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Abstract

Reliability is often understood as the probability that a structure will not fail to perform its intended
function. In this paper, the general formulation of consistent evaluation of the safety of structures and
the associated methods of analysis are reviewed. After the reliability analysis of a cantilever beam is
demonstrated, the methodology of reliability-based optimization and the related problem are discussed. A
typical 2D roof truss system is optimized by various optimization methods, such as Sequential Quadratic
Programming (SQP), Evolution Strategy (EVOL), and Genetic Algorithms (GA). It is concluded that the
algorithms work well and an efficient design of the roof truss is achieved under the constraint of the failure
probabilities of structural element.

Key words: Optimization, Reliability, Reliability-based design optimization, Truss, Evolutionary compu-
tation.

Introduction

During the last decade, structural reliability theory
has been examined in a large number of research
studies, and now the reliability of a structure could
be defined as an ability that fulfills its design purpose
for some specified reference period. For a structure,
design purposes are safety against torsion, shear,
flexure, and so on. However, due to many sources
of uncertainty, which are inherent in structural de-
sign, there is the risk of unacceptable performance
for structures, which is called failure. It could be
said that a structure fails if it cannot perform its in-
tended function; however, this is a vague definition
because the function of the structure has not been
specified. Therefore, the concept of a limit state is
used to help define failure in the context of struc-
tural reliability analyses. A limit state is a bound-
ary between desired and undesired performance of a
structure (Nowak and Collins, 2000). It is usually
characterized mathematically by a limit state func-
tion and there are 3 types of limit states considered
in structural reliability analyses. These are as fol-
lows:

1. Ultimate limit states: mostly related to the
loss of load-carrying capacity.

2. Serviceability limit states: related to gradual
deterioration.

3. Fatigue limit states: related to loss of strength
under repeated loads.

These 3 limit states are incorporated into struc-
tural reliability analysis, which is concerned with the
treatment of uncertainties (random) in structural en-
gineering design. A set of basic variables must be
defined for the purpose of quantifying uncertainties
in the field of structural engineering and for subse-
quent reliability. These are defined as the set of basic
quantities governing the static or dynamic response
of a structure (Thoft-Christensen and Baker, 1982).
In the beginning, the random variables were sim-
ply represented by 2 basic variables; the resistance
(R load-carrying capacity) and the load effect (Q).
The limit state can be defined corresponding to the
ability of a structure to fulfill its design purpose as
follows:

Q > R, the structure has no ability to fulfill its
design purpose, failure.
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R > Q, the structure has the ability to fulfill its
design purpose, no failure or safe.

Structural reliability and reliability methods

Having accepted the dichotomy of structural behav-
ior as failure and no failure, one can proceed to con-
sider the methods that can be used to determine the
probability of each state. A reliability method, in
the narrowest sense, is a method to evaluate the reli-
ability of a system (Madsen et al., 1986). The prob-
ability of failure, Pf , is equal to the probability that
the undesired performance will occur. Mathemati-
cally, this can be expressed, depending on the basic
design variables mentioned above, as follows:

Pf = P (R < Q) = P (R−Q < 0) = P (R/Q < 1)
(1)

As previously mentioned, the state of the struc-
ture can be described using various random param-
eters (variables) X1, X2, . . . , Xn, which are load
and resistance parameters, such as dead load, live
load, compressive strength, and yield strength. In
this case, the limit state function showing the condi-
tions of failure can be expressed as a function of the
vector of random variables, x. The failure domain
is denoted by F = {x; g(x) < 0}, the safe domain
S = {x; g(x) > 0}, and the limit surface, the bound-
ary of F by G = {x; g(x) = 0} (Breitung, 1994).
This is illustrated in Figure 1 in the case of a 2-
dimensional state space.

Limit state surface G = {x; g(x) =0 }

Failure domain F = {x; g(x) <0 }

Safe domain S={x; g(x) > 0 }

x1

x2

Figure 1. Failure domain, limit state surface, and safe
domain.

Then the problem is to compute the probability
of failure given as Eq. (2),

Pf =
∫

g(x)≤0

fx(x) dx, (2)

where fx(x) represents the joint probability density
function (PDF) of the random vector and Pf is valid

for continuous random variables only. Even though
Eq. (2) seems simple, evaluating this integral is very
difficult in most cases. The integration requires spe-
cial numerical techniques and the accuracy of these
techniques may not be adequate (Nowak and Collins,
2000). Therefore, some other procedures, which will
be explained in the following sections, need to be
used to evaluate the integral in Eq. (2).

The calculation of the probability of failure was
not a simple task until the concept of the reliabil-
ity index, first proposed by Freudenthal (1956), was
introduced. Further proposal for a reliability index
is given by Cornell (1969). Later, Hasofer and Lind
(1974) introduced a new reliability index definition
that is the shortest distance from the origin of re-
duced variables to the limit state surface (g(x) = 0).
It has a very important characteristic that is invari-
ant with respect to different choices of the limit state
function for a given failure domain. According to
this definition, the reliability index, β, is calculated
as follows:

β = µR − µQ
/√

σ2
R + σ2

Q, (3)

where g(R,Q) = R − Q;R and Q are uncorrelated,
normally distributed random variables.

As can be seen in Eq. (3), β depends only on
the means and standard deviations of random vari-
ables. Therefore, β is called a second-moment mea-
sure of structural safety because only the first 2 mo-
ments (mean and variance) are required to calculate
β. A one-to-one relation between the reliability in-
dex and the probability of failure exists for linear
limit state functions, Eq. (4). It is also necessary for
random variables to be uncorrelated and normally
distributed for this relation.

β = −Φ−1(Pf) or Pf = Φ(−β) (4)

The situation is different in the case of domains
defined by non-linear functions, and Pf is not com-
puted from the reliability index in this case. Several
attempts were made to generalize these relations be-
tween the index and probability contents to nonlin-
ear functions (Breitung, 1994). The basic idea in this
connection was to replace the nonlinear function, g,
in the point, x∗(design point), on the failure surface
with minimal distance to the origin by a linear func-
tion, gL, defined by
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gL(x) = (∇g(x∗))T (x− x∗) (5)

i.e. by its first-order Taylor expansion at the point
x∗. This method described above is known as the
First-Order Reliability Method (FORM) since only
a first-order Taylor expansion of the limit state func-
tion is made. In addition to the FORM, approxima-
tions based on linear Taylor expansion of the limit
state function at the maximum point of the nor-
mal density, the Second-Order Reliability Method
(SORM) was studied in the late 70s in which a
second-order Taylor expansion of the limit state
function is made (Breitung, 1994). That means that
the Hessian matrix (Hg(x)) of the limit state func-
tion is used to fit an approximation. The second-
order approximation of the failure surface at the de-
sign point is given by

g(x) ≈ ∇g(x∗)T (x− x∗) +
1
2

(x− x∗)T Hg(x∗) (x− x∗),
(6)

where ∇g(x∗) is the gradient vector at the design
point and the symmetric matrix, Hg(x∗), is the ma-
trix of second-order partial derivatives at this point.

If the distributions of the random variables are
known, then the procedures used for calculating re-
liability indexes can be improved. In such cases,
the non-normally distributed sets of basic variables
are transformed into a standardized Gaussian space.
This transformation is defined as:

FXi(xi) = Φ(yi) (7a)

yi = Φ−1(FXi(xi)) (7b)

xi = F−1
Xi (Φ(yi)), (7c)

where FXi is the cumulative distribution function
(CDF) of ith basic variables, Φ(.) is the CDF of the
standard normal distribution, xi is the ith basic vari-
ables, and yi are transformed Gaussian variables that
are also standardized to the ith basic variables. This
transformation yields a nonlinear limit state function
in almost all cases. In the original space, as previ-
ously mentioned, the limit state function is defined
as

g(x) = g(x1, x2, ..., xn) = 0. (8)

According to Eq. (7) the limit state function may
also be defined as

g(F−1
X1 (Φ(y1)), F−1

X2(Φ(y2)), ...., F−1
Xn(Φ(yn))) = 0

(9)

h(y) = h(y1, y2, ...., yn) = 0. (10)

Equation (10) leads to a hyper surface and it has
safe and failure domains in n dimensional standard-
ized space. To simplify these functions, linear and
quadratic tangential surfaces on the so-called design
point y* are calculated by FORM and SORM, re-
spectively. This point of the limit state function,
h(y), is defined via the shortest distance between
h(y) and the coordinate origin of the

δ =
h(y) −

n∑
j=1

yj
∂h
∂yj(

n∑
j=1

(
∂h
∂yj

)2
)1/2

(11)

standardized Gaussian space. From this distance
measure the safety index is derived.

β =

{
+δ h(0) > 0

−δ h(0) < 0
(12)

Afterwards, the failure probability is easily cal-
culated for FORM and SORM, respectively, as

Pf ≈ Φ(−β) (13)

Pf = Φ(−β)
n−1∏
i=1

(1− βκi)−1/2, (14)

where κi are the main curvatures of the failure sur-
face at y∗. The most time-consuming part in these
methods is to find the design point. Several itera-
tions have to be calculated until the distance mea-
sure, δ, shows good convergence (Jelic et al., 2004);
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however, there is no guarantee that a good conver-
gence will be reached in all cases (Nowak and Collins,
2000).

In addition to the approximation methods de-
fined above, simulation techniques are presented as
one possible way to solve such problems. The ba-
sic idea behind simulation is to numerically simulate
some phenomenon and then to observe the number of
times a specific event of interest occurs. Although it
seems relatively straightforward, the procedure can
become time consuming. One of the methods to gen-
erate some results numerically is the Monte Carlo
(MC) method. The distribution information of the
important parameters of a problem is used to gen-
erate samples of numerical data according to MC.
Then the limit state function is checked for each set
of samples of numerical data. For this task, an indi-
cator function, I(g(x)), is used in order to show the
simulation results. The state of structure is failure
if it takes the value of 1; otherwise no failure occurs
(Eq. 15).

I(g(x)) =

{
1 if g(x) < 0

0 if g(x) ≥ 0
(15)

If a sufficient number of simulated values are
available, it is possible to estimate the probability
of failure as

Pf =
1
n

p∑
i=1

I(g(x)), (16)

where n is the total number of simulations and p
is the number of times that I(g(x)) = 1; in other
words, p is the number state of failure, g(x) < 0, in
the total number of simulated g(x). The accuracy of
the MC simulation approach increases as the number
of sample values increases, and it is proportional to
1/
√
n. Moreover, in some cases, the problem is ex-

tremely complex and the time needed to evaluate the
problem for a single trial is extensive. Therefore, to
reduce the number of simulations needed to obtain
a reasonable result, the methods known as variance

reduction have been introduced. Among them, Im-
portance Sampling, Latin Hypercube, and Adaptive
Sampling are well-known variance reduction meth-
ods.

Example 1

To illustrate how the reliability analysis on a struc-
tural system by any reliability methods is applied,
a cantilever beam, Figure 2, is considered. The as-
sumed limit state is the moment capacity of the beam
at the support. The random variables in the prob-
lem are concentrated load (P = X2) and yield stress
(σy = X1). The mean, standard deviation, and type
of distribution of random variables are listed in Table
1.

L = 2000

P = 18 kN
   I 200

Figure 2. Cantilever beam.

This example is also solved by Spaethe (1992) and
Jelic et al. (2004). In this work, the failure proba-
bility of the cantilever beam is calculated by FORM,
SORM, and MC, again in order to show the efficiency
of the algorithm coded in MATLAB. Solution algo-
rithms of FORM, SORM, and MC are based on the
algorithms given by Spaethe (1992). The comparison
of the results obtained by coded algorithm and the
results given by other researchers are summarized in
Table 2. The limit state function for the cantilever
beam is expressed as follows:

g(x) = X1w −X2L = 0, (17)

where w is the plastic section modulus and is taken
as 214,000 mm3.

Table 1. Parameters of random variables.

Xi µxi σxi X0i Type of distribution
1 265 N/mm2 25 N/mm2 160 N/mm2 Log. Normal
2 18 kN 2 kN - Gumbel, Smallest values
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Table 2. Calculation results.

Methods Pf−Spaethe (1992) Pf−Jelic et al. (2004) Pf−this work
MC (10,000 samples) 2.130E-03 2.200E-03
MC (100,000 samples) 2.46E-3 2.210E-03

MC (5,000,000 samples) 2.09E-3 2.581E-03
FORM 2.242E-03 2.24E-03 2.243E-03
SORM 2.138E-03 2.14E-03 2.142E-03

Comparing the results obtained in the current
work and the exact value computed by Spaethe
(1992) using the numerical integration method,
2.131E-03, it can be said that the coded algorithm
works well, except for the MC method with 5 million
samples. It is thought that this is due to the MAT-
LAB random number generator tool. The built-in
generators found in many software packages should
be used with caution. Some random generation algo-
rithms work better than others (Nowak and Collins,
2000); hence, it may be possible that the same set of
uniformly distributed random numbers is generated
over and over again. It is also observed that the time
needed to reach a reasonable result increases as the
size of the samples increases during the process of
reliability analysis.

Reliability-based optimization

The aim of a design is to achieve adequate safety
with minimum cost. It has been observed that the
structures designed through deterministic optimiza-
tion do not necessarily have high reliability. Opti-
mization based on the reliability concept will lead to
more consistent safety in the structure system (Pu
et al., 1996).

Reliability-based optimization formulations can
be divided into 2 main categories as the component
and the system reliability index-based optimization.
In this work, the reliability-based optimization for-
mulation based on the probabilities of failure of the
members is adopted.

The formulation of the optimization problem
based on member reliability can be expressed as fol-
lows:

min
A

{
W =

m∑
i=1

ρ liAi | Pfi < Pfa

}
, (18)

where W is the weight of the structural system, li,
Ai are the length and cross-section area of member i,
respectively, Pfi is the failure probability of member

i, Pfa is the specified allowable probability of failure,
and m is the number of members of the structural
system. The safety margin or limit state function of
member i gi(Â,= {A1, A2, ..., Am}) is calculated as

gi(Â) = RaiAi −
∑̀
j=1

bij(Â)Lj , (19)

where Rai is the allowable stress of member i, bij(Â)
is the load coefficient of member i with respect to
Lj,, Lj is the applied load, ` is the number of the
applied loads, and Â is the vector composed of the
cross-sectional areas.

The probability of failure of member i is cal-
culated by using the First-Order Second Moment
(FOSM) method:

Pfi = P (gi(Â) ≤ 0) = Φ(−β) (20)

Although the strength (RaiAi) is easily deter-
mined specifying the material and dimension of the
member, evaluation of the internal forces of the
member is very complex, and it is derived by ap-
plying the matrix method (Murotsu et al., 1980).
According to this method, the internal forces, which
are the function of random influences, are obtained
as follows:

Q =
∑̀
j=1

bij(Â)Lj , (21)

where bij(Â) is the element of the matrix
[ki][Ti][Ki]−1, [ki] represents the member stiffness
matrix, [Ti] is the transformation matrix, [Ki]−1 in-
dicates the matrix formed by extracting the rows
corresponding to the vector {di} from the matrix
[K]−1, and [K] is the total structure stiffness matrix.
The coefficient of bij becomes functions of the cross-
section areas of the members. The purpose is to find
the areas of cross-section under the constraints that
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are taken as failure probabilities of the members in
terms of design procedures.

Sequential Quadratic Programming (SQP), Evo-
lution Strategy (EVOL), and Genetic Algorithms
(GA) are used to determine the cross-sectional ar-
eas under the specified failure probabilities of the
members.

There are 2 approaches used to gain insight for
practical applications of optimization: indirect and
direct methods. Minimization techniques seeking so-
lutions to optimality conditions are often called in-
direct methods. On the other hand, the direct tech-
niques have a different philosophy. An estimate of
the optimum design for the problem is required to
start the design process. Then the initial design is
improved iteratively until some criteria, which are
specified in the design, are satisfied (Arora, 1989;
Saka, 1990).

The so-called direct methods are based on the
idea of finding a search direction by linearizing the
objective and constraint functions and then taking a
suitable step in this direction. SQP is based on this
idea and it is one of the most popular direct methods
(Bhatti, 2000).

Since the 1960s, researchers have been interested
in imitating living beings to develop powerful algo-
rithms for difficult optimization problems. A term
now in common use to refer to such techniques is
evolutionary computation. The most widely known
types of evolutionary computation methods are GA
and EVOL (Gen and Cheng, 2000). Both these
methods use the solution principles and mechanisms
of biological evolution processes, in which numerous
optimization mechanisms are embedded. EVOL im-
itates, in contrast to GA, the effects of genetic pro-
cedures on the phenotype.

An algorithmic procedure to solve the optimiza-
tion problem outlined above is as follows:

1. Specify the allowable probability of failure,
Pfa, and initial values of the cross-section areas for
members.

2. Calculate the load coefficients (bij(Â)) corre-
sponding to the cross-section areas.

3. Calculate the failure probabilities of the mem-
bers from Eq. (20).

4. Check the convergence. If there is no conver-
gence, change the cross-section areas and go back to
step 2.

To perform Reliability-Based Design Optimiza-
tion (RBDO) of a roof truss with SQP and EVOL,
the programs called miniFE and optimization com-
ponent work interactively and are available in the
laboratory of the Institute for Computational En-
gineering, Faculty of Civil Engineering, Ruhr Uni-
versity, Bochum, Germany. miniFE contains a set of
Java classes, which can be used to perform structural
analysis. A method to specify the failure probabil-
ity of an element was coded in JAVA and added the
class, which coordinates the data linking between the
miniFE and optimization components. On the other
hand, the calculations based on GA are performed
on a personal computer. This program was coded in
MATLAB and it contains several functions to calcu-
late structural response and to optimize the design
problem based on GA methodology (Toğan, 2004;
Toğan and Daloğlu, 2004).

Example 2

The roof truss structure shown in Figure 3 is con-
sidered as an example to demonstrate the reliability
concept inclusion in the optimization process. It is
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Figure 3. 29-member truss structure.
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assumed that the allowable stress of the members
and the applied loads are statistically independent
Gaussian random variables, while the cross-section
areas of members and length are deterministic. The
The mean value of the loads and the geometrical
properties of the truss structure are given in Figure
3. The mean value of the allowable stress and modu-
lus of elasticity are taken as 276 and 68,900 N/mm2,
respectively. Failures of the members are assumed
to occur under tension or compression.

However, the allowable tension and compression
stresses are taken to be the same. The allowable fail-
ure probability of the members, (Pfa), is assumed to
be 3.45E-07 in the design process and the values of
the coefficients of variation for loads and stress are

specified as 0.20 and 0.05, respectively. The model
used to assess the system reliability at the state of
collapse is based on a series system model. The sys-
tem reliability can be evaluated as Cornell’s upper
bound for small values of probability of member fail-
ure. All the nc component failures are assumed to be
independent of each other and of equal importance,
in that they would try to attain the same target re-
liability in any optimized structure (Thampan and
Krishnamoorthy, 2001). Hence,

Pfa= Pfsys/nc=1.0E-05/29=3.45E-07.

The system is optimized by various optimization
methods. The results are given in Table 3. It can be

Table 3. Comparison between Thoft-Christensen and Murotsu (1986)[1], and this work.

Member [1] (mm2) SQP EVOL GA Pfi -SQP Pfi -EVOL Pfi -GA
1 56 85 84.8 161 3.20E-07 3.41E-07 2.95E-17
2 298 282 282.3 318 3.45E-07 3.27E-07 7.58E-11
3 2 104.9 2.2 161 2.05E-87 1.56E-07 4.23E-88
4 56 87.6 84.8 161 1.51E-07 3.40E-07 2.95E-17
5 2 10.68 2.36 161 1.69E-63 3.09E-08 4.23E-88
6 297 280.7 280.8 318 3.45E-07 3.41E-07 5.44E-11
7 6 6.5 5.97 161 3.18E-09 2.78E-07 1.01E-85
8 55 86.3 85.8 161 2.91E-07 3.44E-07 1.86E-17
9 5 5.62 5.3 161 1.37E-08 2.61E-07 3.57E-86
10 295 278.5 278.3 279 3.27E-07 3.42E-07 2.44E-07
11 11 11.69 11 161 1.28E-08 2.90E-07 4.04E-82
12 53 88 87.6 161 2.94E-07 3.41E-07 7.52E-18
13 291 274.5 274.5 279 3.44E-07 3.42E-07 1.07E-07
14 9 9.5 9.5 161 3.39E-07 3.35E-07 3.67E-83
15 233 221 219 279 1.51E-07 2.64E-07 6.69E-15
16 161 179.9 178 206 2.44E-07 3.42E-07 1.82E-08
17 256 241.8 238.5 279 1.58E-07 3.44E-07 1.06E-11
18 260 250 249 279 3.30E-07 3.44E-07 2.34E-10
19 161 149.9 148.6 161 2.13E-07 3.44E-07 2.71E-09
20 274 282 281.8 318 3.31E-07 3.42E-07 1.11E-08
21 207 191.27 190.3 206 2.63E-07 3.43E-07 3.00E-09
22 331 334 334 412 3.44E-07 3.43E-07 2.86E-13
23 91 84.6 82 161 8.11E-08 3.39E-07 4.40E-30
24 391 389.5 388 412 2.91E-07 3.43E-07 1.37E-07
25 176 160.67 158.5 161 1.81E-07 3.38E-07 1.37E-07
26 401 413 413 431 3.43E-07 3.42E-07 2.75E-08
27 2 8.38 2.2 161 2.10E-55 1.01E-07 4.23E-88
28 391 392 388 412 2.04E-07 3.40E-07 1.37E-07
29 474 491 491 515 3.45E-07 3.40E-07 2.22E-08

Mass (kN) 0.1752 0.1772 0.1743 0.2388∑
Pfi (i=1,..29) 1.00E-05 6.26E-06 8.88E-06 8.48E-07

Initial value: Ai = 465 mm2 and density of material, ρ = 2.7E-08 kN/mm3
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easily seen from Table 3 that the results given in
Thoft-Christensen and Murotsu (1986) and obtained
by SQP and EVOL are smaller than the result ob-
tained by GA.

GA takes the design variables as discrete and it is
very usual that it obtain more mass than gradient-
based methods. The pipe sections listed in AISC
are adopted in the GA for cross-sectional areas of
members so that the results obtained by GA can be
directly used in practice.

The failure probabilities of members and the to-
tal failure probability of members are close to their
allowable upper limit when SQP and EVOL are used;
however, the probability of failure decreases in GA
because the minimum cross-section is 161 mm2 and
the bigger cross-sections have greater resistance. In
this example, each member of the truss structure is
taken as a member group. The figure obtained at the
end of the EVOL optimization process is shown in
Figure 4. It can be said that the construction of this
truss is not practical or meaningful. The number of
sections in the final set should be as few as possible
to make fabrication easy.

Additionally, the upper and lower chords are usu-
ally preferred to be designed with the same cross-
sections. Therefore, the truss structure shown in
Figure 3 is optimized with 2 distinct member group
strategies. In the first strategy, the members of the
truss are grouped into groups of 15, while in another

strategy the member groups are fixed at 9. Corre-
sponding results and configurations are summarized
in Table 4, Figure 5, Table 5, and Figure 6, respec-
tively.

The minimum weight of the truss obtained with
member groups of 15 is bigger than the truss having
29-member groups. Although the configuration after
the optimization process is better than the previous
one, it is still not acceptable in practice.

Figure 4. Configuration of truss structure after optimiz-
ing.

Figure 5. Configuration of truss that has 15 member
groups after optimizing.

Table 4. The optimization results for truss structure that has 15-member groups.

Member SQP (mm2) EVOL GA Pfi-SQP Pfi-EVOL Pfi-GA
1, 28 388.19 388 412.2 3.45E-07 3.45E-07 1.37E-07
2, 29 491.31 491.3 515.5 3.42E-07 3.45E-07 2.21E-08
3, 27 4.77 2.25 206.5 6.79E-32 3.19E-07 2.09E-88
4, 24 388 388 412.2 3.41E-07 3.45E-07 1.37E-07
5, 25 158.4 158.49 161.3 3.45E-07 3.45E-07 1.37E-07
6, 26 413.08 413.18 431.6 3.49E-07 3.45E-07 2.74E-08
7, 23 82.23 82 161.3 3.42E-07 3.45E-07 4.39E-30
8, 20 281.99 281.79 431.6 3.38E-07 3.45E-07 9.19E-18
9, 21 190 190 206.5 3.48E-07 3.45E-07 3.00E-09
10, 22 334 334 412.2 3.27E-07 3.45E-07 2.86E-13
11, 19 148.5 148.59 161.3 3.45E-07 3.44E-07 2.70E-09
12, 16 178.4 178 206.5 3.34E-07 3.45E-07 1.82E-08
13, 18 274.5 274.5 279.3 3.42E-07 3.45E-07 2.34E-10
14, 17 238.5 238.56 297.3 3.47E-07 3.45E-07 1.05E-11

15 218 218 297.3 3.45E-07 3.44E-07 6.60E-15
Mass (kN) 0.2453 0.2452 0.2874∑
Pfi (i=1,..29) 4.79E-06 5.15E-06 5.93E-07
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Table 5. The optimization results for truss structure that has 9-member groups.

(CVR, CVL) (0.05, 0.20) (0.03, 0.40) (0.10, 0.40)
EVOL GA EVOL GA EVOL GA

Member A(mm2) A(mm2) A(mm2) A(mm2) A(mm2) A(mm2)
1,4,8,12,16,20,24,28 388 412.3 516 568.4 648 690.3
2,6,10,13,18,22,26,29 491 515.5 628 690.3 803.6 954.8

3,27 2.2 241.8 3.2 214 3.9 161.3
7,23 82 161.3 110.6 161.3 138 161.3
11,19 148 161.3 188 214.8 241.8 279.3

15 218.1 279.3 264 279.3 347.7 412.2
5,25 158 161.3 215.7 279.3 268 279.3
9,21 190 206.4 243 279.3 311 318.7
14,17 238 279.3 293 318.7 382.7 412.2

Mass (kN) 0.2904 0.3241 0.3745 0.4241 0.4772 0.5424∑
Pfi (i=1, . . . ,29) 3.74E-06 1.87E-07 3.78E-06 4.04E-08 3.77E-06 6.95E-07

Initial value : Ai = 445 mm2

The last optimization results are presented in Ta-
ble 5 and the last configuration shown in Figure 6 is
the best in terms of practicality and construction.

Table 5 also shows the effect of the values of the
variations coefficient of the random variables on the
weight of the truss. The cross-sectional areas in-
crease as the coefficients of variation increase.

Figure 6. Configuration of truss that has 9 member
groups after optimizing.

The design optimization problem in which the
member groups are fixed at 9 is evaluated only by
EVOL and GA. EVOL is not sensitive to any changes
in the initial values of cross-section areas that are
required to start the optimization process for this
problem.

The same truss is optimized, once again, using
GA under the continuous design variables to show
how the result is affected. Java Genetics Algorithms
Package (JGAP), which is free software (freeware),
was used for this purpose. JGAP is a GA component
written in the form of a Java framework. It provides
basic genetic mechanisms that can be easily used to
apply evolutionary principles to the solutions of de-
sign problems. Since both JGAP and miniFE are
based on OOP, it is possible to link them together

by writing appropriate software. Hence, the method
needed to perform RBDO of the roof truss was coded
in JAVA in the Eclipse Platform and added the class,
which is responsible for providing the data linking
between JGAP and miniFE. The continuous design
variables were defined in JGAP as follows:

Gene[] sampleGenes = new Gene[9];

for (int i = 0; i < sampleGenes.length; i++) {
sampleGenes[i] = new DoubleGene(0.02,6.65);

}
where sampleGenes represents a chromosome com-
posed of 9 genes, which is the total of the number
of the design variables, and DoubleGene(0.02,6.65)
specifies the lower and upper limits of design vari-
ables (genes). The initiating of the design variables
are randomly formed by JGAP. The result obtained
by JGAP using continuous design variables under
Pfa = 3.45E-07 is presented in the second row of
Table 6.

Another investigation performed in the study ex-
plored the variation of optimum weight in connec-
tion with the imposed level of failure probability for
the design problem given. This optimization is im-
plemented for both continuous and discrete design
variables in GA. The results are illustrated in Tables
6 and 7, respectively. Studying both the tables, it
can be concluded that as the imposed level of failure
probability increases, the weight of the roof truss also
increases. This is meaningful because the increased
level of failure probability causes the optimization
method to assign larger cross-section areas than the
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Table 6. The optimization results with continuous design variables in GA.

Allow. failure Mass Design variables (mm2)
prob. (Pfsys) (kN) A1 A2 A3 A4 A5 A6 A7 A8 A9

1.00E-03 0.2799 369 465.3 9 77.5 135.6 258.9 153.9 184.5 235.2
1.00E-05 0.2936 390.1 491.3 2.4 85.3 153 218.8 162.5 191.4 255.4
1.00E-07 0.3333 425 541 24.5 135 221.8 312.8 183.3 217.3 257.6
1.00E-09 0.3633 466.7 573 28.1 188.7 200.4 384.1 198.2 266.2 277.4

Table 7. The optimization results with discrete design variables in GA.

Allow. failure Mass Design variables (mm2)
prob. (Pfsys) (kN) A1 A2 A3 A4 A5 A6 A7 A8 A9

1.00E-03 0.3198 412.2 412.2 161.3 161.3 206.4 206.4 161.3 161.3 206.4
1.00E-05 0.3241 412.2 515.5 241.8 161.3 161.3 279.3 161.3 206.4 279.3
1.00E-07 0.3636 515.5 568.4 161.3 206.4 161.3 279.3 206.4 206.4 279.3
1.00E-09 0.4019 515.5 690.8 161.3 161.3 206.4 279.3 214.8 279.3 279.3
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Figure 7. a, b. Variation of the weight of truss with the imposed level of failure probability.
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Figure 8. a,b. Variation of the weight of truss and failure probability of element with generations.

ones reached under the smaller level of failure prob-
ability. Figures 7a and 7b represent graphical illus-
trations of the results given in Tables 6 and 7.

Additionally, it is very common to observe a re-
duction of the weight in subsequent iterations of op-
timization when the value of failure probability of
the element, which is taken as a constraint in the
design problem, is getting closer to or is under its
upper boundary. These variations are presented in
Figures 8a and 8b, for both continuous and discrete
design variables.

Observation and Conclusion

Reliability and RBDO are reviewed in this study.
The application of these concepts to structural prob-
lems is explained through numerical examples and
the conclusions reached in the study follow.

Both the algorithms coded for Reliability and
RBDO in the study are accurate and efficient. The
design obtained by RBDO balances both cost and
safety.

If design variables are taken to be discrete, GA
finds more mass and the failure probabilities de-
crease. In the case of continuous design variables

in GA, the weight of the roof truss shows similarity
between the results obtained by EVOL. Hence, the
results obtained by continuous design variables ver-
ify the results obtained by discrete design variables,
but they are not applicable in practice. Therefore,
GA working with discrete design variables submits a
one to one practical design in practice

The weight of the structures changes with differ-
ent member groups strategies and the change tends
to increase as the number of member groups used
decreases; however, the shape of the truss becomes
more applicable from the practical point of view.

The changes in the coefficient of variation of ran-
dom variables influence the weight of the structure
and the changes in the imposed level of failure prob-
ability influence the weight. However, this influence
is less than the influence of changes in the variation
coefficient of random variables.
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Nomenclature

R load carrying capacity
Q load effect
g(.) limit state function
Pf probability of failure
X1, X2, . . . , Xn random variables
x1, x2, . . . , xn realization of the random vari-

ables
y1, y2, . . . , yn transformed and standardized

random variables
fx(x) probability density function
β reliability index
µ mean value
σ standard deviation
x∗ design point of random variables
Φ(.) cumulative distribution function

of standard normal distribution
gL linear function
∇g (.) gradient of function
H(.) Hessian matrix of function
Fxi cumulative distribution function
y∗ design point of transformed ran-

dom variables
h(y) limit state function of trans-

formed random variables

κ main curvature of the failure surface
δ distance measure
I(g(x)) indicator function
n total number of simulations
p number of state of failure
σy yield stress
w elastic section modulus
W weight of structure
li length of member i
Ai area of member i
ρ density of material
Pfi failure probability of member i
Pfa specified allowable probability of

failure
m number of members in the structure
Rai allowable stress of member i
bij(.) load coefficient of member i with re-

spect to Lj
Lj applied load
` number of applied load
[k] member stiffness matrix
[K] global stiffness matrix
[T ] transformation matrix
Pfsys probability of system failure
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İstanbul, 2,803-812, 2004.

249


