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Abstract

The time varying Couette flow with heat transfer of a dusty viscous incompressible electrically conducting
fluid under the influence of a constant pressure gradient is studied without neglecting the Hall effect. The
parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from
below while the fluid is acted upon by an external uniform magnetic field applied perpendicular to the plates.
The governing equations are solved numerically using finite differences to yield the velocity and temperature
distributions for both the fluid and dust particles. It is found that both the fluid and the solid-particle
phases have 2 components of velocity. The main 2 components of velocity of the fluid and dust particles, u
and up, respectively, are found to increase with an increase in the Hall parameter m. However, the other 2
components of velocity w and wp, which result due to the Hall effect, increase with the Hall parameter m
for small m and decrease with m for large values of m. It is also found that the temperatures of both fluid
and particle phases decrease with the Hall parameter m.
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Introduction

The importance and application of solid/fluid flows
and heat transfer in petroleum transport, wastewa-
ter treatment, combustion, power plant piping, cor-
rosive particles in engine oil flow, and many others
are well known in the literature. Particularly, the
flow and heat transfer of electrically conducting flu-
ids in channels and circular pipes under the effect
of a transverse magnetic field occur in magnetohy-
drodynamic (MHD) generators, pumps, accelerators,
and flow meters, and have possible applications in
nuclear reactors, filtration, geothermal systems, and
others. The possible presence of solid particles such
as ash or soot in combustion MHD generators and
plasma MHD accelerators and their effect on the per-

formance of such devices led to studies of particulate
suspensions in conducting fluids in the presence of
magnetic fields. For example, in an MHD generator,
coal mixed with seed is fed into a combustor. The
coal and seed mixture is burned in oxygen and the
combustion gas expands through a nozzle before it
enters the generator section. The gas mixture flow-
ing through the MHD channel consists of a condens-
able vapor (slag) and a non-condensable gas mixed
with seeded coal combustion products. Both the slag
and the non-condensable gas are electrically conduct-
ing (Lohrabi, 1980; Chamkha, 2000). The presence
of the slag and the seeded particles significantly in-
fluences the flow and heat transfer characteristics in
the MHD channel. Ignoring the effect of the slag,
and considering the MHD generator start-up condi-
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tion, the problem reduces to unsteady 2-phase flow
in an MHD channel.

The hydrodynamic flow of dusty fluids was stud-
ied by a number of authors (Saffman, 1962; Gupta
and Gupta, 1976; Prasad and Ramacharyulu, 1979;
Dixit, 1980; Ghosh, 1984). Later the hydromagnetic
flow of dusty fluids was studied (Singh, 1976; Mi-
tra and Bhattacharyya, 1981; Borkakotia and Bhar-
ali, 1983; Megahed et al., 1988; Aboul-Hassan et
al., 1991). In the above-mentioned work, the Hall
term was ignored in applying Ohm’s law, as it has no
marked effect for small and moderate values of the
magnetic field. However, the current trend for the
application of magnetohydrodynamics is towards a
strong magnetic field, so that the influence of elec-
tromagnetic force is noticeable under these condi-
tions, and the Hall current is important and it has
a marked effect on the magnitude and direction of
the current density and consequently on the mag-
netic force term (Crammer and Pai, 1973). The ef-
fect of the Hall current on the Hartmann flow of a
clean fluid was studied by a number of authors (Sut-
ton and Sherman, 1965; Soundalgekar et al., 1979;
Soundalgekar and Uplekar, 1986; Attia, 1998, 2002).
Aboul-Hassan and Attia (2002) studied the influence
of the Hall current on the flow and heat transfer of
a dusty conducting fluid in a rectangular channel.

In the present work, the time varying Couette
flow with heat transfer of an electrically conduct-
ing, viscous, incompressible, dusty fluid is studied
with consideration of the Hall current. The fluid is
assumed to be incompressible and electrically con-
ducting and the particle phase is assumed to be in-
compressible, electrically non-conducting dusty and
pressureless. The upper plate is moving with a con-
stant velocity while the lower plate is kept stationary.
The fluid is flowing between 2 infinite electrically in-
sulating porous plates maintained at 2 constant but
different temperatures, while the particle phase is as-
sumed to be electrically non-conducting. The fluid
is subjected to a uniform suction from above and a
uniform injection from below and mass conservation
is assumed. An external uniform magnetic field is
applied perpendicular to the plates, while no electric
field is applied and the induced magnetic field is ne-
glected by assuming a very small magnetic Reynolds
number. The fluid is acted upon by a constant pres-
sure gradient. The governing equations are solved
numerically using finite difference approximations to

obtain the velocity and temperature distributions for
both the fluid and dust particles as functions of space
and time up till the steady state. This numerical so-
lution proves the physical validity of the steady state
solutions since they can be obtained via a time de-
pendent process. The effects of the magnetic field,
the Hall current and the suction velocity on both the
velocity and temperature fields of the fluids as well
as dust particles are reported.

Description of the Problem

The dusty fluid is assumed to be flowing between
2 infinite horizontal porous plates located at the
y = ±h planes, as shown in Figure 1. The upper
plate is moving with a constant velocity Uo, while
the lower plate is kept stationary. The plates are
subjected to a uniform suction from above and a uni-
form injection from below. Thus the y-component of
the velocity of the fluid is constant and denoted by
vo. The dust particles are assumed to be electrically
non-conducting, spherical and uniformly distributed
throughout the fluid and to be big enough so that
they are not pumped out through the porous plates
and have no y-component of velocity. The 2 plates
are assumed to be electrically non-conducting and
kept at 2 constant temperatures: T1 for the lower
plate and T2 for the upper plate with T2 > T1. A
uniform constant pressure gradient is applied in the
x-direction. A uniform magnetic field Bo is applied
in the positive y-direction. This is the only mag-
netic field in the problem as the induced magnetic
field is neglected by assuming a very small magnetic
Reynolds number (Crammer and Pai, 1973). It is re-
quired to obtain the time varying velocity and tem-
perature distributions for both fluid and dust parti-
cles. Due to the inclusion of the Hall current term,
a z-component of the velocities of the fluid and of
dust particles is expected to arise (Crammer and Pai,
1973). Since the plates are infinite in the x and z-
directions, the physical quantities do not depend on
the x or z-coordinates and the problem is essentially
one-dimensional.

Governing Equations

The governing equations for this study are based on
the conservation laws of mass, linear momentum and
energy of both phases.
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Uniform injection 

Figure 1. The geometry of the problem.

Momentum Equation

The flow of fluid is governed by the momentum equa-
tion

ρ
D�v

Dt
= −�∇P + µ∇2�v + �Jx �Bo −KN(�v − �vp) (1)

where ρ is the density of clean fluid, µ is the vis-
cosity of clean fluid, �v is the velocity of the fluid,
�v = u(y, t)�i+ vo

�j+w(y, t)�k, �vpis the velocity of dust
particles, �vp = up(y, t)�i+ wp(y, t)�k, �J is the current
density, �Bo is the magnetic flux density vector, P is
the pressure distribution, N is the number of dust
particles per unit volume, K is the Stokes constant
= 6πµa, and a is the average radius of dust particles.

The first 3 terms in the right-hand side of Eq.
(1) are, respectively, the pressure gradient, viscosity,
and Lorentz force terms. The last term represents
the force due to the relative motion between fluid and
dust particles. It is assumed that the Reynolds num-
ber of relative velocity is small. In such a case the
force between dust and fluid is proportional to the
relative velocity (Saffman, 1962). If the Hall term is
retained, the current density �J from the generalized
Ohm’s law is given by (Sutton and Sherman, 1965;
Crammer and Pai, 1973)

�J = σ
[
�E + �V x �Bo − β( �Jx �Bo)

]
(2)

where σ is the electric conductivity of the fluid, and β
is the Hall factor (Sutton and Sherman, 1965; Cram-
mer and Pai, 1973). Solving Eq. (2) for �J gives

�Jx �Bo =
σB2

o

1 +m2

[
(u +mw)�i+ (w −mu)�k

]
(3)

where m = σβBo is the Hall parameter (Sutton and
Sherman, 1965; Crammer and Pai, 1973). Thus, in
terms of Eq. (3), the 2 components of Eq. (1) read

ρ
∂u

∂t
+ ρvo

∂u

∂y
= −dP

dx
+ µ

∂2u

∂y2
−

σB2
o

1 +m2
(u+mw) −KN(u − up)

(4)

ρ
∂w

∂t
+ ρvo

∂w

∂y
= µ

∂2w

∂y2
− σB2

o

1 +m2
(w −mu)−

KN(w −wp)
(5)

The motion of the dust particles is governed
by Newton’s second law applied in the x and z-
directions
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mp
∂up

∂t
= KN(u − up) (6)

mp
∂wp

∂t
= KN(w − wp) (7)

where mp is the average mass of dust particles. It is
assumed that the pressure gradient is applied at t =
0 and the fluid starts its motion from rest. Thus,

t ≤ 0 : u = up = w = wp = 0 (8a)

For t > 0, the no-slip condition at the plates im-
plies that

t > 0, y = −h : u = up = w = wp = 0 (8b)

t > 0, y = h : u = Uo, up = w = wp = 0 (8c)

Energy Equation

Heat transfer takes place from the upper hot plate to
the lower cold plate by conduction through the fluid.
Since the hot plate is above, there is no natural con-
vection; however, there is a forced convection due to
the suction and injection. In addition to the heat
transfer, there is heat generation due to both the
Joule and viscous dissipations. The dust particles
gain heat from the fluid by conduction through their
spherical surface. Since the problem deals with a 2-
phase flow, 2 energy equations are required (Schlicht-
ing, 1968; Crammer and Pai, 1973). The energy
equations describing the temperature distributions
for both the fluid and dust particles read

ρcp
∂T

∂t
+ ρcpvo

∂T

∂y
= k

∂2T

∂y2
+ µ

[(
∂u

∂y

)2

+
(
∂w

∂y

)2
]
+

σB2
o

1 +m2
(u2 +w2) +

ρpcs

γT
(Tp − T ),

(9)

∂Tp

∂t
= − 1

γT
(Tp − T ), (10)

where T is the temperature of the fluid, Tp is the
temperature of the particles, cp is the specific heat

capacity of the fluid at constant volume, k is the
thermal conductivity of the fluid, ρp is the mass of
dust particles per unit volume of the fluid, γT is the
temperature relaxation time, and cs is the specific
heat capacity of the particles.

The last 3 terms on the right-hand side of Eq.
(9) represent the viscous dissipation, the Joule dis-
sipation (j2/σ), and the heat conduction between
the fluid and dust particles respectively. The tem-
perature relaxation time depends, in general, on the
geometry, and since the dust particles are assumed
to be spherical, the last term in Eq. (9) is equal to
4πaNk(Tp-T ). Hence

γT =
3Pr γpcs

2cp

where γp is the velocity relaxation time = 2ρsa
2/9µ,

Pr is the Prandtl number = µc/k, and ρs is the
material density of dust particles = 3ρp/4πa3N
(Saffman, 1962).

T and Tp must satisfy the initial and boundary
conditions

t ≤ 0 : T = Tp = T1, (11a)

t > 0, y = −h : T = Tp = T1, (11b)

t > 0, y = h : T = Tp = T2. (11c)

Equations (4)-(11) can be made dimensionless by
introducing the following dimensionless variables and
parameters

(x̂, ŷ) = (x, y)h, t̂ =
tUo

h
, (û, ŵ) =

(u, w)
Uo

, (ûp, ŵp)

=
(up, wp)

Uo
, P̂ =

P

ρU2
o

,

T̂ =
T − T1

T2 − T1
, T̂p =

Tp − T1

T2 − T1

S = vo/Uo, the suction parameter,
Re = Uoρh/µ, the Reynolds number,
Ha = Boh

√
σ/µ, the Hartmann number,

Ec = U2
o /cp(T2 − T1), the Eckert number,

G = mpµ/ρh
2KN, the particle mass parameter,

288



ATTIA

R = KNh2/µ the particle concentration param-
eter.

Lo = ρh2/µγT the temperature relaxation time
parameter.

In terms of the above dimensionless quantities
Eqs. (4)-(11) read

∂u

∂t
+ S

∂u

∂y
= − 1

Re

dP

dx
+

1
Re

∂2u

∂y2

− Ha2

Re(1 +m2)
(u+mw) − R

Re
(u− up)

(12)

∂w

∂t
+ S

∂w

∂y
=

1
Re

∂2w

∂y2
− Ha2

Re(1 +m2)
(w −mu)

− R

Re
(w −wp)

(13)

G
∂up

∂t
= u− up (14)

G
∂wp

∂t
= w −wp (15)

t ≤ 0 : u = up = w = wp = 0 (16a)

t > 0, y = −h : u = up = w = wp = 0 (16b)

t > 0, y = h : u = 1, up = w = wp = 0 (16c)

∂T

∂t
+ S

∂T

∂y
=

1
RePr

∂2T

∂y2
+

Ec

Re

[(
∂u

∂y

)2

+
(
∂w

∂y

)2
]
+

Ha2Ec

Re(1 +m2)
(u2 +w2) +

2R
3RePr

(Tp − T ),

(17)

∂Tp

∂t
= −Lo(Tp − T ), (18)

t ≤ 0 : T = Tp = 0, (19a)

t > 0, y = −1 : T = Tp = 0, (19b)

t > 0, y = 1 : T = Tp = 1. (19c)

where the hats are dropped for convenience.

Numerical Solution Method

Equations (12)-(19) represent a system of partial dif-
ferential equations, solved numerically using finite
difference approximation. The Crank-Nicolson im-
plicit method (Ames, 1977) is used at 2 successive
time levels. Finite difference equations relating the
variables are obtained by writing the equations at the
mid-point of the computational cell and then replac-
ing the different terms by their second-order central
difference approximation in the y-direction. The dif-
fusion terms are replaced by the average of the cen-
tral differences at 2 successive time levels. Finally,
the resulting block tri-diagonal system is solved us-
ing the generalized Thomas-algorithm (Ames, 1977).
Computations were carried out for dP/dx = 5, Re
= 1, R = 0.5, G = 0.8, Lo = 0.7, Pr = 1, and E =
0.2.

Results and Discussion

Figures 2-4 present, respectively, the profiles of the
velocity components u, up, w and upwp and tem-
peratures T and Tp for various values of time t. The
figures are plotted for Ha = 1, m = 3 and S = 1. It is
observed from Figures 2a, 3a, and 4a that the veloc-
ity component u reaches the steady state faster than
w, which, in turn, reaches the steady state faster
than T . This is expected, since u is the source of w,
while both u and w act as sources for the temper-
ature. The same observation is clear in Figures 2b,
3b, and 4b for up, wp and Tp, respectively. Compar-
ing Figures 2a, 3a and 4a with 2b, 3b and 4b, re-
spectively, shows that the velocity components and
temperature of the fluid phase reach the steady state
faster than those of the particle phase. This is be-
cause the fluid velocity is the source for the dust
particles’ velocity.
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Figure 2. Time variation of the profile of: (a) u and (b) up. (Ha = 1, m = 3, and S = 1).
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Figure 3. Time variation of the profile of: (a) w and (b) wp. (Ha = 1, m = 3, and S = 1).
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Figure 4. Time variation of the profile of: (a) T and (b) Tp. (Ha = 1, m = 3, and S = 1).

Figures 5-7 show the time evolution of the ve-
locity components and temperature at the center of
the channel (y = 0), respectively, for the fluid and
particle phases for various values of the Hall param-
eter m and for Ha = 1 and S = 0. It is clear from
Figures 5a and 5b that increasing the parameter m
increases u and up. This is because the effective con-
ductivity (σ/(1 + m2)) decreases with increasing m,
which reduces the magnetic damping force on u and
consequently u and up increase. In Figures 6a and
6b, the velocity components w and wp increase with
increasing m for small values of m (m = 0 to 1). For
large values of m (m¿ 1), the velocities decrease with
m. To explain these observations, we argue that the
velocity component u is the source of w, which is in
turn the source for up. The source term is propor-
tional to mu/(1 + m2), where u depends implicitly
on m. It is clear that the source term increases or
decreases with m according to whether m is small or
large. Figures 7a and 7b indicate that increasing m
decreases T and Tp for all t. This can be attributed
to the fact that an increase in m decreases the Joule
dissipation, which is proportional to (1/(1 + m2)).
Comparing Figures 7a and 7b ensures that the tem-
perature of the fluid reaches the steady state faster
than the temperature of the particles.

Figures 8-10 show the time evolution of the ve-

locity components and temperature at the center of
the channel (y = 0), respectively, for the fluid and
particle phases for various values of the Hartmann
number Ha and for m = 3 and S = 0. Figures 8a
and 8b indicate that increasing Ha decreases u and
up as a result of increasing damping force on u. Fig-
ures 9a and 9b ensure that increasing Ha increases
w and wp for all values of Ha due to the effect of Ha
in decreasing u, which decreases the damping force
on w. Figures 10a and 10b show that the increasing
Ha increases T and Tp as a result of increasing the
Joule dissipations.

Figures 11-13 present the time evolution of the
velocity components and temperature at the center
of the channel (y = 0), respectively, for the fluid and
particle phases for various values of the suction pa-
rameter S and for Ha = 1 and m = 3. Figures 11a,
11b, 12a, and 12b show that increasing the suction
decreases u, w, up and wp and their steady state
times due to the convection of the fluid from regions
in the lower half to the center, which has higher fluid
speed. Figures 13a and 13b show that increasing S
decreases the temperatures T and Tp at the center
of the channel. This is due to the influence of con-
vection in pumping the fluid from the cold lower half
towards the center of the channel.
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Figure 5. Effect of the parameter m on the time variation of: (a) u at y = 0 and (b) up at y = 0. (Ha = 1 and S = 0).
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Figure 6. Effect of the parameter m on the time variation of: (a) w at y = 0 and (b) wp at y = 0. (Ha = 1 and S = 0).
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Figure 7. Effect of the parameter m on the time variation of: (a) T at y = 0 and (b) Tp at y = 0. (Ha = 1 and S = 0).
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Figure 8. Effect of the parameter m on the time variation of: (a) u at y = 0 and (b) up at y = 0. (m = 3 and S = 0).
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Figure 9. Effect of the parameter m on the time variation of: (a) w at y = 0 and (b) wp at y = 0. (m = 3 and S = 0).
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Figure 10. Effect of the parameter m on the time variation of: (a) T at y = 0 and (b) Tp at y = 0. (m = 3 and S = 0).
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Figure 11. Effect of the parameter m on the time variation of: (a) u at y = 0 and (b) up at y = 0. (m = 3 and Ha = 1).
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Figure 12. Effect of the parameter m on the time variation of: (a) w at y = 0 and (b) wp at y = 0. (m = 3 and Ha = 1).
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Figure 13. Effect of the parameter m on the time variation of: (a) T at y = 0 and (b) Tp at y = 0. (m = 3 and Ha = 1).

Conclusions

The time varying Couette flow with heat transfer of
a dusty conducting fluid under the influence of an ap-
plied uniform magnetic field was studied, considering
the Hall effect in the presence of uniform suction and
injection. The effect of the magnetic field, the Hall
parameter, and the suction and injection velocity on
the velocity and temperature distributions for both
the fluid and particle phases was investigated. It
was found that both the fluid and the solid-particle
phases have 2 components of velocity. The main 2
components of velocity of the fluid and dust particles
u and up, respectively, increased with an increase in
the Hall parameter m. However, the other 2 compo-
nents of velocity w and wp, which result due to the
Hall effect, increase with the Hall parameter m for
small m and decrease with m for large values of m.
It was also found that the temperatures of both fluid
and particle phases decrease with the Hall parameter
m.

Nomenclature

a the average radius of dust particles,
Bo magnetic induction,
cp specific heat at constant pressure,

cs the specific heat capacity of the particles,
Ec Eckert number,
G the particle mass parameter,
h half of the separation between the 2 plates,
Ha Hartmann number,
J current density,
K thermal conductivity,
K the Stokes constant,
Lo the temperature relaxation time parame-

ter.
M the Hall parameter,
N the number of dust particles per unit vol-

ume,
P pressure distribution,
Pr Prandtl number,
R the particle concentration parameter,
Re the Reynolds number,
S the suction parameter,
T temperature of the fluid,
Tp temperature of the particles,
T1 temperature of the lower plate,
T2 temperature of the upper plate,
U velocity component of the fluid in the x-

direction,
up velocity component of the particles in the

x-direction,
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Uo velocity of the upper plate,
vo suction velocity,
w velocity component of the fluid in the z-

direction,
wp velocity component of the particles in the

z-direction,
x axial direction,
y distance in the vertical direction,
µ viscosity of the fluid,

ρ density of the fluid,
σ electrical conductivity of the fluid,
β the Hall factor,
ρp the mass of dust particles per unit volume

of the fluid,
ρs the material density of dust particles,
γT the temperature relaxation time,
γp the velocity relaxation time.
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