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Abstract

An analysis is made of the steady laminar flow in a porous medium of an incompressible viscous fluid
impinging on a permeable stretching surface with heat generation. A numerical solution for the governing
nonlinear momentum and energy equations is obtained. The effects of the porosity of the medium, the
surface stretching velocity, and the heat generation/absorption coefficient on both the flow and heat transfer
are presented and discussed.
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Introduction

The 2-dimensional flow of a fluid near a stagnation
point was first examined by Hiemenz (1911), who
demonstrated that the Navier-Stokes equations gov-
erning the flow can be reduced to an ordinary differ-
ential equation of third order using similarity trans-
formation. Later the problem of stagnation point
flow was extended in numerous ways to include var-
ious physical effects. The results of these studies are
of great technical importance, for example in the pre-
diction of skin-friction as well as heat/mass transfer
near stagnation regions of bodies in high speed flows
and also in the design of thrust bearings and radial
diffusers, drag reduction, transpiration cooling and
thermal oil recovery. Axisymmetric 3-dimensional
stagnation point flow was studied by Homann (1936).
Either in the 2- or 3-dimensional case Navier-Stokes
equations governing the flow are reduced to an or-
dinary differential equation of third order using a
similarity transformation. In hydromagnetics, the
problem of Hiemenz flow was chosen by Na (1979)
to illustrate the solution of a third-order boundary
value problem using the technique of finite differ-
ences. An approximate solution of the same problem

has been provided by Ariel (1994). The effect of an
externally applied uniform magnetic field on 2- or
3-dimensional stagnation point flow was studied in
the presence of uniform suction or injection (Attia,
2003a, 2003b). The study of heat transfer in bound-
ary layer flows is of importance in many engineering
applications, such as the design of thrust bearings
and radial diffusers, transpiration cooling, drag re-
duction, and thermal recovery of oil (Massoudi and
Ramezan, 1990). Massoudi and Ramezan (1992)
used a perturbation technique to solve for the stagna-
tion point flow and heat transfer of a non-Newtonian
fluid of second grade. Their analysis is valid only for
small values of the parameter that determines the
behavior of the non-Newtonian fluid. Later Mas-
soudi and Ramezan (1992) extended the problem to
nonisothermal surfaces. Garg (1994) improved the
solution obtained by Massoudi and Ramezan (1992)
by computing numerically the flow characteristics for
any value of the non-Newtonian parameter using a
pseudo-similarity solution.

Flow of an incompressible viscous fluid over a
stretching surface has important applications in the
polymer industry. For instance, a number of techni-
cal processes concerning polymers involve the cooling
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of continuous strips (or filaments) extruded from a
die by drawing them through a stagnant fluid with
a controlled cooling system, and in the process of
drawing these strips are sometimes stretched. The
quality of the final product depends on the rate of
heat transfer at the stretching surface. Crane (1970)
gave a similarity solution in closed analytical form for
steady 2-dimensional incompressible boundary layer
flow caused by the stretching of a sheet that moves
in its own plane with a velocity varying linearly with
the distance from a fixed point. Carragher and Crane
(1982) investigated heat transfer in the above flow
in the case when the temperature difference between
the surface and the ambient fluid is proportional to a
power of distance from the fixed point. Temperature
distribution in the flow over a stretching surface sub-
ject to uniform heat flux was studied by Dutta et al.
(1985). Chiam (1994) analyzed steady 2-dimensional
stagnation-point flow of an incompressible viscous
fluid towards a stretching surface. Temperature dis-
tribution in the steady plane stagnation-point flow
of a viscous fluid towards a stretching surface was
investigated by Ray Mahapatra and Gupta (2002).
Steady flow of a non-Newtonian viscoelastic fluid
(Rajagopal et al., 1984; Ray Mahapatra and Gupta,
2004) or micropolar fluid (Nazar et al., 2004) past a
stretching sheet was investigated with zero vertical
velocity at the surface.

An analysis is made in this paper of the steady
laminar flow in a porous medium of an incompress-
ible viscous fluid impinging on a permeable stretch-
ing surface with heat generation. The wall and
stream temperatures are assumed to be constants. In
the analysis of the flow in the porous media the dif-
ferential equation governing the fluid motion is based
on Darcy’s law, which accounts for the drag exerted
by the porous medium (Joseph et al., 1982; Ingham
and Pop, 2002; Khaled and Vafai, 2003). A numeri-
cal solution is obtained for the governing momentum
and energy equations using finite difference approx-
imations taking into account the asymptotic bound-
ary conditions. The numerical solution computes the
flow and heat characteristics for the whole range of
the porosity parameter, the surface stretching veloc-
ity, the heat generation/absorption coefficient and
Prandtl number.

Formulation of the Problem

Consider the steady 2-dimensional stagnation point
flow in a porous medium of a viscous incompressible

fluid near a stagnation point at a surface coinciding
with the plane y = 0, the flow being in a region y > 0
where the space above the plane sheet is filled with
the porous medium as shown in Figure 1. As pointed
out by Joseph et al. (1982), the self-consistent non-
linear Navier-Stokes equation that would govern the
flow in a surrounding porous medium is given by (Wu
et al., 2005)

ρ(�u.�∇)�u + �∇P = µ∇2�u − µ

K
�u − cρ√

K
|�u|�u (1)

where the last 2 terms on the right-hand side of Eq.
(1) describe the non-linear Darcy-Forchheimer resis-
tance of the surrounding porous medium. Hereµ is
the fluid viscosity, K is the Darcy permeability, �u is
the local velocity, ρ is the density of the fluid, and c
is the Forchheimer constant, which has been exper-
imentally measured for different porous media. In
the present paper, we shall limit our consideration
to flows where the non-linear Forchheimer term is
neglected but the linear Darcy term describing the
distributed body force exerted by the fibers in the
porous medium is retained (Wu et al., 2005).

Two equal and opposing forces are applied along
the x-axis so that the surface is stretched, keeping
the origin fixed. The potential flow that arrives from
the y-axis and impinges on a flat wall placed at y = 0,
divides into 2 streams on the wall and leaves in both
directions. The viscous flow must adhere to the wall,
whereas the potential flow slides along it. (u,v) are
the components for the potential flow of velocity at
any point (x,y) for the viscous flow, whereas (U ,V )
are the velocity components for the potential flow.
The velocity distribution in the frictionless flow in
the neighborhood of the stagnation point is given by

U(x) = ax, V (y) = −ay

where the constant a(> 0) is proportional to the
free stream velocity far away from the stretching sur-
face. The continuity and momentum equations for
the 2-dimensional steady state flows, using the usual
boundary layer approximations (Nazar et al., 2004),
reduce to

∂u

∂x
+

∂v

∂y
= 0, (2)
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Figure 1. Physical model and coordinate system.
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(U(x)− u)=0,

(3)

The boundary conditions for the above flow sit-
uation are

y = 0 : u = cx, v = 0, (4a)

y → ∞ : u → ax (4b)

where c is a positive constant.
The boundary layer equations (2) and (3) admit

a similarity solution

u(x, y) = cxf ′(η), v = −√
cνf(η), η =

√
c

ν
y (5)

where ν = µ/ρ is the kinematic viscosity of the fluid
and the prime denotes differentiation with respect to
η. Using Eq. (4), we find that Eq. (2) is identically
satisfied, and Eqs. (3) and (4) lead to

f ′2 − f ′′′ − ff ′′ − C2 − M(C − f ′) = 0 (6)

f(0) = 0, f ′(0) = 1, f ′(∞) = C, (7)

where M = ν/cK is the porosity parameter and C
= a/c is the stretching parameter.

The governing boundary layer equation of en-
ergy, neglecting the dissipation and assuming con-
stant thermal conductivity (Wu et al., 2005), with
temperature dependent heat generation or absorp-
tion is

ρcp

(
u

∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
+Q(T − T∞) (8)

where cp is the specific heat capacity at constant
pressure of the fluid, k is the thermal conductivity
of the fluid, T∞ the constant temperature of the
fluid far away from the sheet, Q is the volumet-
ric rate of heat generation/absorption, and T is the
temperature profile. A similarity solution exists if
the wall and stream temperatures, Tw and T∞, are
constants—a realistic approximation in typical stag-
nation point heat transfer problems (White, 1991).

The thermal boundary conditions are

y = 0 : T = Tw, (9a)

y → ∞ : T → T∞, (9b)

By introducing the non-dimensional variable

θ =
T − T∞
Tw − T∞

,

and using Eq. (4), we find that Eqs. (7) and (8)
reduce to
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θ′′ +Pr fθ′ +PrBθ = 0 (10)

θ(0) = 1, θ(∞) = 0, (11)

where Pr = µcp/k is the Prandtl number and
B = Q/cρcp is the dimensionless heat genera-
tion/absorption coefficient.

The flow Eqs. (6) and (7) are decoupled from
the energy Eqs. (10) and (11), and need to be solved
before the latter can be solved. The flow Eq. (6)
constitutes a non-linear, non-homogeneous boundary
value problem (BVP). In the absence of an analytical
solution of a problem, a numerical solution is indeed
an obvious and natural choice. The boundary value
problem given by Eqs. (6) and (7) may be viewed as
a prototype for numerous other situations similarly
characterized by a boundary value problem having a
third-order differential equation with an asymptotic
boundary condition at infinity. Therefore, its numer-
ical solution merits attention from a practical point
of view. The flow Eqs. (6) and (7) are solved numeri-
cally using finite difference approximations. A quasi-
linearization technique is first applied to replace the
non-linear terms at a linear stage, with the correc-
tions incorporated in subsequent iterative steps un-
til convergence. Then the Crank-Nicolson method is
used to replace the different terms by their second-
order central difference approximations. An iterative
scheme is used to solve the quasi-linearized system of
difference equations. The solution for the Newtonian
case is chosen as an initial guess and the iterations
are continued until convergence within prescribed
accuracy. Finally, the resulting block tri-diagonal
system was solved using a generalized Thomas algo-
rithm.

The energy Eq. (10) is a linear second-
order ordinary differential equation with variable
coefficient,f(η), which is known from the solution of
the flow Eqs. (6) and (7) and the Prandtl number
Pr is assumed constant. Equation (10) is solved nu-
merically under the boundary condition (11) using
central differences for the derivatives and Thomas’
algorithm for the solution of the set of discritized
equations. The resulting system of equations has to
be solved in the infinite domain 0 < η < ∞. A finite
domain in the η-direction can be used instead with η

chosen large enough to ensure that the solutions are
not affected by imposing the asymptotic conditions
at a finite distance. Grid-independence studies show
that the computational domain 0 < η < η∞ can
be divided into intervals each of uniform step size
0.02. This reduces the number of points between
0 < η < η∞ without sacrificing accuracy. The value
η∞ = 10 was found to be adequate for all the ranges
of parameters studied here. Convergence is assumed
when the ratio of every one of f , f ′, f ′ ′, orf ′′′ for
the last 2 approximations differed from unity by less
than 10−5 at all values of η in 0 < η < η∞. It should
be mentioned that the results obtained herein reduce
to those reported by Chiam (1994) when M = B = 0,
and the results of the 2 papers are in close agreement,
which ensures the validity of the presented solution.

Results and Discussion

Figures 2 and 3 present the velocity profiles of f
and f′, respectively, for various values of C and M .
The figures show that increasing the parameter C in-
creases both f and f ′. The effect of M on both f and
f′ depends on C. For C < 1, increasing M increases
f and f′ while for C > 1 increasing M decreases
them. The figures indicate also that the effect of C
on f and f ′ is more pronounced for smaller values
of M . Moreover, increasing C decreases the veloc-
ity boundary layer thickness. Figure 4 presents the
profile of temperature θ for various values of C and
M and for Pr = 0.7 and B = 0.1. It is clear that
increasing C decreases θ and its effect on θ becomes
more apparent for smaller values of M . The figure
indicates that the thermal boundary layer thickness
decreases when C increases. Increasing M decreases
θ for all C and its effect is clearer for smaller C.

Figure 5 presents the temperature profiles for
various values of C and Pr and for M = 1 and
B = 0.1. This figure clearly demonstrates the ef-
fect of the Prandtl number on the thermal boundary
layer thickness. Increasing Pr decreases the thermal
boundary layer thickness for all C. Increasing C de-
creases θ and its effect is more apparent for smaller
Pr. Figure 6 presents the temperature profiles for
various values of C and B and for M = 0.5 and Pr
= 0.7. Increasing B increases the temperature θ and
the boundary layer thickness. The effect of B on θ is
more pronounced for smaller C. However, the effect
of C on θ is more apparent for higher B.
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Figure 2. Effect of the parameters C and M on the profile of f.
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Figure 3. Effect of the parameters C and M on the profile of f ′.
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Figure 4. Effect of the parameters C and Pr on the profile of θ (M= 1, B= 0.1).

Tables 1 and 2 present the variation of the dimen-
sionless wall shear stress f ′′(0) and the dimensionless
heat transfer rate at the wall θ′(0), respectively, for
various values of C and M and for Pr = 0.7 and B
= 0. Increasing C increases f ′′(0) for all M . For
small M , increasing M decreases the magnitude of
f ′′(0) but increasing M more increases it. It is of

interest to see the reversal of the sign of f ′′(0) for
C < 1 for all M . Table 2 shows that increasing C
or M increases −θ′(0) for all M . The effect of C on
f ′′(0) and −θ′(0) is more pronounced for smaller M .
For C < 1, increasing M increases −θ′(0); however,
for C > 1, increasing M decreases −θ′(0).
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Figure 5. Effect of the parameters C and M on the profile of θ (Pr = 0.7, B= 0.1).
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Figure 6. Effect of the parameters C and B on the profile of θ (M= 0.5, Pr = 0.7).

Table 1. Variation of the wall shear stress f ′′(0)with C and M.

M C = 0.1 C = 0.2 C = 0.5 C = 1 C = 1.1 C = 1.2 C = 1.5
0 -1.4541 -1.3772 -1.0009 0 0.2464 0.5066 1.3642
1 -1.3851 -1.3119 -0.9534 0 0.2347 0.4826 1.2996
2 -1.3709 -1.2984 -0.9436 0 0.2323 0.4776 1.2862
3 -1.3795 -1.3065 -0.9495 0 0.2338 0.4806 1.2943

Table 2. Variation of the wall heat transfer rate −θ′(0) with C and M (Pr = 0.7, B = 0).

M C = 0.1 C = 0.2 C = 0.5 C = 1 C = 1.1 C = 1.2 C = 1.5
0 0.6454 0.6819 0.7773 0.9109 0.9354 0.9588 1.0263
1 0.5974 0.6493 0.7653 0.9109 0.9365 0.9587 1.0309
2 0.5112 0.5901 0.7421 0.9109 0.9392 0.9661 1.0412
3 0.4402 0.5405 0.7211 0.9109 0.9419 0.9713 1.0522

Table 3 presents the effect of C on −θ′(0) for
various values of Pr and for M = 1 and B = 0.
Increasing C increases −θ′(0) for all Pr and its ef-
fect is more pronounced for higher Pr. Increasing
Pr increases −θ′(0) for all C and its effect is more

apparent for higher C. Table 4 presents the effect of
the parameters C and B on −θ′(0) for M = 0.5 and
Pr = 0.7. Increasing C increases −θ′(0) for all B,
but increasing B decreases −θ′(0) for all C.
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Table 3. Variation of the wall heat transfer rate −θ′(0) with C and Pr (M = 1, B = 0).

Pr C = 0.1 C = 0.2 C = 0.5 C = 1 C = 1.1 C = 1.2 C = 1.5
0.05 0.1226 0.1292 0.1497 0.1834 0.1899 0.1962 0.2146
0.1 0.1467 0.1599 0.1982 0.2533 0.2631 0.2725 0.2989
0.5 0.3471 0.3840 0.4661 0.5674 0.5849 0.6019 0.6498
1 0.5539 0.5923 0.6839 0.8043 0.8257 0.8465 0.9057

Table 4. Variation of the wall heat transfer rate −θ′(0) with C and B (M = 0.5, Pr = 0.7).

B C = 0.1 C = 0.2 C = 0.5 C = 1 C = 1.1 C = 1.2 C = 1.5
-0.1 0.5398 0.5610 0.6217 0.7127 0.7297 0.7462 0.7938
0 0.4667 0.4928 0.5659 0.6676 0.6859 0.7038 0.7548
0.1 0.3736 0.4143 0.5054 0.6201 0.6402 0.6596 0.7143

Conclusion

The 2-dimensional stagnation point flow in a porous
medium of a viscous incompressible fluid imping-
ing on a permeable stretching surface is studied
with heat generation/absorption. A numerical so-
lution for the governing equations is obtained, al-
lowing the computation of the flow and heat trans-
fer characteristics for various values of the porosity
parameter, the stretching velocity, the heat genera-
tion/absorption parameter and the Prandtl number.
The results indicate that increasing the stretching
velocity increases the velocity components but de-
creases the velocity boundary layer thickness. On

the other hand, increasing the stretching velocity
decreases the temperature as well as the thermal
boundary layer thickness. The effect of the stretch-
ing parameter on the velocity and temperature is
more apparent for smaller values of the porosity pa-
rameter. The variation of velocity components as
well as the rate of heat transfer at the wall with the
porosity parameter depends on the magnitude of the
stretching velocity. The sign of the wall shear stress
was shown to depend on the stretching velocity. The
effect of the heat generation/absorption parameter
B on the rate of heat transfer at the wall becomes
more apparent for smaller C.

References

Ariel, P.D., “Hiemenz Flow in Hydromagnetics”,
Acta Mech., 103, 31-43, 1994.

Attia, H.A., “Hydromagnetic Stagnation Point Flow
with Heat Transfer Over a Permeable Surface”,
Arab. J. Sci. Engg., 28(1B), 107-112, 2003a.

Attia, H.A., “Homann Magnetic Flow and Heat
Transfer with Uniform Suction or Injection”, Can.
J. Phys., 81, 1223-1230, 2003b.

Chiam, T.C., “Stagnation Point Flow towards a
Stretching Sheet”, J. Phys. Soc. Jpn., 63, 2443-2455,
1994.

Crane, L.J., “ Flow Past a Stretching Plate”, ZAMP,
21, 645-647, 1970.

Carragher, P. and Crane, L.J., “Heat Transfer on a
Continuous Stretching Sheet”, ZAMM, 62, 564-577,
1982.

Dutta, B.K., Roy, P. and Gupta, A.S., “Temper-
ature Field in the Flow over a Stretching Surface
with Uniform Heat Flux”, Int. Comm. Heat Mass
Transfer, 12, 89-103, 1985.

Garg, V.K., “Heat Transfer Due to Stagnation Point
Flow of a Non-Newtonian Fluid”, Acta Mech. 104,
159-171, 1994.

Hiemenz, K., “Die Grenzschicht in Einem in Dem
Gleichformingen Flussigkeitsstrom Eingetauchten
Gerade Kreiszylinder”, Dingler Polytech J., 326,
321-410, 1911.

Homann, F., “Der Einfluss Grosser Zahighkeit Bei
Der Stromung um den Zylinder und um die Kugel”,
Z. Angew. Math. Mech., 16, 153- 164, 1936.

Ingham, D.B. and Pop, I., “Transport phenomena
in Porous Media”, Pergamon, Oxford, 2002.

Joseph, D.D., Nield, D.A. and Papanicolaou, G.,
“Nonlinear Equation Governing Flow in a Statu-
rated Porous Media”, Water Resources Research,
18, 1049-1052, 1982.

Khaled, A.R.A. and Vafai, K., “The Role of Porous
Media in Modeling Flow and Heat Transfer in Bi-
ological Tissues”, Int. J. Heat Mass Transfer, 46,
4989-5003, 2003.

305



ATTIA

Massoudi, M. and Ramezan, M., “Boundary Layers
Heat Transfer Analysis of a Viscoelastic Fluid at a
Stagnation Point”, ASME HTD, 130, 81-86, 1990.

Massoudi M. and Ramezan, M., “Heat Transfer
Analysis of a Viscoelastic Fluid at a Stagnation
Point”, Mech. Res. Commun., 19, 129-134, 1992.

Na, T.Y., Computational Methods in Engineering
Boundary Value Problem, Academic Press, New
York, 1979.

Nazar, R., Amin, N., Filip, D. and Pop, I., “Stag-
nation Point Flow of a Micropolar Fluid towards
a Stretching Sheet”, Int. J. Non-Linear Mech., 39,
1227-1235, 2004.

Ray Mahapatra, T. and Gupta, A.S., “Heat Trans-
fer in Stagnation-Point Flow towards a Stretching
Sheet”, Heat Mass Transfer, 38, 517-521, 2002.

Rajagopal, K.R., Na, T.Y. and Gupta, A.S., “Flow
of a Viscoelastic Fluid Over a Stretching Sheet”,
Rheol. Acta, 23, 213-224, 1984.

Ray Mahapatra, T. and Gupta, A.S., “Stagnation
Point Flow of a Viscoelastic Fluid towards a Stretch-
ing Surface”, Int. J. Non-Linear Mech., 39, 811-820,
2004.

White, M.F., Viscous Fluid Flow, McGraw-Hill,
New York, 1991.

Wu, Q., Weinbaum, S. and Andreopoulos, Y.,
“Stagnation Point Flows in a Porous Medium”, 60,
123-134, 2005.

306


