buildings. Masonry structures will undoubtedly re-
tain their share in the future, especially in devel-
oping countries, because of the inherent advantages
in material availability, construction simplicity and
economic feasibility (Ranjbaran, 1995; Sucuoğlu and
Erberik, 1997; Hendry, 2001; Masia et al., 2002; Lu
et al., 2005).

A large inventory of the construction heritage is
located in areas of high seismicity and they were de-
signed with little or no consideration of seismic load-
ing. Recent earthquakes in various parts of the world
have demonstrated that these older masonry struc-
tures are extremely susceptible to the forces imposed
during such an event. Preservation of this heritage
requires a sound understanding of the seismic behav-
ior of masonry structures. It is only through such
knowledge that the reliability of existing structures
can be analyzed and suitable intervention for their
restoration and consolidation can be planned (Bati
et al., 1999).

The seismic analysis of masonry building struc-
tures having a regular structural plan is generally
carried out by equivalent static analysis, assuming
that 2 possible directions of the seismic input coin-
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cide with those of the principal axes of the structure.
If the floors can be assumed to be rigid and firmly
connected to the vertical walls and columns, only the
walls and columns having significant cross-sectional
dimensions in the same direction as the seismic in-
put can be considered to resist the seismic forces,
while those directed orthogonally can be neglected
because of their negligible lateral stiffness (Çılı, 1978;
Bayülke, 1980; La Mendola et al., 1995).

However, in special masonry structures such as
monumental buildings (large mosques, cathedrals,
etc.), or when the aforementioned assumption can-
not be considered realistic, each wall and column has
to be examined separately, considering the share of
vertical load transmitted to it by the supported deck,
arch or dome, its own weight, and the lateral forces
(La Mendola et al., 1995). In this case, the determi-
nation of the lateral stiffness of the walls and columns
realistically becomes an important task.

Seismic actions may cause cracks in the masonry,
which has very low resistance to tension. This re-
duces the uncracked depths of cross-sections. As a
result, the lateral stiffness of walls and columns de-
creases and this causes changes in the vibrational
characteristics and so in the dynamic behavior of the
structure (Tomaževič, 1999; Clemente et al., 2002).
Therefore, the lateral stiffness of walls and columns
should be assessed with the consideration of the ex-
tent of cracking.

As is well known, the presence or development of
cracks does not affect only the behavior and per-
formance of civil engineering structures, but also
other engineering structures such as aircraft struc-
tures and machine components. Therefore, numer-
ous studies have focused on the effects of cracks on
the static and dynamic behavior of engineering struc-
tures (Nikpour, 1990; Dimarogonas 1996; Kisa and
Brandon, 2000; Kisa, 2004; Gürel and Kısa, 2005).

Cross-sections of columns in monuments show a
wide variety of shapes. Rectangular, circular, hexag-
onal and cruciform sections are the most common. It
must be noted that, so far, the analytical and numer-
ical investigations have been devoted to the masonry
elements of rectangular cross-section (Yokel, 1971;
Frisch-Fay, 1975; La Mendola and Papia, 1993; Ro-
mano et al., 1993; De Falco and Lucchesi, 2002). In
this study, the lateral stiffness of unreinforced ma-
sonry (URM) circular columns is investigated by tak-
ing into account the amount of cracking. To this end,
the numerical model developed by La Mendola and
Papia (1993) for investigating the stability of ma-

sonry elements with rectangular cross-section is uti-
lized and extended to circular columns. The model is
capable of capturing the cracking and second-order
effects efficiently. The column material is assumed
to be a homogeneous medium, behaving linear elas-
tically in compression, having an infinite compres-
sive strength and with no tensile strength. The case
of a bounded compressive strength and deformabil-
ity, and a nonlinear stress-strain relationship in com-
pression will be considered in a subsequent work.
In the present study, the effects of 3 main param-
eters, which are related to the column geometry, the
loading condition, and the physical and mechanical
properties, are also investigated. It must be noted
that monolithic and multi-drum masonry columns
are outside the scope of the study, because the be-
havior of these columns under lateral actions is very
different from that of the columns investigated in the
present work.

Loading Condition and Analysis Model

In this analyis, the URM cantilever (fixed-free
ended) column is assumed to be prismatic with a
solid circular cross-section as shown in Figure 1(a).
In the figure, V indicates a concentrated vertical load
transmitted to the column by the supported deck,
arch or dome, if any; H is the concentrated lateral
load; and w = W/h is the weight per unit height
of the column. The column is ideally divided into n
finite elements, all having the same height he = h/n,
numbered from 1 to n, starting from the top end,
and delimited by n + 1 sections, numbered from 0
to n (Figure 1(b)) (La Mendola and Papia, 1993; La
Mendola et al., 1995). W/n is the weight of an ele-
ment, and this force is assumed to be concentrated
and applied to the center of gravity of the element.

The deformed shape of the discretized column
under the considered loading condition is shown in
Figure 2. The deformed shape of the column is as-
sumed to be the combination of successive circle seg-
ments. Starting from this assumption, the curvature
in an element is taken as constant and this quan-
tity is defined by the value at the upper section for
each element. This approximation is justified if the
dimensionless height of the elements (the discretiza-
tion parameter) ξ = he/d = h/nd is small enough,
i.e. the number n is reasonably high. The system
of coordinates O(x,y) is assumed to have its x-axis
through the centroid of the top cross-section (Figure
2) (La Mendola et al., 1995).
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Figure 1. (a) Geometry and loading condition of an unreinforced masonry circular column, (b) discretization of column
into elements.
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Figure 2. Deformed shape of discretized column.

The numerical model can be used to deduce the
whole lateral force − lateral displacement, H− δ,
curve and hence lateral stiffness values at uncracked
and cracked states of any URM column, by using

dimensionless parameters, as explained later.

Using the symbols in Figure 2, the coordinate y
of the jth cross-section can be written as
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yj = yj−1

+ρj

[
cos
(
β −

j∑
i=1

αi

)
− cos

(
β −

j−1∑
i=1

αi

)]
(j = 1, 2, ..., n)

(1)

where β is the rotation of the top cross-section, ρj
is the radius of curvature of the jth element and αj
= he/ρj is the angle related to it in the discretized
model. Expanding the cosine function in the Tay-
lor’s series and retaining the first 3 terms only, Eq.
(1) in dimensionless form becomes

yj
d

=
yj−1

d
+ ξβ +

1
2
ξ2φjd−

j∑
i=1

ξ2φid

(j = 1, 2, ..., n)

(2)

where φi = 1/ρi is the curvature of the ith element
(La Mendola and Papia, 1993; La Mendola et al.,
1995).

Since y0 = 0, and assuming ξ is known, the de-
formed shape of the column, consistent with the top
rotation β, can be obtained using Eq. (2) recursively,
starting from the index j = 1. This can be done if
the curvatures of all the elements over the vertical
section in consideration each time are also known.

Eccentricity at the jth cross-section

The resultant axial compressive force and bending
moment acting on the jth cross-section can be ex-
pressed as

Nj = V + j
W

n
(3a)

Mj = V yj +
W

n

j∑
i=1

(yj − yGi) +Hj
h

n
(3b)

where yGi is the coordinate of the center of mass of
the ith element. For the jth element (Figure 2) this
quantity can be obtained by the same procedure as
used for Eq. (1). In dimensionless form the following
expression is obtained

yGj
d

=
yj−1

d
+

1
2
ξβ +

3
8
ξ2φjd−

1
2

j∑
i=1

ξ2φid

(j = 1, 2, ..., n)

(4)

The ratio between the quantities on the right-
hand sides of Eqs. (3b) and (3a) provides the nor-
malized eccentricity in the form

ej
d

=
yj
d
− 1
n V
W

+ j

j∑
i=1

yGi
d

+
H

W
ξn

j

n V
W

+ j

(j = 0, 1, ..., n)

(5)

For the top cross-section, j = 0, this expression gives
e0/d = y0/d = 0 (Figure 2).

Curvature of the jth element

Assuming tensionless material, since little tensile
strength is observed in masonry material, with lin-
ear stress-strain relationship in compression, the cur-
vature of an element depends on whether its cross-
section is uncracked or partially cracked. If the com-
pressive force acting on a section made of tensionless
material is within the kern of the section, the sec-
tion will remain uncracked or else it will be partially
cracked. Therefore, 2 different moment-curvature
relationships must be considered, depending on the
value of the dimensionless eccentricity given by Eq.
(5). It is known that the kern of a circular section
with radius r = d/2 is a circle with the same center
and having a radius of r/4 = d/8.

When ej/d ≤ 1/8, considering the equilibrium
condition shown in Figure 3, and using Hooke’s Law,
the curvature of the (j + 1)th element can be ex-
pressed as

φj+1 =
ε2 − ε1

d
=
σ2 − σ1

Ed
(6)

where E is the modulus of elasticity of masonry in
compression and σ1 and σ2 are the stresses, which
can be written as

σ1 =
Nj
A

(
1− 8ej

d

)
, σ2 =

Nj
A

(
1 +

8ej
d

)
(7a,b)

where A = πd2/4 is the area of the cross-section.
Substituting these expressions of σ1 and σ2 into Eq.
(6), the dimensionless curvature of the (j + 1)th el-
ement becomes

φj+1d =
Nj
EA

16ej
d

(8)
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Figure 3. Strains and curvature at an uncracked cross-
section.

If the dimensionless eccentricity is greater than
1/8, ej/d > 1/8, the cross-section is partially cracked
(Figure 4). In this case, the curvature cannot be
obtained easily, because the location of the neutral
axis, s, is not determined. A trial-and-error proce-
dure is needed to find the position of the neutral axis,
and then find σmax = σ0, εmax = ε0 and curvature.
Here, for the neutral axis depth and the maximum
stress in section, expressions given in the textbook of
Strength of Materials (İnan, 1988) are used. In this
reference, the following expressions are given for the
neutral axis depth and the maximum compressive
stress, respectively:

s ∼= 1
2

[
2.33

(
1− 2

ej
d

)
+ 0.58

(
1− 2

ej
d

)3
]
d (9a)

σ0
∼=

4
[
0.372 + 0.056

(
1− 2

ej
d

)]
Nj

d2
(

1− 2
ej
d

) 3
2

(9b)

Numerical calculations carried out by the authors
have shown that the values obtained for the neutral
axes depths and the maximum stresses using Eqs.
(9a) and (9b) are almost equal to those calculated
with the trial-and-error procedure.
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Figure 4. (a) A partially cracked cross-section, (b)
strains and curvature at the section.

The curvature in the partially cracked cross-
section case can be written as (Figure 4)

φj+1 =
ε0

s
=
σ0

Es
(10)

Substituting Eqs. (9a) and (9b) into Eq. (10), the
curvature of the (j + 1)th element in dimensionless
form becomes

φj+1d =
Nj
EA
×

2π
[
0.372 + 0.056

(
1− 2

ej
d

)]
[
2.33

(
1− 2

ej
d

)
+ 0.58

(
1− 2

ej
d

)3
] (

1− 2
ej
d

)3
2

(11)

Equations (8) and (11) can be given under a sin-
gle expression as

φj+1d =
Njλj
EA

(12)

in which
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λj =


16ej/d for 0 ≤ ej

d
≤ 1

8

2π[0.372 + 0.056 (1− 2ej/d)][
2.33 (1− 2ej/d) + 0.58 (1− 2ej/d)3

]
(1− 2ej/d)

3/2
for

1
8
≤ ej

d
<

1
2

(13)

When Eq. (3a) is introduced into Eq. (12) and
with certain operations, the dimensionless curvature
of the (j + 1)th element takes the following form

φj+1d =
γd

E
ξ

(
n
V

W
+ j

)
λj

(j = 0, 1, 2, ..., n− 1)
(14)

where γ = W/(πd2h/4) is the weight of the unit
volume of the column.

Solution Procedure

For an URM circular column fixed at the base and
free at the top, the whole H – δ curve, corresponding
to the assigned values of the vertical load to column
self weight ratio V /W and the parameter γd/E, can
be deduced using Eqs. (5), (13), (14), (2) and (4)
in sequence. For this purpose, the column is ideally
divided into a sufficiently high number of elements,
and hence the discretization parameter ξ becomes
known. It must be noted that the accuracy of the
results does not change if the number of elements is
increased above a certain value, but it is advisable
to choose an n value not less than 20. Starting with
a small initial value of the lateral force H and as-
signing a trial value of the top rotation β, using Eq.
(5) and then Eqs. (13) and (14) for j = 0, one ob-
tains φ1d = 0; therefore, Eq. (2) provides the y1/d
= ξβ. Then, using the equations just mentioned in
the same order but for j = 1, one obtains y2/d, and
so on.

When the procedure stops, i.e. when the index
j reaches the value n – 1 in Eq. (14), the follow-
ing convergence criterion is controlled, which implies
zero rotation at the base of the cantilever column:

β =
n∑
i=1

αi =
n∑
i=1

ξφid (15)

It will be repeated with a decreased value of β, if

β −
n∑
i=1

ξφid > 0, and an increased value of β will be

used in the opposite case. When convergence on β is
reached, in other words, after the actual value of this
rotation corresponding to the assigned value of H is
iteratively determined, the deflection yn = δ can be
calculated directly from Eq. (2).

Repeating the procedure with variation in β and
adopting small increases for this quantity, the whole
curve H versus δ can be plotted and hence critical (H
, δ) pairs that represent characteristic points (limit
states) can be determined. The maximum value of
β consistent with the equilibrium of the column cor-
responds to the limit condition at which the dimen-
sionless eccentricity at the base cross-section is equal
to 0.5 (La Mendola et al., 1995). Because of the ten-
sionless material assumption, it is evident that the
equilibrium cannot be satisfied for the greater values
of the dimensionless eccentricity.

Application and Discussion

In this section, firstly, the preceding procedure is
used to deduce the whole lateral force versus lat-
eral displacement, H – δ, curve for an URM circular
column. For this cantilever column (Figure 5) the
following data are considered: h = 7.5 m; d = 1.0 m;
γ = 18 kN/m3; E = 3600 MPa; V = 106 kN; and W
= γ(πd2h/4) ∼= 106 kN. Consequently, the column
has h/d = 7.5; γd/E = 0.5×10−5; and V /W = 1.0.
The column is ideally divided into 30 finite elements,
so that the discretization parameter ξ is 0.25.

The result of the procedure is shown in Figure 6.
The curve in this figure highlights the key features of
the behavior of the column. As can be seen, initially,
the column deforms in a linear manner; however, it
cracks when the lateral force reaches approximately
4.77 kN value, Hcr. The column continues to carry
increasing force beyond initial cracking, but loses lat-
eral stiffness as the first crack grows and new cracks
are formed. When the lateral force attains its max-
imum value Hmax

∼= 10.78 kN, producing the de-
flection δ ∼= 67.01 mm, the maximum dimensionless
eccentricity at the base of the column is e/d = 0.429.
Beyond this point, up to the limit value of e/d = 0.5,
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the state of the column is unstable.
Figure 7 shows the highly magnified normalized

deformed shape of the column at the maximum resis-
tance stage. The high curvature caused by extensive
cracking in the base region compared with the upper
part of the column can be easily discerned.
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Figure 5. Masonry column considered.
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Figure 6. Numerically obtained lateral resistance – lat-
eral displacement curve.

To see the effect of cracking on the lateral stiffness
of the column, the resistance curve obtained numeri-
cally is idealized with a trilinear relationship, shown
in Figure 8. Three characteristic points (limit states)
are defined on the resistance curve, determined by 3
pairs of parameters (Table 1):

(a) Elastic (crack) limit : determined by lateral
force Hcr and displacement δcr at the formation
of the first significant crack in the column, which
changes the initial stiffness,

(b) Maximum resistance: determined by lateral
force Hmax and displacement δHmax at the attained
maximum resistance of the column, and

(c) Ultimate state: determined by the lateral re-
sistance Hδmax at maximum attained displacement
δmax just before the collapse (Tomaževič and Kle-
menc, 1997; Tomaževič, 1999).
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Table 1. Parameters of numerically obtained resistance
curve.

Hcr δcr Hmax δHmax Hδmax δmax

(kN) (mm) (kN) (mm) (kN) (mm)
4.77 4.18 10.78 67.01 8.09 120.61
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Masonry is an inelastic structural material that
does not behave elastically even in the range of small
deformations. However, for practical reasons, the
elastic lateral stiffness of the column, Ke, defining
the slope of the first branch of the idealized resis-
tance curve, is determined as the ratio between the
lateral load and displacement at the formation of the
first significant crack in the column (Tomaževič and
Klemenc, 1997):

Ke = Kcr = Hcr/δcr (16)

For the example column, 4.77 kN and 4.18 mm val-
ues are obtained for Hcr and δcr , respectively; thus,
one obtains Ke = 4.77 / 4.18 = 1.141 kN/mm value,
according to Eq. (16).

From the strength of materials, the lateral stiff-
ness of a slender cantilever column made of linear-
elastic material and having a constant cross-section
is

Ke = 3EI/h3 (17)

where E, I and h are the modulus of elasticity of the
column material, moment of inertia of the column
cross-section, and height of the column, respectively.
Equation (17) does not take into account the self
weight of the column or any vertical top load. When
the lateral stiffness of the considered column is cal-
culated using this equation, Ke = 1.256 kN/mm is
obtained. Thus, the ratio between the numerical re-
sult and the value obtained with Eq. (17) becomes
1.141/1.256 = 0.91.

After cracking, the lateral stiffness of the column
is defined as the secant stiffness, K = H/δ, i.e. as
the ratio between the lateral resistance of the col-
umn and the corresponding displacement. The val-
ues of secant stiffness, calculated at the characteristic
points of the lateral force versus lateral displacement
curve, are given in Table 2. In order to determine
the degree of secant stiffness degradation, the calcu-
lated values are also expressed in terms of the elastic
stiffness, Ke, of the column.

Table 2. Stiffness values and stiffness degradation at
characteristic points of lateral resistance curve.

Ke KHmax KHmax/ Kδmax Kδmax/
(kN/mm) (kN/mm) Ke (kN/mm) Ke

1.141 0.161 0.14 0.067 0.06

Variation of the lateral stiffness of the column as
a function of lateral displacements is shown in Fig-
ure 9. It can be seen that the K− δ curve has an
ascending initial branch. The increase in the lateral
stiffness in this part can be interpreted as follows. As
explained earlier, the solution procedure begins with
a small value of the lateral force. This force pushes
the column and produces small displacements, but
the column does not exert its full lateral resistance
against this small force. The column shows a similar
behavior up to the application of Hcr, which causes
the first crack in the column, and the column dis-
plays its maximum lateral stiffness at this moment.
As expected, after the maximum a sharp decrease in
the lateral stiffness with increasing displacements is
observed (Figure 9).
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Figure 9. Stiffness variation of the considered column de-
pending on the lateral displacements.

In the second part of this section, the effects of
some parameters on the lateral stiffness of URM cir-
cular columns are investigated. The parameters ex-
amined refer to the geometry, loading, and physi-
cal and mechanical properties. For the geometry, we
considered column slenderness, h/d. The loading pa-
rameter investigated was the vertical load to column
self weight ratio, V /W . The physical and mechan-
ical property considered was the parameter γd/E,
which La Mendola et al. (1995) called the flexibility
parameter. Here γ is the weight per unit volume of
the column.

Effect of column slenderness, h/d

Figure 10 illustrates lateral resistance – lateral dis-
placement curves obtained for 3 columns having dif-
ferent slenderness values of h/d = 5, 7.5 and 10, but
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constant V /W = 1 and γd/E = 0.5 × 10−5. It is ob-
vious from the figure that the initial slope, i.e. elastic
lateral stiffness and maximum resistance, increases
with decreasing slenderness. Variations of lateral
stiffness depending on the lateral displacement are
shown in Figure 11. The evident difference between
the lateral stiffness values in the small displacement
range can be seen from the figure. Lateral stiffness
values at characteristic points are given in Table 3.
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Figure 10. Lateral resistance – lateral displacement
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Figure 11. Variations of lateral stiffness with respect to
lateral displacement for various values of slen-
derness h/d.

Effect of vertical load to column self weight
ratio, V/W

Figure 12 shows the lateral resistance – lateral dis-
placement curves of a column having h/d = 7.5 and

γd/E = 0.5 × 10−5 for different vertical load to col-
umn self weight ratios of V /W = 0, 1, 2.5, 5 and 7.5.
It can be seen that the curves obtained for different
V /W values have almost the same initial slope. For
greater values of the V /W ratio, higher maximum
resistance values are obtained. Moreover, maximum
displacements are also increased. Variations of lat-
eral stiffness with respect to the lateral displacement
are shown in Figure 13. It is seen that there is a neg-
ligible positive effect of the V /W ratio on the lateral
stiffness in the very small displacement range, while
it has an important influence in the moderate and
large displacement regions. Lateral stiffness values
at characteristic points are given in Table 4.

Table 3. Lateral stiffness values at characteristic points
for various values of slenderness h/d.

K Slenderness, h/d
(kN/mm) 5 7.5 10

Ke 3.555 1.141 0.486

KHmax 0.280 0.161 0.110

Kδmax 0.280 0.067 0.046
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Figure 12. Lateral resistance – lateral displacement
curves at various vertical load to column
self weight ratios V /W for constant h/d and
γd/E.

Effect of the flexibility parameter, γd/E

Figure 14 shows the lateral resistance – lateral dis-
placement curves of a column having h/d = 7.5 and
V /W = 1 for different values of the parameter of
γd/E = 0.25 × 10−5, 0.5 × 10−5 and 1.0 × 10−5.
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It can be seen that there are obvious differences be-
tween the initial slopes of the curves corresponding
to different values of γd/E. When γd/E decreases,
both elastic stiffness and maximum resistance in-
crease; however, maximum lateral displacement de-
creases. Variations of lateral stiffness with respect
to lateral displacement are shown in Figure 15. It
is clearly seen that γd/E is efficient in the small
displacement range. Lateral stiffness values at char-
acteristic points are given in Table 5.
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Figure 13. Variations of lateral stiffness with respect to
lateral displacement for various values of ver-
tical load to column self weight ratios V /W .
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Figure 14. Lateral resistance – lateral displacement
curves at various γd/E values for constant
h/d and V /W .
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Figure 15. Variations of lateral stiffness with respect
to lateral displacement for various values of
γd/E.

Table 4. Lateral stiffness values at characteristic points
for various values of V /W ratio.

Vertical load to column self
K weight ratio, V /W

(kN/mm) 0 1 2.5 5 7.5

Ke 1.044 1.141 1.165 1.153 1.123

KHmax 0.066 0.161 0.243 0.339 0.386

Kδmax 0.035 0.067 0.101 0.141 0.161

Table 5. Lateral stiffness values at characteristic points
for various values of γd/E.

K γd/E parameter

(kN/mm) 0.25 × 10−5 0.5 × 10−5 1.0 × 10−5

Ke 2.111 1.141 0.588

KHmax 0.225 0.161 0.118

Kδmax 0.094 0.067 0.049

Effects of imperfections

Monumental buildings are subject to aging effects
and many different imperfections may have been
formed in these structures over the course of time.
Deflection or bulging of walls and columns under the
effects of carried loads and/or material creep, tilting
of walls and columns due to differential settlement
of foundations, and edge damage at the base of walls
and columns, depicted in Figure 16, are only some
of them. It is obvious that such imperfections affect
the lateral stiffness of walls and columns negatively.
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For example, edge damage in a column base (Fig-
ure 16(c)) causes an effective increase in the slender-
ness of the column, and therefore decreases its lat-
eral stiffness. The effects of several imperfections are
additive and the lateral stiffness and earthquake per-
formance of the main structural elements of monu-
mental and historical buildings may be substantially
reduced by the cumulative effect of these imperfec-
tions (Psycharis et al., 2000; Gürel and Çılı, 2001).

(a)

Deflection

(b)

Angle of tilt

(c)

Broken edge

Figure 16. Some structural imperfections: (a) initial de-
flection, (b) initial tilt, (c) edge damage at the
column base.

Summary and Conclusions

The paper presents the lateral stiffness analysis of
URM cantilever columns with circular cross-section.
The columns are modeled as prismatic cantilevers
undergoing their own weights, concentric vertical top
loads and static lateral top loads having increas-
ing magnitude. The material behavior is assumed
to be linear in compression, but since the masonry
cracks when the lateral loading on the columns is
increased, the problem is nonlinear. The solution is
achieved using a numerical model capable of captur-
ing the cracking and second-order effects efficiently.
The main conclusions obtained from the study can
be summarized as follows:

1) The numerical model employed is very suit-
able for obtaining the whole lateral force – lateral
displacement, H – δ, relationships of URM circu-
lar columns, since it takes into account the crack-
ing and the second-order effects efficiently. Utilizing
H – δ knowledge, the lateral stiffness of a column
at any displacement level can be calculated. Using
the same numerical model, columns having cross-
sectional shapes other than circular can be analyzed
similarly.

2) The lateral stiffness of an URM circular col-
umn depends not only on the slenderness, material
properties and vertical load ratio, but also on the
displacement level and hence the extent of cracking.

3) The monotonic lateral load – lateral displace-
ment behavior of URM slender circular columns can
be characterized by 3 limit states corresponding to
the elastic limit, maximum resistance and ultimate
state. Elastic lateral stiffness values of the columns
decrease dramatically with increasing lateral dis-
placements caused by cracking and second-order ef-
fects.

4) Both the elastic and cracked lateral stiffness of
a column decrease with increasing column slender-
ness ratio, h/d, and the flexibility parameter, γd/E,
especially in the small and moderate displacement
ranges (Figures 11 and 15, Tables 3 and 5). Elastic
lateral stiffness increases with the increase in verti-
cal load to column self weight ratio, V /W , up to
a certain value, but then decreases with increasing
V /W values. However, cracked stiffness values in-
crease with increasing V /W ratios (Figure 13, Table
4).

5) Although they have not been considered in
the present study, imperfections such as tilting or re-
duced contact area at the column base can be taken
into account and their effects on the lateral stiffness
can be investigated quantitively. Without perform-
ing an analysis it can be said that any imperfection
decreases the lateral stiffness. It is evident that the
lateral stiffness decreases as the magnitude of imper-
fection increases.

6) The analysis of the present study is mainly
for slender circular columns. However, extension to
squat columns can be carried out by considering the
contribution of shear deformations. Other possible
extensions of the present analysis are the inclusion of
material nonlinearity as well as the variation of the
cross-section of the column (nonprismatic columns),
which are left for future studies.
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