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Abstract

An algorithm was developed for performance evaluation of single class closed queueing networks with
configurations likely to occur in real-world manufacturing systems, i.e. limited waiting spaces, split-merge
topologies, and stations with multiple servers. The approach was tested by several numerical experiments to
evaluate its robustness under different conditions. The algorithm proved to be accurate, efficient and very
consistent with balanced and unbalanced service rates, varying number of customers in the system, and the
system size.
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Introduction

Motivation and purpose

Queueing networks are said to be finite if some or
all of its nodes have limited capacities for entities
stationed at them. Many complex service, manufac-
turing, and computer systems can be modeled us-
ing queueing networks and most of these systems
have finite buffers. For example, in manufactur-
ing systems, there is usually limited waiting room
between workstations in assembly lines, material-
handling systems, and cellular manufacturing cells.
In telecommunication systems, there are finite capac-
ity telephone lines and capacitated ATM switches.

Studies of finite closed queueing networks date
back 4 decades to the pioneering work by Gordon
and Newell (1967b). However, a vast majority of the
studies concentrate on tandem queueing systems and
single servers. Less research can be found on more
general systems such as with multiple servers and
arbitrary topologies. These types of closed networks
have great applicability to real systems and it would
be desirable to further develop appropriate analyti-
cal methods. As mentioned before, exact solutions

are limited to specific cases for finite closed queueing
networks; therefore we should consider approxima-
tion methods.

The approximation technique proposed in this
study uses insights from the Expansion Method
(EM) for modeling series, merging and splitting
topologies. The EM’s algorithmic approach has been
used successfully to evaluate performance measures
of finite queueing networks. Kerbache and Smith
(1988) introduced this method to solve a wide range
of finite open queueing networks, with exponential
service inter-arrival times with varying traffic inten-
sities. EM was further extended to general open
queueing networks (Kerbache and Smith, 1987), i.e.
general service times and non-exponential i.i.d. ar-
rival rates. Soon, this approach was adopted for open
networks with M/M/c/K state-dependent service
and applied to arbitrarily configured series-parallel
network topologies (Jain and Smith, 1994).

Moreover, Gonzales (1997) successfully adopted
the EM to handle closed queueing networks with
finite buffers in conjunction with an Equalization
Phase and well-known Mean Value Analysis (MVA).
The EM is based on a combination of repeated trials
and node-by-node decompositions and characterized
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by the addition of artificial nodes associated with
each finite queue to reroute blocked customers to the
blocking queues. These additional nodes effectively
expand the network and enable the transformation
of such systems into equivalent Jackson networks in
which each node can be treated independently.

One of the main goals of this study was to utilize
EM in the analysis of multiple server topologies in
closed queueing networks.

Outline of paper

In the following part, we furnish a brief review of
the literature. In model description section, we in-
troduce the notation used for network descriptions,
ideas used to develop the approximation, and present
the algorithm. In the assessment of the method sec-
tion, the algorithm is assessed numerically against
the values obtained from simulation as well as exist-
ing algorithms where applicable. Lastly, the conclu-
sions section is presented.

Literature Review

Although queueing theory has its foundations in
telecommunication systems with the work by Er-
lang, it has also been applied to several other areas,
such as manufacturing and computer system model-
ing. The modeling of these systems has been ac-
tively addressed by a large number of researchers
over the last decades. There are several books pub-
lished in this area, Bolch et al. (1998), Papadopou-
los et al. (1993), Cooper (1981), and Nain (1998),
to name a few. In the presentation of the material,
we place emphasis on closed queueing networks with
limited buffers, production blocking, and first-come-
first-served queueing discipline.

Product form

Product form queueing networks have a simple
closed form expression for the stationary state distri-
bution that permits efficient algorithms to evaluate
average performance measures. The state probabil-
ity of a closed single class queueing has a product
form solution as follows:

π(n1, n2, ..., nM) =
1

G(N)

M∏
i=1

gi(ni) (1)

where G(N) is the normalization constant, N is the
network population, and gi(ni) is a function of state

ni and depends on the type of service center i, (i = 1,
. . . ,M).

Jackson (1963) introduced product form queue-
ing network models for open exponential networks,
while Gordon and Newell (1967a) did the same
for closed exponential servers. The queueing dis-
ciplines at all stations were assumed to be FCFS.
These results were extended to open, closed, and
mixed networks with several customer classes, non-
exponentially distributed service times, and different
queueing disciplines by Baskett et al. (1975), and
known as the BCMP theorem.

The computation of the normalization constant,
G(N), was facilitated by the convolution algorithm
of Buzen (1973). Since the calculation of the nor-
malization constant is very intensive, a new algo-
rithm, MVA, was developed by Reiser and Lavenberg
(1980), which avoids its explicit calculation for closed
queueing networks with infinite buffer capacities and
allows for multiple customer classes and chains. This
approach is based on the following 2 fundamental
theorems and computes the mean values of interest
such as mean waiting time, mean number of cus-
tomers at each node, throughput, and utilization.

Another algorithm for analyzing product-form
queueing networks is the flow-equivalent-server
(FES) method (Chandy et al., 1975). This method
applies Norton’s theorem from electric circuit theory
to closed queueing networks. The queueing network
is decomposed into a simpler network of 2 stations,
where one represents a single station from the orig-
inal network and the other represents the comple-
ment network. The related theorem states that the
queue length distributions at the isolated station in
the original network and the 2-station network are
equal.

The convolution algorithm, MVA, and FES algo-
rithm have the same running time complexity. How-
ever, due to the algorithmic appeal and intuitiveness
of MVA, many approximations have been suggested
to deal with shortcomings and extensions to non-
product-form cases. Even before the publication of
the MVA, approximate MVA algorithms were pre-
sented by Bard (1979) and Schmidt (1997). In a
comparative study, Wang (1997) surveyed existing
approximate MVA algorithms for product-form net-
works and examined the relative merits and trade-
offs of different implementations and analyzed the
complexity of the approximate MVA algorithms.

A closed queueing network with finite buffers can-
not be shown to have a product form solution other
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than for a few special cases. Some classes of product-
form closed networks with finite capacities can be
found in the survey conducted by Balsamo (1993). In
his review, finite queueing networks under different
blocking mechanisms, and their exact and approxi-
mate analytical solution methods were presented. In
addition, the properties of product-form finite queue-
ing networks that arise in comparison of different
models are discussed.

A closed queueing network with finite buffers un-
der production blocking is shown to have a product-
form solution when:

• The network has exactly 2 nodes (Akyildiz,
1987), and

• The number of customers in the network is
equal to the capacity of the smallest buffer plus
one (Onvural and Perros, 1986).

Another comprehensive survey of closed queue-
ing network compiled by Onvural (1989) noted that,
other than these special cases, closed queueing net-
works under production blocking do not have a
product-form.

Non-product form

Although many algorithms are available for solv-
ing product form queueing networks, most practical
queueing problems lead to non-product form net-
works. Theoretically, all closed queueing networks
with exponential service times can be solved numer-
ically. This is done by identifying the Markov chain
underlying the model and solving the system of equa-
tions to determine the steady-state probability. For
a homogeneous, irreducible, continuous time Markov
chain with n states, the set of equations is:

πΘ = 0

where Θ is an nxn whose elements θijdenote the rate
of transition of the chain from state i to state j and
π, π= (π1,..., πn) is the stationary probability vec-
tor in which πi is the stationary probability of the
Markov chain being in state i.

However, the state space and the number of
numerical evaluations grow exponentially with the
network size. Instead of the costly alternative of
a discrete-event simulation, approximate solutions
may be considered.

A comprehensive survey of the literature on
closed queueing networks with blocking was com-
piled by Onvural (1990). Akyildiz (1988) presented

an approximation method for the throughput of a
finite closed queueing network. His concept is based
on that of a non-blocking queueing network with an
appropriate total number of customers that could be
derived such that the state space is equal to the state
space of the blocking network. His transformation of
state spaces is exact for 2 station networks and ap-
proximate for multiple station cases.

Onvural and Perros (1989) developed an ap-
proximation algorithm to calculate the throughput
of large closed exponential queueing networks with
finite buffers. The algorithm determines approx-
imately the number of customers such that the
throughput of the network is at maximum and fits a
curve that passes through a number of known points
to estimate the unknown throughput values as the
number of customer in the network varies.

A decomposition procedure was developed by
Suri and Diehl (1986) for cyclic networks in which
the first node has infinite capacity. The algorithm
is based on the idea of replacing all the downstream
nodes of the ith node by a single flow-equivalent fi-
nite capacity node with varying buffer size.

Another algorithm for cyclic queues where the
first node has infinite capacity was proposed by
Dallery and Frein (1986). They decomposed the net-
work into m individual queues and analyzed each of
them as a M/M/1/K queue with a state dependent
service mechanism.

An approximate MVA of queueing networks with
blocking after service was developed by Akyildiz
(1988). His approximation is based on the modifi-
cation of the time spent in the queue and in service
by a customer due to the blocking events that occur
in the network.

Another approximate MVA algorithm for solving
an exponential cyclic network with blocking was de-
veloped by Zhuang et al. (1994). In their algorithm,
they modify the arrival instant theorem to account
for finite queue capacity and use a set of equations in-
volving the average values of performance measures.

Frein and Dallery (1993) developed an analyti-
cal method modeling a production line with finite
buffers as closed queueing networks with blocking.
Their principle concerns decomposing the network
into a set of 2-server subsystems. The population
constraint of the network is taken into account by
summing the average queue lengths of the different
subsystems. They also derived properties pertaining
to their method.

An approximation for a cyclic queue with general
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service times was developed by Liu et al. (1992).
They estimate the throughput of the network up
to the maximum value combining Norton’s theorem
with a decomposition technique.

Expanded Mean Value Analysis (EMVA)

Although MVA was derived to provide an exact anal-
ysis of product form networks, its appealing algorith-
mic features, which are that it is numerically stable
and capable of providing a reasonable physical inter-
pretation and works directly with the desired statis-
tics, have aroused intense research interest in devel-
oping appropriate variants for approximate analysis
of non-product form closed queueing networks.

In the proposed EMVA approximation, the block-
ing effect of the closed queue is taken into account
through an approximation of the mean effective ser-
vice time of each server. The mean effective service
time is embedded in the state dependent MVA algo-
rithm. Further, marginal queue length probabilities
are used to estimate the blocking probabilities along
with these effective service rates.

Model description

Consider a closed queueing network, G(M,A), with a
finite set of M nodes and finite set of A arcs connect-
ing nodes. For convenience, the following symbols
are used in the description of queueing networks:
M number of nodes.
N number of jobs/customers in

the system.
ni number of jobs/customers at

the ith node (
M∑

i=1
ni = N).

(n1, n2,..., nM ) the state of the network.
πi(n1, n2,..., nM ) probability that ith node con-

tains ni jobs (i = 1, . . . ,M).
µi service rate at ith node (i =

1,...,M ).
1/µi mean job service time of the

jobs at ith node (i = 1,...,M ).
Vi visit ratio of ith node (i =

1,...,M ).
rij routing probability, probability

that a job is transferred to the
jth node after service comple-
tion at the ith node (i �= j, i =
1,...,M, j = 1,...,M).

πi(j|n) conditional probability of having j jobs at
the ith node given that there are n jobs
in the system (i = 1,...,M, j = 0,..., n, n
= 0,...,N ).

Ki buffer capacity of ith node including the
servers (i = 1,...,M).

ci the number of parallel servers at the ith

node (ci ≥ 1, i = 1,...,M ).
bi waiting space for the ith node (i =

1,...,M).
Pi(b) probability of a customer being blocked

at node i.
PKi probability that a node i, with finite

buffer size of Ki blocks a customer.

The performance measures are:
λ overall throughput rate.
λi throughput rate at ith node (i = 1,...,M).
ρi utilization of ith node (i = 1,...,M).
W cycle time, i.e. average time for a customer to

complete one loop or cycle.
Wi average time spent at ith node (i = 1,...,M).
Qi mean number of customers at ith node (i =

1,...,M).
The service discipline at all stations are first-

come-first-served (FCFS) and service time distribu-
tions are exponential. Each station i may have a
multiple number, ci (ci = 1, 2, . . .), of servers.
Therefore, the station i can serve a maximum num-
ber of ci customers, simultaneously (Figure 1). The
service time at station i is 1

µi
, and the service capac-

ity, the rate at which a station services customers if
no blocking occurs, is ciµi.

We assume there are bi waiting spaces for the ith

node and customers are blocked after service. This
type of blocking arises when the destination node j
is full, at the moment the customer at node i at-
tempts to enter. The customer at node i is blocked
and resides in the server, in consequence, preventing
the server from beginning service on another cus-
tomer. We note that the servers provide spaces for
the customers, as well, which leads the number of to-
tal buffer spaces to Ki = bi + ci at node i effectively.

Effective service rates

The method used for estimating the effective service
rates µi of node i, is based on the assumptions made
in the EM approximation. In the EM, an artificial
node h is added for each finite node in the network,
effectively expanding the original network (Figure 2).
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Figure 1. A single station with multiple identical parallel servers.
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Figure 2. Expansion of network.
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The name EM alludes to this first stage, which
creates a holding node for the overflow of customers
due to blocking. After being serviced at node i, a
customer attempts to proceed to downstream node
j. If node j has space to accommodate the customer,
the customer successfully joins queue j with a prob-
ability of (1− PK). However, if node j is saturated,
the customer is blocked at the previous node i. An
additional delay, caused to customers trying to join
the queue at j when it is full, with probability PK,
is incurred at the artificial node h. The artificial
node is modeled as an M/M/ : queue. The infinite
number of servers is used simply to serve the blocked
customer a delay without queueing.

In this method, the mean service times at node
i preceding the finite node are µ−1

i and (µ−1
i +µ−1

h )
when in the unsaturated and saturated phases, re-
spectively. Thus, on average the mean service rate
at the node i preceding a finite node is

µ−1
i = µ−1

i + PKhµ
−1
h (2)

For tandem networks, nodes in series, the service rate
of the holding node will be the service rate of the suc-
ceeding node, which can be denoted as follows:

(µh)i = µi+ 1 for i = 1,...,M - 1

(µh)i = µ1 for i = M.

In another node, if the destination node has mul-
tiple servers, (ci+ 1 > 1), then the holding service
rate would be:

(µh)i = ci+1µi+1.

This comes from the fact that, when a station
causes blocking, it is full, and therefore is working at
the service capacity.

Blocking probability

In this study, we assume production blocking, some-
times referred to as Blocking After Service (BAS). In
the BAS mechanism, a customer upon completion of
its service at node i attempts to enter destination
node j. If node j at that moment is full, the cus-
tomer is forced to occupy server i until the destina-
tion node becomes available, and node i is blocked.
Server i cannot serve any other customer that might
be waiting in its queue.

In this type of blocking, the blocked server i ef-
fectively provides an additional queueing position for
customers awaiting service at j. The effective queue
capacity of blocking node j increases by 1. At this
instant, the node j has full capacity of customers and
additionally blocks node i.

The state change of such a finite node is illus-
trated in Figure 3. When there are n (n ≥ K) cus-
tomers in the system, a finite node may have at most
K customers. The last state depicts the blocking
state where a blocked customer awaits in the up-
stream node.

0|n 1|n K-1|n K|n K|n…

Figure 3. The states for a finite capacity node.

K|n

1 2 n – K…

Blocking Probability

Possible number of customers
being blocked

Figure 4. Partitioning the blocking probability.
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0|n 1|n K – 1|n K|n K + 1|n… n|n…

Figure 5. The states for an infinite capacity node in separable networks.

Moreover, if we map out the state space of a finite
network, we will see that the blocking probability of a
particular node consists of further partitions. These
partitions are the marginal probabilities of having j
customers blocked by node i in the upstream nodes.

For example, if node j has K customers, it will
cause blocking. Since the number of customers in
the network is at most n, 1 to (n - K) customers can
be blocked, and awaiting for node j to finish. These
customers are not necessarily present in the imme-
diate upstream node but can be situated in previous
nodes as well.

Hence, using these blocking state partitions (Fig-
ure 4), limited space of a finite node can be extended
to virtual infinite buffer spaces which represent the
possibility of having K + 1, K + 2, . . . ,n cus-
tomers. Concurrently, for an infinite capacity node
in a product-form network, the state alterations will
be as in Figure 5.

To show the differences from the finite node, the
dissimilar states are drawn in dashed lines. With
virtual buffer spaces of a finite node, the correspon-
dence to an infinite capacity node can be established.
As can be seen in Figure 5, the partitions of block-
ing state will be equivalent to K + 1, K + 2, . . . ,n
customers in the infinite node.

Assuming this notion, the blocking probability
can be expressed as the sum of conditional proba-
bilities of having more than Ki buffer space jobs at
node i when there are n jobs in the equivalent infinite
capacity node. This can be formulated as:

PKi =
n∑

j=Ki+1

πi(j|n) = 1−
Ki∑
j=0

πi(j|n) (3)

Certainly, for a finite capacity node the state changes
are not modeled by a continuous Markov chain
(CTMC) and are not independent from other nodes.
However, by introducing effective service rates, the
blocking probabilities can be approximated.

Table 1. Parameters of the 4-node cyclic network.

I II III IV
µI 4 1 3 2
ci 1 1 1 1
Ki : 5 : :

We note that while closed queueing networks
have been widely studied, to the best of our knowl-
edge, there has been no closed-form expression or
other approximation cited for the estimation of the
blocking probability for closed finite networks. The
blocking probability from the M/M/1/K finite ca-
pacity system is often used, and the probability of
finding the finite node i with capacity Ki saturated
is well known as:

PKi =
(1 − ρ)ρKi

1− ρKi+1
(4)

where ρ is the utilization ratio.

We compare our blocking probability estimation
calculated by Eq. 3 with Expression 4 in a numer-
ical example with the parameters given in Table 1.
The network consists of a serially constructed 4-node
network with single servers. The server at node 1 is
the fastest, while the one in node 2 is the slowest.
We assign a finite space of 5 to node 2 so that it is
the only source of blocking and thus the probability
of blocking is high. The other nodes have infinite
capacity.

The throughput rate from simulation is used for
the calculation of the utilization ratio, ρ2, which is
needed for the M/M/1/K blocking probability. This
is from the observation that the network is cyclic
and the throughput rates of all nodes are equal by
the conservation of flow.
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Figure 6. The blocking probability comparison in M = 4
nodes.

In Figure 6, the blocking probability estimates
for node 2 are plotted on the lower curves of the fig-
ure, along with the throughputs in the top 2 curves
from simulation and the approximation algorithm,
EMVA, as described in Section 3.4.

When there are N = 6 customers in the system,
blocking occurs. The probability of blocking rises
gradually, as the number of customers increases. Our
blocking probability estimation not only provides an
exact starting point for the blocking but also mimics
its behavior. The estimation from M/M/1/K fails to
capture the increase in blocking, since the through-
put of the system remains steady after N = 6.

Algorithm

The approximation method can be summarized as
follows:

Step 1: Initialization. For i =1, . . . ,M
πi(0|0), Pi(0) = 0
Step 2: Iteration: n = 1,2, . . . ,N
Step 2.1: For i = 1, . . . ,M compute the service

rates

µi(n) =
{
nµi if n ≤ ci
ciµi if n > ci

Step 2.2: For i =1, . . . ,M compute the effective
service rates

1

µe
i (n)

=

(
1

µi
for all i forn = 1

1
µi(n)

+ Pi+1(n − 1) 1
µh(n)

for all i forn = 2, ...,N

µh is the service rate of the holding node

µh=µi+1 for exponentially distributed service
rates for tandem networks

Step 2.3: For i = 1, . . . ,M compute the mean
response time

Wi(n) =
n∑

j=1

j
µe

i (j)πi(j − 1|n− 1)

Step 2.4. Compute the system throughput
λ(n) = n

MP

i=1
Wi(n)∗Vi

Step 2.5. For i = 1, . . . ,M compute the condi-
tional probabilities

πi(j|n) = λ(n)
µe

i (j)πi(j − 1|n− 1) for j = 1, . . . ,n

πi(0|n)=1-
M∑
l=1

πi(j|n)
Step 2.6: For i = 1, . . . ,M calculate the block-

ing probabilities

Pi(n) = 1−
Ki∑
j=0

πi(j|n)

The algorithm mentioned above has been imple-
mented and was a part of the extensive study in
Yuzukirmizi (2005). We give a brief study of the
experiments in Section 4, which also include a com-
parison and assessment of the above method.

Assessment of the Method

Numerical examples

The algorithm described above was implemented and
executed on several numerical experiments. We an-
alyzed series, merge, and splitting topologies under
carefully chosen system parameters to investigate al-
gorithms in various circumstances. For each exper-
iment, comparisons with simulation as well as with
case studies by other authors are included, where
applicable, to validate the proposed methods.

Simulation experiments are conducted with
ARENA version 5.0 with 10,000 time units and 20
replications. System throughput, λ, is the primary
measure. The percentage deviations, with respect to
the simulation of listed methods, are also presented
in comparison tables.
Single server comparison In this first set of ta-

bles (Tables 2-4) the algorithms are compared with
existing methods published in the literature for cyclic
networks with single servers to give a relative assess-
ment. In each case, results obtained from the pro-
posed EMVA method (see those with λEMV A) were
compared with simulation results (λSim). Results
from other relevant methods are also included when-
ever possible. These include methods developed
by Suri and Diehl (1986) (λSD), Akyildiz (1988b)
(λAky), Dallery and Frein (1986) (λDF ), for cyclic
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queues in which the first node has infinite capacity,
and Liu et al. (1992) (λLiu), Zhuang et al. (1994)
(λZhu) and Onvural and Perros (1989) for general

cyclic queues. The relative percentage errors, ∆%,
are also provided.

Table 2. Throughput rate comparison of 5-node cyclic queue when the first node has infinite capacity.

M = 5
µi = (1,0.5,1,0.5,1) , Ki = (:3,3,3,3), ci = (1, 1, 1, 1, 1)

λSim λEMV A ∆% λSD ∆% λAky ∆% λDF ∆% λLiu ∆% λZhu ∆%
5 0.367 0.366 –0.0% 0.364 –0.8% 0.367 0.0% 0.356 –3.00% 0.367 0.0% 0.367 0.0%
6 0.389 0.388 –0.1% 0.381 –2.0% 0.39 0.2% 0.382 –1.80% 0.39 0.2% 0.39 0.2%
7 0.404 0.403 –0.2% 0.392 –2.9% 0.407 0.7% 0.4 –0.99% 0.407 0.7% 0.407 0.7%
8 0.413 0.413 0.0% 0.398 –3.6% 0.42 1.6% 0.416 0.73% 0.42 1.6% 0.42 1.6%
9 0.417 0.419 0.6% 0.4 –4.0% 0.42 0.7% 0.426 2.16% 0.425 1.9% 0.425 1.9%
10 0.419 0.422 0.9% 0.4 –4.5% 0.42 0.2% 0.43 2.63% 0.425 1.4% 0.425 1.4%
11 0.419 0.424 1.2% 0.401 –4.3% 0.42 0.2% 0.43 2.63% 0.425 1.4% 0.425 1.4%
12 0.419 0.424 1.1% 0.401 –4.3% 0.42 0.2% 0.43 2.63% 0.425 1.4% 0.425 1.4%
13 0.419 0.422 0.9% 0.401 –4.3% 0.42 0.2% 0.43 2.63% 0.425 1.4% 0.425 1.4%

Table 3. Throughput rate comparison of 4-node cyclic queue.

M = 4
µi = (3, 2, 4, 2) , Ki = (6, 2, 2, 4), ci = (1, 1, 1, 1, 1)

λExact λEMV A ∆% λOP ∆% λLiu ∆% λZhu ∆%
4 1.379 1.3777 –0.09% 1.391 0.87% 1.369 –0.73% 1.377 –0.15%
5 1.477 1.474 –0.20% 1.506 1.96% 1.454 –1.56% 1.466 0.74%
6 1.541 1.5321 –0.58% 1.57 1.88% 1.578 2.40% 1.529 –0.78%
7 1.583 1.562 –1.33% 1.593 0.63% 1.603 1.26% 1.576 –0.44%
9 1.606 1.5658 –2.50% 1.597 –0.56% 1.606 0.00% 1.576 –1.87%
10 1.587 1.5512 –2.26% 1.584 –0.19% 1.603 1.01% 1.576 –0.69%
11 1.549 1.5318 –1.11% 1.559 0.65% 1.578 1.87% 1.529 –1.29%
12 1.487 1.511 1.61% 1.495 0.54% 1.454 –2.22% 1.466 –1.41%
13 1.385 1.4916 7.70% 1.385 0.00% 1.369 –1.16% 1.377 –0.58%

Table 4. Throughput rate comparison of 5-node cyclic queue with all nodes having finite capacity.

M = 5
µi = (3, 2, 4, 2, 1) , Ki = (4, 3, 2, 4, 2), ci = (1, 1, 1, 1, 1)

λSim λEMV A ∆% λOP ∆% λLiu ∆% λZhu ∆%
4 0.849 0.8507 0.20% 0.843 –0.71% 0.854 0.59% 0.854 0.59%
5 0.895 0.9018 0.76% 0.888 –0.78% 0.908 1.45% 0.889 –0.67%
6 0.917 0.929 1.31% 0.914 –0.33% 0.931 1.53% 0.915 –0.22%
7 0.926 0.9416 1.68% 0.925 –0.11% 0.932 0.65% 0.921 –0.54%
8 0.93 0.9438 1.48% 0.93 0.00% 0.933 0.32% 0.921 –0.97%
10 0.931 0.9296 –0.15% 0.931 0.00% 0.933 0.21% 0.921 –1.07%
11 0.929 0.9169 –1.30% 0.928 –0.11% 0.932 0.32% 0.921 –0.86%
12 0.923 0.9026 –2.21% 0.924 0.11% 0.931 0.87% 0.915 –0.87%
13 0.909 0.8884 –2.27% 0.912 0.33% 0.908 –0.11% 0.889 –2.20%
14 0.87 0.875 0.57% 0.892 2.53% 0.854 –1.84% 0.854 –1.84%
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Multiple server comparison In the following fig-
ures (Figures 7-12) experimental results with multi-
ple servers are presented. The approximation results
are compared only to simulation since other authors’
methods are only designed for cyclic queues with sin-
gle servers. The throughput of the system calculated
from simulation, λsim, is compared with the value
obtained from the EMVA algorithm, λEMV A. As be-
fore, the relative percentage deviations are presented
to compare to simulation. The 95% confidence inter-
val for the simulation runs, δ, is also provided.

In Figures 7-9, 3-node networks are compared

with simulation. In the first 2 of these experiments,
the service times are balanced in according to their
server numbers, and are unbalanced in the third.
The number of customers increases until deadlock
occurs.

In Figures 10 and 11, a 5-node network with bal-
anced and unbalanced service rates is presented. Ex-
cept extreme blocking, the approximation method
estimates the throughput accurately. Also note that
the algorithm is consistent and does not have unex-
pected state.

M = 3
µi = (.3333, 1, 1), ci = (3, 1, 1) and Ki = (4, 4, 4)
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Comparison of Blocking Probability in M = 3 nodes

1 2 3 4 5 6 7 8 9 12
Number of customers

10 11

λSim δ λEMV A ∆%
1 0.2003 70.0012 0.2 0.1%
2 0.3697 70.0013 0.3704 –0.2%
3 0.5082 70.0016 0.5094 –0.2%
4 0.6014 70.0021 0.6022 –0.1%
5 0.6641 70.0028 0.6666 –0.4%
6 0.7066 70.0025 0.7115 –0.7%
7 0.7313 70.0027 0.7398 –1.2%
8 0.7434 70.0026 0.7523 –1.2%
9 0.7424 70.0026 0.7502 –1.1%
10 0.7176 70.0027 0.7354 –2.5%
11 0.6786 70.0023 0.7106 –4.7%

Figure 7. Throughput plot and comparison of a 3-node network with balanced service rates.

M = 3
µi = (.3333, .5, .3333), ci = (3, 2, 3) and Ki = (5, 5, 5)
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Comparison of Blocking Probability in M = 3 nodes

1 2 3 4 5 6 7 8 9 12
Number of customers

10 11 13 14

λSim δ λEMV A ∆%
1 0.1252 70.001 0.125 0.2%
2 0.2496 70.001 0.25 –0.2%
3 0.3713 70.001 0.3721 –0.2%
4 0.4818 70.002 0.4824 –0.1%
5 0.5721 70.002 0.5731 –0.2%
6 0.6409 70.002 0.6422 –0.2%
7 0.692 70.003 0.6936 –0.2%
8 0.7314 70.003 0.7319 –0.1%
9 0.7592 70.003 0.7595 0.0%
10 0.775 70.003 0.777 –0.3%
11 0.7832 70.003 0.784 –0.1%
12 0.7822 70.003 0.7801 0.3%
13 0.7699 70.003 0.7653 0.6%
14 0.734 70.003 0.7406 –0.9%

Figure 8. Throughput plot and comparison of a 3-node network with balanced service rates.
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Lastly, Figure 12 displays the comparison in an
8-node network. Considering the fact that customer
size is up to 45 and blocking begins with N = 5, the
algorithm is quite precise.
General topology comparison In this example, we

evaluate the network in Figure 13 with split and
merge topologies. The service stations have arbitrary
number of servers and service rates. The throughput
plot as well as the comparison with the simulation
values is presented in Figure 14.

M = 3
µi = (1, 1.5, 3), ci = (2, 2, 1) and Ki = (5, 5, 5)

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

Simulation
Approximation

Throughput Plot M=3, mu=(1, 1.5, 3), c=(2,2,1), K=(5,5,5)
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λSim δ λEMV A ∆%
1 0.4987 70.0018 0.5 –0.3%
2 0.9713 70.0028 0.973 –0.2%
3 1.3128 70.0034 1.3136 –0.1%
4 1.5268 70.0028 1.5294 –0.2%
5 1.6674 70.0039 1.6707 –0.2%
6 1.7648 70.0044 1.7665 –0.1%
7 1.8276 70.0045 1.8307 –0.2%
8 1.8608 70.0054 1.8686 –0.4%
9 1.8765 70.0053 1.8842 –0.4%
10 1.8811 70.0058 1.8818 0.0%
11 1.8741 70.0044 1.8655 0.5%
12 1.8607 70.0045 1.8387 1.2%
13 1.7997 70.0042 1.8036 –0.2%
14 1.6999 70.0044 1.7623 –3.7%

Figure 9. Throughput plot and comparison of a 3-node network with unbalanced service rates.

M = 5
µi = (0.8, 0.8, 0.8, 0.8, 0.8), ci = (3, 2, 1, 2, 3) and Ki = (5, 5, 5, 5, 5)
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λSim δ λEMV A ∆%
5 0.6227 70.002 0.6231 –0.1%
8 0.751 70.003 0.7523 –0.2%
10 0.7794 70.003 0.7818 –0.3%
12 0.7854 70.005 0.7918 –0.8%
15 0.7859 70.004 0.7928 –0.9%
16 0.7878 70.004 0.7917 –0.5%
18 0.7858 70.004 0.7882 –0.3%
20 0.7862 70.004 0.7824 0.5%
22 0.7839 70.004 0.7721 1.5%
23 0.7665 70.003 0.7642 0.3%
24 0.7353 70.003 0.7543 –2.6%

Figure 10. Throughput plot and comparison of a 5-node network with unbalanced service rates.
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M = 5
µi = (4, 1, 3, 2, 1.5), ci = (1, 5, 2, 2, 3) and Ki = (5, 9, 6, 6, 7)

3.6

3.2

2.8

2.4

2

1.6

1.2

0.8

Simulation
Approximation

Throughput Plot of M = 5 node with multiple servers

3 6 9 27
Number of customers

3321 30

T
hr

ou
gh

pu
t

12 18 2415

λSim δ λEMV A ∆%
5 1.7022 70.0025 1.7023 0.0%
8 2.4357 70.0038 2.4387 –0.1%
10 2.7744 70.0036 2.7765 –0.1%
12 3.0186 70.0047 3.0207 –0.1%
15 3.2607 70.0044 3.2675 –0.2%
18 3.3875 70.0051 3.4155 –0.8%
20 3.4193 70.0042 3.4692 –1.5%
22 3.4316 70.0064 3.4856 –1.6%
25 3.4145 70.0049 3.4253 –0.3%
28 3.3004 70.0053 3.2456 1.7%
30 3.1244 70.0056 3.0826 1.3%
32 2.8011 70.0049 2.9366 –4.8%

Figure 11. Throughput plot and comparison of a 5-node network with unbalanced service rates.

M = 8
µi = (1.2, 1,0.8, 1.2, 1, 0.8, 1.2, 1), ci = (1,2, 3, 1, 2, 3, 1, 2) and Ki = (8, 6, 4, 8, 6, 4, 8, 6)
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λSim δ λEMV A ∆%
5 0.5317 70.0013 0.5325 –0.2%
8 0.7284 70.0021 0.7297 –0.2%
10 0.8203 70.0026 0.8206 0.0%
12 0.8869 70.0023 0.8883 –0.2%
15 0.9592 70.0023 0.9599 –0.1%
18 1.0044 70.0024 1.0078 –0.3%
20 1.0307 70.0031 1.031 0.0%
22 1.0479 70.0034 1.0491 –0.1%
25 1.0647 70.003 1.0687 –0.4%
28 1.0744 70.0034 1.081 –0.6%
30 1.074 70.0034 1.0857 –1.1%
32 1.0735 70.0044 1.0874 –1.3%
35 1.0653 70.0037 1.0839 –1.7%
38 1.0434 70.0032 1.0717 –2.7%
40 1.0243 70.0026 1.0581 –3.3%
42 0.9984 70.0032 1.0406 –4.2%
45 0.9391 70.0030 1.0104 –7.6%

Figure 12. Throughput plot and comparison of an 8-node network with unbalanced service rates.

Analysis of all numerical results demonstrates
very good accuracy for the EMVA. The absolute rela-
tive errors for the throughput are less than 10% and
in most cases below 2%. In general, the through-
put values that correspond to the first half of the
curve are estimated very precisely. Although the es-

timates on the second half are not as good as previ-
ous ones, they are still normally within 5% accuracy.
Large errors are usually observed for systems under
extreme congestion that exhibit considerable block-
ing and those with a high level of interdependency
among the nodes.
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Figure 13. A 6-node network with split and merge
topologies.

M = 6
µi= (2.5, 10, 5, 3, 6.66, 4), ci= (2, 2, 1, 2, 2, 1) and

Ki= (12, 4, 8, 5, 4, 2)
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λSim δ λEMV A ∆%
3 0.2108 70.0016 0.21 0.2%
4 0.2604 70.0018 0.261 –0.3%
5 0.3016 70.0024 0.302 0.0%
6 0.3319 70.0022 0.333 –0.2%
7 0.3533 70.0024 0.356 –0.9%
8 0.3726 70.0034 0.374 –0.5%
9 0.388 70.0042 0.387 0.2%
10 0.3976 70.0037 0.397 0.2%
11 0.4028 70.0049 0.404 –0.2%
12 0.4066 70.0039 0.408 –0.4%
13 0.4096 70.0036 0.411 –0.4%
14 0.4106 70.0044 0.413 –0.5%
15 0.4149 70.0041 0.413 0.4%
16 0.4123 70.0036 0.413 –0.2%
17 0.4191 70.0017 0.412 1.6%
18 0.4124 70.0067 0.411 0.3%

Figure 14. Throughput plot and comparison of a 6-node
network with split and merge junctions.

Hypothesis testing

We can further reveal the accuracy of the approxi-
mation method using hypothesis testing. With the
assumption that the absolute relative errors, |∆|, in
the numerical experiments represents a random sam-
ple from a normal distribution, a t-test can be ap-
plied for hypothesis testing.

For example, to determine whether the EMVA
on average produces more than 1% absolute relative
error in single server experiments, we intend to test:

H0: µ = 1%
H1: µ > 1%
where µ is the mean of all possible values for |∆|.

From our experimental data, presented in Table 2 to
Table 4, the computed value of the t-statistics with
the sample size of n = 28 is:

t =
|∆| − µ0

s|∆|/
√
n
=

0.0124− 0.01
0.0147/

√
28

= 0.859

The critical value tα,θ, with 95% confidence interval
(α = 0.05) and θ = n - 1 = 27 degrees of freedom
is 1.703. Since t < t0.05,27, based on the data we
do not reject H0 and conclude that the average ab-
solute relative error is not significantly greater than
1%. Note that, in all of the experiments presented,
only blocking values of customers in the system are
considered.

Let us also test the above hypothesis in multiple
server experiments presented in Figures 7-12, includ-
ing the values omitted for presentation purposes. To
determine whether EMVA yields more than 1% ab-
solute relative error, we get the computed value of
the t-statistics with the sample size of n = 112:

t =
|∆| − µ0

s|∆|/
√
n
=

0.00984− 0.01
0.0135/

√
112

= −0.1264

The critical value of t0.05,111 is approximately 1.659.
Again, we do not reject the H0, and conclude that ab-
solute relative error is not significantly greater than
1%.

The results are also satisfactory for the networks
with split and merge junctions, which are more diffi-
cult to model than the cyclic systems. Nonetheless,
the upper bound posed on the number of customers
by the deadlock-free notion avoids extreme conges-
tion in these topologies and yields much better re-
sults.
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Conclusion

In this study, we introduce an approximate MVA
technique for closed finite queueing networks. The
method incorporates slight changes to the MVA al-
gorithm and uses insights from the EM. It is compar-
atively easy to implement and from computational
tests we found that performance measures of closed
finite queues are very accurate.

As validated in this study, the Expanded Mean
Value Analysis (EMVA) is an effective technique to
be employed in finite queueing networks. This assur-
ance gives us the motivation to use the algorithm in
the optimization of buffer allocation and apply this

method to highly complex, computationally chal-
lenging multi-class finite queues. Also widely used,
important real-life applications of closed queueing
networks from computer systems to communication
networks, job-shop manufacturing systems and re-
cent applications of it to re-entrant lines such as
semiconductor wafer fabrication make inevitable the
study of these types of applications.

As an extension to this work, the assumption of
the exponential service times can be relaxed and al-
gorithms with general service times can be approx-
imated. Further, approximation methods for the
performance evaluation of networks with unreliable
servers can be developed.
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