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Abstract

The steady flow of an incompressible viscous fluid above an infinite rotating porous disk in a porous
medium is studied with heat transfer. A uniform injection or suction is applied through the surface of the
disk. Numerical solutions of the nonlinear governing equations that govern the hydrodynamics and energy
transfer are obtained. The effects of the porosity of the medium and the suction or injection velocity on the
velocity and temperature distributions are considered.

Key words: Rotating disk flow, Heat Transfer, Porous medium, Suction or Injection.

Introduction

The pioneering study of fluid flow due to an infinite
rotating disk was carried out by von Karman (1921).
von Karman gave a formulation of the problem and
then introduced his famous transformations, which
reduced the governing partial differential equations
to ordinary differential equations. Cochran (1934)
obtained asymptotic solutions for the steady hydro-
dynamic problem formulated by von Karman. Ben-
ton (1966) improved Cochran’s solutions and solved
the unsteady problem. The problem of heat trans-
fer from a rotating disk maintained at a constant
temperature was first considered by Millsaps and
Pohlhausen (1952) for a variety of Prandtl numbers
in the steady state. Sparrow and Gregg (1960) stud-
ied the steady state heat transfer from a rotating
disk maintained at a constant temperature to fluids
at any Prandtl number. The influence of an external
uniform magnetic field on the flow due to a rotat-
ing disk was studied (Attia, 1998, 2002; Attia and
Aboul-Hassan, 2001). The effect of uniform suction
or injection through a rotating porous disk on the
steady hydrodynamic or hydromagnetic flow induced
by the disk was investigated (Stuart, 1954; Kuiken,

1971; Ockendon, 1972).
In the present work, the steady laminar flow of a

viscous incompressible fluid due to the uniform ro-
tation of a porous disk of infinite extent in a porous
medium is studied with heat transfer. A uniform in-
jection or suction is applied through the surface of
the disk. In the analysis of the flow in the porous
media the differential equation governing the fluid
motion is based on Darcy’s law, which accounts for
the drag exerted by the porous medium (Joseph et
al., 1982; Ingham and Pop, 2002; Khaled and Vafai,
2003). The temperature of the disk is maintained at
a constant value. The governing nonlinear differen-
tial equations are integrated numerically using finite
difference approximations. The effect of the porosity
of the medium on the steady flow and heat transfer
is presented and discussed.

Basic Equations

Let the disk lie in the plane z = 0 and the space
z > 0 is occupied by a viscous incompressible fluid.
The motion is due to the rotation of an insulated
disk of infinite extent about an axis perpendicular
to its plane with constant angular speed ω where
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the space above the plane sheet is filled with the
porous medium as shown in Figure 1. Otherwise the
fluid is at rest under pressure p∞. The disk is main-
tained at a constant temperature Tw. A uniform
injection or suction is applied at the surface of the
disk for the entire range from large injection veloc-
ities to large suction velocities. As was pointed out
by Joseph et al. (1982), the self consistent non-linear
Navier-Stokes equation that would govern the flow in
a surrounding porous medium is given by (Wu et al.,
2005)
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Figure 1. Flow configuration.

where the last 2 terms on the right-hand side of Eq.
(1) describe the non-linear Darcy-Forchheimer resis-
tance of the surrounding porous medium. Hereµ is
the fluid viscosity, K is the Darcy permeability, ~u is
the local velocity, ρ is the density of the fluid, and c
is the Forchheimer constant, which has been exper-
imentally measured for different porous media. In
the present paper, we shall limit our consideration
to flows where the non-linear Forchheimer term is
neglected but the linear Darcy term describing the
distributed body force exerted by the fibers in the
porous medium is retained (Wu et al., 2005).

The equations of steady motion are given by
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where u, v, and w are velocity components in the
directions of increasing r,ϕ, and z respectively, and
p denotes the pressure. We introduce von Karman
transformations (von Karman, 1921)

u = rωF, v = rωG, w =
√
ωvH, z =

√
v/ωζ, p− p∞

= −ρvωP

where ζ is a non-dimensional distance measured
along the axis of rotation; F , G, H and P are non-
dimensional functions of ζ; and ν is the kinematic
viscosity of the fluid, ν = µ/ρ. With these defini-
tions, Eqs. (2)-(5) take the form

dH

dζ
+ 2F = 0 (6)

d2F

dζ2
−HdF

dζ
− F 2 + G2 −MF = 0 (7)
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−H dH
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where M = ν/Kω is the porosity parameter. The
boundary conditions for the velocity problem are
given by

ζ = 0, F = 0, G = 1, H = S, (10a)

ζ →∞, F → 0, G→ 0, P → 0, (10b)

where S = wo/
√
ων is the uniform suction or injec-

tion parameter, which takes constant negative values
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for suction and constant positive values for injection,
and wo is the vertical velocity component at the sur-
face. Equation (10a) indicates the no-slip condition
of viscous flow applied at the surface of the disk, but
due to the uniform suction or injection the vertical
velocity component takes a constant non-zero value
at z = 0. Far from the surface of the disk, all fluid
velocities must vanish aside the induced axial com-
ponent as indicated in Eq. (10b). The above system
of Eqs. (6)-(8) with the prescribed boundary condi-
tions given by Eq. (10) is sufficient to solve for the 3
components of the flow velocity. Equation (9) can be
used to solve for the pressure distribution if required.

Due to the difference in temperature between the
wall and the ambient fluid, heat transfer takes place.
The energy equation, neglecting the dissipation and
assuming constant thermal conductivity (Wu et al.,
2005), takes the form (Millsaps and Pohlhausen,
1952; Sparrow and Gregg, 1960)
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where T is the temperature of the fluid, cp is the spe-
cific heat at constant pressure of the fluid, and k is
the thermal conductivity of the fluid. The boundary
conditions for the energy problem are that, by con-
tinuity considerations, the temperature equals Tw at
the surface of the disk. At large distances from the
disk, T tends to T∞8 where T∞8 is the temperature
of the ambient fluid. In terms of the non-dimensional
variable θ = (T − T∞8)/(Tw − T∞8) and using von
Karman transformations, Eq. (12) takes the form

1
Pr

d2θ

dζ2
+H

dθ

dζ
= 0 (12)

where Pr is the Prandtl number, Pr = cpµ/k. The
boundary conditions in terms of θ are expressed as

θ(0) = 1, θ(∞) = 0 (13)

The system of non-linear ordinary differential
equations (6)-(8) and (12) is solved under the con-
ditions given by Eq. (10) and (13) for the 3 com-
ponents of the flow velocity and temperature dis-
tribution, using the Crank-Nicolson method (Ames,
1977). The resulting system of difference equations
has to be solved in the infinite domain 0 < ζ < ∞.

A finite domain in the ζ-direction can be used in-
stead with ζ chosen large enough to ensure that the
solutions are not affected by imposing the asymp-
totic conditions at a finite distance. The indepen-
dence of the results from the length of the finite do-
main and the grid density was ensured and success-
fully checked by various trial and error numerical
experimentations. Computations are carried out for
ζ∞ = 12. It should be mentioned that the results
obtained herein reduce to those reported by Attia
(2002), when M = 0, and the results of the 2 papers
are in close agreement, which ensures the validity of
the presented solution.

Results and Discussion

Figures 2-4 present the influence of the axial flow at
the disk surface on the steady state velocity profiles
for the case of suction or injection and for the poros-
ity parameter M = 0 and 1. These figures indicate
the restraining effect of the porosity of the medium
on the flow velocity in the 3 directions. Increasing
the porosity parameter M decreases G, F , and H,
and the thickness of the boundary layer. Increasing
the suction velocity leads to a rapid decrease in the
azimuthal and radial velocity components as shown
in Figures 2 and 3, while Figure 4 indicates that the
axial flow at infinity towards the disk is larger. In-
creasing the injection velocity leads to an increase in
the azimuthal and radial flows as shown in Figures
2 and 3, while Figure 4 shows that the axial flow to-
wards the disk is smaller. With increasing injection
velocity, the outflow penetrates to greater distances
from the disk surface. Consequently, the crossover
point between the positive and negative axial veloc-
ity is pushed farther outward in the ζ-direction. In
Figure 2, it is seen that the fluid injection gives rise
to the familiar inflection-point profiles, especially for
high values of the injection parameter S. Hence,
high injection velocities are expected to destabilize
the laminar flow and lead to transition to turbulence.
The influence of the porosity parameter in reducing
the axial flow towards the disk is more apparent for
the case of injection than suction.

When injection is applied, the porosity effect re-
duces the azimuthal and radial flows and, conse-
quently, the injection stream sustains its axial mo-
tion towards the disk. Figure 4 shows the effect of
the porosity in the suppression of the crossover of
the axial component of velocity and then reversal of
the direction of the axial motion. In Figure 4, it is
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clear that the porosity has a marked effect in chang-
ing the shape of the inflection-point profiles in the
case of high injection velocities. Consequently, the

porosity of the medium works to stabilize the lam-
inar boundary layer and prevents the transition to
turbulence.
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Figure 2. Effect of the porosity parameter M and the suction parameter S on the profile of G.
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Figure 3. Effect of the porosity parameter M and the suction parameter S on the profile of F .
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Figure 4. Effect of the porosity parameter M and the suction parameter S on the profile of H .
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Figure 5 presents the influence of the axial flow at
the disk surface on the steady state temperature pro-
file for the porosity parameter M = 0 and 1 and for
Pr = 0.7. Increasing M increases the temperature θ
as a result of the effect of the porosity in preventing
the fluid at near-ambient temperature from reach-
ing the surface of the disk. Consequently, increasing
M increases the temperature as well as the thermal
boundary layer thickness. The influence of the poros-
ity parameter M on θ becomes more apparent for the
injection case than for the suction case.
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Figure 5. Effect of the porosity parameter M and the
suction parameter S on the profile of θ.

The action of fluid injection is to fill the space
immediately adjacent to the disk with fluid having
nearly the same temperature as that of the disk. As

the injection becomes stronger, the blankets extend
to greater distances from the surface. As shown in
Figure 5, these effects are manifested by the flatten-
ing of the temperature profile adjacent to the disk.
Thus, the injected flow forms an effective insulat-
ing layer, decreasing the heat transfer from the disk.
Suction, on the other hand, serves the function of
bringing large quantities of ambient fluid into the
immediate neighborhood of the surface of the disk.
As a consequence of the increased heat-consuming
ability of this augment flow, the temperature drops
quickly as we proceed away from the disk.

Conclusion

In this study the steady flow induced by a rotat-
ing disk with heat transfer in a porous medium was
studied in the presence of uniform suction and in-
jection. The results indicate the restraining effect of
the porosity on the flow velocities and the thickness
of the boundary layer. On the other hand, increas-
ing the porosity parameter increases the tempera-
ture and thickness of the thermal boundary layer. It
is of interest to see the effect of the porosity of the
medium on the suppression of the crossover of the
axial component of velocity in the non-porous case
with uniform injection. The porosity of the medium
has, in general, a more apparent effect on the flow
and temperature fields in the case of uniform injec-
tion than in the case of uniform suction.
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