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Abstract

This paper presents the boundary element analysis of interference fit problems using axisymmetric bound-
ary elements. A subregional technique is used to calculate the interference pressure and to find the von Mises
stresses on the hub bore, without using iteration and incremental methods. The shaft and hub are modelled
with equal lengths, unequal lengths, a shoulder on the shaft, and a grooved hub. Axisymmetric models of
the shaft and hub are used to determine variable interference pressure along the interface line in the axial
direction. The hub material is considered as steel and grey cast iron, and the shaft material is taken to
be steel. All models used in the analysis are also solved using the finite element method with the ANSYS
program. The results are compared with each other.
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Introduction

Gears, pulleys, wheels, and similar elements are often
assembled on a shaft by means of a press fit or shrink
fit. A press fit, or force fit, is obtained by forcing a
shaft into a smaller hole. A shrink fit is produced
by heating the member having the hole and allow-
ing it to cool to the shaft in ambient temperature.
The radial interference is the difference between the
change in radii of the hub and shaft. It can be calcu-
lated by multiplying the dimensionless interference
(e) and the diameter of the shaft (d). Regardless
of the fitting method, an interference fit creates an
interference pressure, p, between the 2 parts. The
stresses resulting from the interference pressure, in
either part, at any radial position, can be calculated
using Lame’s equation (see Avallone and Baumeis-
ter, 1964).

The study by Zhang et al. (2000) shows that
Lame’s equation has some limitations. It was devel-
oped based on the study of thick-wall cylinder in-
terference fits and 2-dimensional stress analysis for
elastic loading; therefore, it is not suited for the de-
sign of press or shrink-fitted members in which the
interference pressure is not constant along the in-

terface line in the axial direction. The interference
pressure can be different because of some geometric
changes, such as unequal tube lengths, a shaft with
a shoulder, and a grooved hub.
Some experimental methods can be used to mea-

sure the interference pressure of these types of inter-
ference fit problems, as shown in the work by Lewis
et al. (2005); however, experimental methods are ex-
pensive, time consuming, and have some difficulties
measuring the interference pressure. Instead of using
experimental techniques, some numerical methods
can be used. The finite element (FE) and bound-
ary element (BE) methods are widely used in the
analysis of engineering problems, and each one has
some advantages and disadvantages. In general, the
advantages of the FE method can be summarized as
follows: familiar mathematics is used in the deriva-
tion of FEs, thin shell analysis can be more accu-
rately carried out using the FE method, and the FE
solution matrix is symmetric and generally not fully
populated. The advantages of the BE method can
be also given as follows: less data preparation time is
required, which is due to surface modelling, stresses
are accurate because no further approximation is im-
posed on the solution at interior points, less com-
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puter time and storage are required in BE solutions,
the BE method is more suitable for contact problems
(see Becker, 1992), the contact stresses are more ac-
curate in the BE method because there is a lesser de-
gree of approximation imposed on the solution and
the surface tractions, which are fundamental in de-
termining the contact pressures, and are calculated
to the same degree of accuracy as the displacements,
enabling accurate coupling of contact variables. The
interference problems are a special form of contact
problem in which the contact surfaces are initially
interfered.

In this study, interference fit problems are anal-
ysed using a subregional technique in the BE
method, without using any iteration or incremen-
tal method. The hub materials are considered steel
and grey cast iron. The shaft material is taken to
be steel. The interference pressure is variable in the
shaft and hub models along the axial direction. The
BE solutions are compared with the FE solutions
in the ANSYS program. The interference pressure
distributions along the interface line in the axial di-
rection and the von Mises stresses in the hub bore
are illustrated against various interferences and d/D
ratios.

Standards and Analytical Equations

The amount of interference needed to create a tight
fit varies with the diameter of the shaft and the ap-
plication. There are 2 standards for fits and tol-
erances, one based on inch units (ANSI B4.1-1967,
R87) and the other on metric units (ANSI B4.2-1978,
R94) (see Avallone and Baumeister, 1996). These
standards contain detailed recommendations on fits
and tolerances and serve as valuable guides for de-
termining the required fit for a given application.
In these standards, the interference fits are charac-
terised by approximate constant bore pressures and
are mainly classified as follows: locational interfer-
ence fits (H7/p6-P7/h6), medium drive fits (H7/s6-
S7/h6), and force fits (H7/u6-U7/h6).
The equation for interference pressure on a hub-

shaft press-fitted assembly (Figure 1) can be ob-
tained from thick-walled cylinder equations (see
Shigley, 1986) as follows:

P =
2e

1−νs

Es
+ (2e−1)((1+νh)D2−d2(1−2e)2(νh−1))

Eh((1−2e)2 d2−D2)

(1)

where e is the interference per meter of shaft diam-
eter, D is the hub diameter, d is the shaft diameter,
Es and Eh are the elasticity moduluses of the shaft
and hub, and νs and νh are the Poisson’s ratios of
the shaft and hub.
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Figure 1. Axisymmetric models of a) Solid disk (shaft) and outer ring (hub), b) Shaft and hub, c) Shaft with shoulder
and hub, d) Shaft with shoulder and grooved hub.
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Then, the radial, tangential, and von Mises
stresses on the hub can be written as follows:

σr =
d2P

D2 − d2
(1− D2

r2
) (2)

σt =
d2P

D2 − d2
(1 +

D2

r2
) (3)

σVM =
1√
2

√
(σr − σt)2 + σ2

r + σ2
t (4)

For the shaft (solid disk), they are equal to minus
interference pressure.

Boundary Element Analysis

The general boundary integral equations for ax-
isymmetric problems can be written as follows (see
Becker, 1992):
�

ur(p)
uz(p)

�
+ 2π

R
Γ

�
Trr(p, Q) Trz(p, Q)
Tzr(p, Q) Tzz(p, Q)

� �
ur(Q)
uz(Q)

�
rQdΓ(Q)

= 2π
R
Γ

�
Urr(p, Q) Urz(p, Q)
Uzr(p, Q) Uzz(p, Q)

� �
tr(Q)
tz(Q)

�
rQdΓ(Q)

(5)

where p is an interior load point, Q is the field
point, Γ is the boundary of the domain, rQ is the
radial coordinate of the field point, ur and uz are
the radial and axial displacements, and tr and tz are
radial and axial tractions. The boundary of the so-
lution domain, Γ, must be divided into a number of
connected elements. The following quadratic shape
functions can be used for the geometry of the element
(Figure 2) and the solution variables:

N1(ξ) = −ξ
2 (1− ξ)

N2(ξ) = (1 + ξ)(1− ξ)
N3(ξ) = ξ

2
(1 + ξ)

(6)

where ξ are the local coordinates. The displacement
kernels (Uij), traction kernels (Tij), and other pro-
gramming details of the procedure can be found in
the book by Becker (1992).
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Figure 2. An isoparametric quadratic boundary element.

Equation (5) can be written in a compact form
as follows:

[A] [u] = [B] [t] (7)

The press-fit problems generally include a shaft and
a hub, and Eq. (7) can be written for a shaft and
hub as follows:

[A]s [u]s = [B]s [t]s (8)

and

[A]h [u]h = [B]h [t]h (9)

where the superscripts s and h refer to the shaft and
hub, [u]s and [u]h are the displacement, and [t]s and
[t]h are the traction vectors in the domain of the
shaft and hub.
The continuity and the equilibrium requirements

can be satisfied without friction at the interface of
the shaft and hub as follows:

us
ri = uh

ri + e ∗ d (10)

tsri = −thri = P (11)

where us
ri and uh

ri are the radial displacements at the
interface line of the shaft and hub, tsri and thri are the
radial tractions, and P is the interference pressure
at the interface line of the shaft and hub. Equations
(8) and (9) can be rewritten by using the interface
and remaining boundary sub-matrices as follows:

[
[A]s[A]sri

] [
[u]s

[u]sri

]
=

[
[B]s[B]sri

] [
[t]s

[P ]

]
(12)

[
[A]h[A]hri

] [
[u]h

[u]hri

]
=

[
[B]h[B]hri

] [
[t]h

− [P ]

]
(13)

where [A]sri, [B]
s
ri, [A]

h
ri, and [B]

h
ri are the sub-

matrices at the interface line. The interference pres-
sure can be found by a load incremental approach;
however, if Eqs. (12) and (13) are combined, the
solution can be directly carried out using the ordi-
nary Gauss elimination approach. To combine them,
the continuity and equilibrium equations can be used
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(Eqs. (10) and (11)). If the prescribed tractions are
considered zero, the whole matrix becomes:
 [A]s [0] − [B]sri

[0] [A]h [B]hri

[uc]sri [uc]hri [0]





 [u]s

[u]h

[P ]


 =


 [0]
[0]
[e ∗ d]




(14)

where [uc]sri and [uc]hri are the sub-matrices, which
include zero elements when the position of an el-
ement does not correspond to a relevant interface
normal displacement. When an element corresponds
to an interface normal displacement it becomes 1.
Therefore, Eq. (14) becomes a rectangular matrix
and all unknowns are collected in the left-hand side.
The ordinary Gauss elimination approach can be
used to find the interface tractions. The matrix in
Eq. (14) is not fully populated and includes zero
elements. This causes unnecessary memory require-
ments. Some further arrangements may be done to
prevent this.

After finding the unknown interface tractions, the
interface displacements can be found by solving Eqs.
(12) and (13). Then, the strain components at the
nodes at the hub interface line can be obtained using
the following equations:

εh
ri(ξ) =

1
J(ξ)

{[
3∑

c=1

∂Nc(ξ)
∂ξ

(uh
ri)

]}
,

εh
zi(ξ) =

1
J(ξ)

{[
3∑

c=1

∂Nc(ξ)
∂ξ

(uh
zi)

]}
(15)

where uh
zi represents the tangential displacement

components at the interface line, which are already
included in the sub-matrices uh in Eq. (13). Nc rep-
resents the shape functions and J(ξ) is the Jacobian
matrix, which gives the relationships between local
(ξ) and global coordinate systems (r, z).

Then, the stress components at the hub interface
line can be directly calculated using the following
equations:

σh
zi =

(
E

1−ν2

) (
εh
zi + νεh

θi

)
+

(
ν

1−ν

)
thzi

σh
ri = thri

σh
zri = thzi

σh
θi = Eεh

θi + ν(σh
zi + σh

ri)

(16)

where thzi is the tangential traction components at
the hub interface line, which are already included in

the sub-matrices th in Eq. (13). σh
θi and εh

θi are hoop

stresses and strains, and εh
θi =

uh
ri

rh
i

.
An existing BE program, BEACON (see Becker,

1992), has been improved using Eqs. (8), (9),
and (16) for solving interference fit problems. This
program can solve 2-dimensional and axisymmetric
elastostatic problems using 3-noded isoparametric
quadratic BEs (Figure 2). It has been improved us-
ing the FORTRAN 95 programming language. In
this program, the maximum number of nodes and
elements can be automatically determined by a mod-
ule called Coblock. Semi-dynamic arrays were used
to handle matrices and vectors. A modular program-
ming technique was used in the program, using ex-
plicit external subroutines.

Finite Element Analysis

Axisymmetric FE models were created using AN-
SYS finite element analysis software, as in the BE
method. Uniform and regular meshes were used.
The shaft and hub were modelled using PLANE82
8-node rectangular elements with an axisymmetric
option. The interface region of the hub and shaft was
modelled using surface-to-surface contact elements,
without friction (TARGE169 and CONTA172). Re-
gardless of the fitting method (shrink or press fit),
the amount of interference was given as an initial
penetration. The radius of the shaft was given as
larger than the hub bore radius in an amount of in-
terference, as shown in Figure 1. The symmetry line
was chosen as the y-axis. After generation of contact
elements, the solution was directly started as small
displacement static. Due to geometric non-linearity,
the full Newton-Raphson iteration method was used
in the solution. The solver type was the sparse ma-
trix direct solver.

Solutions and Discussions

All models were solved with a PC. The hardware
configuration consisted of an Intel Pentium IV 2.4
GHz CPU and 1 GB of RAM. Although the aim of
this study is calculating the interference fit pressures
accurately, CPU time comparisons can also be done
as shown in Table 1. CPU time completely depends
on the solver type. Therefore, ANSYS was forced to
use the Frontal direct solver. In the BE program,
however, an ordinary Gauss elimination solver was
used with a subregional approach. Although the
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Table 1. CPU time comparison.

ANSYS
(With Frontal Direct
Solver)

BEM
(With Ordinary Gauss
Elimination Solver)

Shaft and hub with equal
tube lengths (Figure 1a)

351 s (17,746 nodes) 4 s (156 nodes)

Shaft and hub with unequal
tube lengths (Figure 1b)

353 s (23,986 nodes) 36 s (1089 nodes)

Shaft with shoulder and hub
(Figure 1c)

173 s (30,362 nodes) 8 s (359 nodes)

Shaft with shoulder and
grooved hub (Figure 1d)

172 s (22,074 nodes) 12 s (509 nodes)

CPU times of BE solutions is less than ANSYS so-
lutions, it is completely the result of the number of
nodes in the models. If ANSYS is permitted to use
its default solver, CPU times can be decreased fur-
ther. In Table 1, CPU times of the third (Figure
1c) and fourth FE models (Figure 1d) are nearly the
same; however, the number of nodes are very differ-
ent. The reason for this difference is the number of
nodes in the contact area.

Four different configurations were used for shaft
and hub assembly. In the first one, a solid disk
and an outer ring were modelled with equal tube
lengths (Figure 1a). In the FE model, 17,746 nodes
were used. In the BE model, only 156 nodes were
used. Quadratic finite and boundary elements were
used in all models. Analytical solutions were car-
ried out using Eqs. (1)-(4). The interference pres-
sure is directly equal to the radial stress at the in-
terface line. The variations of interference pressure
and von Mises stresses along axial direction were rep-
resented in all plots. The interference pressures and
von Mises stresses are in good agreement in all meth-
ods, as shown in Figures 3 and 4. In spite of plenty of
nodes in the FE model, the stresses show some devi-
ations at the corner nodes at the interface line. The
corners of the hub were not rounded in the model,
which causes these stress deviations at this point. It
is a usual problem in FE solutions. If the corners of
the hub are rounded using some small radius fillets,
these errors can be removed; however, BE models
give nearly the same results with analytical solutions.
In order to show the correctness of the BE solutions,
FE models were kept in their original shapes.
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Figure 3. Press fit pressure distributions along the hub
bore, while d/D = 0.4 and e = 0.001 (shaft
and hub with equal tube lengths-Figure 1a).

180

200

220

240

260

280

300

320

340

360

380

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

z (m)

vo
n 

M
is

es
 s

tr
es

s 
di

st
ri

bu
tio

ns
 a

lo
ng

 
  t

he
 h

ub
 b

or
e 

(M
Pa

)

Steel shaft & steel hub

Steel shaft & grey cast iron hub

Figure 4. Von Mises stress distributions along the hub
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In the second model, a shaft and hub assembly
was modelled with unequal tube lengths, as shown in
Figure 1b. In the FE and BE models, 23,986 nodes
and 1089 nodes were used, respectively. The FE and
BE results are in good agreement, as shown in Fig-
ures 5 and 6. The interference pressures at the in-
terface line and the von Mises stresses along the hub
bore are nearly equal to the pressures and stresses
obtained in the first model, except for the corner
nodes. At the corner nodes there is a stress con-
centration and the failure begins from these points
during loading.

0

100

200

300

400

500

600

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

z (m)

Pr
es

s-
fi

t p
re

ss
ur

e 
be

tw
ee

n 
th

e 
hu

b 
an

d 
sh

af
t (

M
Pa

)

Steel shaft & steel hub

Steel shaft & grey cast iron hub
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Figure 6. Von Mises stress distributions along the hub
bore, while d/D = 0.4 and e = 0.001 (shaft and
hub with unequal tube lengths-Figure 1b).

The corner stresses in the second model are the
main concern of many researchers and are solved by

considering a shoulder in the shaft (see Pilkey, 1997).
This is the third model as shown in Figure 1c. A
shaft is modelled with a shoulder with a 0.2 mm ra-
dius. The remaining geometry is the same as that
in the previous model. In the FE and BE models,
30,362 nodes and 359 nodes were used, respectively.
The BE solutions show that the interference pressure
was reduced 50% and von Mises stress was reduced
30% for the steel shaft and hub, as shown in Figures
7 and 8. The interference pressure was reduced 40%
and von Mises stress was reduced 25% for the grey
cast iron hub and steel shaft, as shown in the same
figures.
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Figure 7. Press fit pressure distributions along the hub
bore, while d/D = 0.4 and e = 0.001 (shaft
with shoulder and hub-Figure 1c).
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Figure 8. Von Mises stress distributions along the hub
bore, while d/D = 0.4 and e = 0.001 (shaft
with shoulder and hub-Figure 1c).
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The last model includes a grooved hub and a
shaft with a shoulder. The groove radius is 5 mm
and shoulder radius is 0.2 mm, as shown in Figure
1d. In the FE and BE models, 22,074 nodes and
509 nodes were used, respectively. Both FE and BE
solutions show that the stress concentrations at the
hub corners were completely removed and the max-
imum von Mises stress was reduced by 15% of the
previous model (Figures 9 and 10). Similar results
were obtained for the grey cast iron hub and steel
shaft. BE solutions give minus pressures at the hub
corners for both steel and grey cast iron, as shown
in Figure 9. In order to investigate the correctness
of these results, a fine BE model was solved with
1032 nodes. The results do not include any negative
pressures, as shown in Figure 9. Consequently, the
results of the coarse model include some errors at
the corner nodes. This may be caused by the size of
BEs around the corners. In the BE element program,
which was used in this study, the A and B matrices
were constructed based on element sub-matrices, as
shown in Eq. (14) and so the size of BE directly
affects the nodal results. Figure 3 shows that both
FE and BE results include some errors at the corner
nodes and that they are in good agreement at the
remaining nodes; however, the BE results are closer
to the analytical results than the FE results.
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Figure 10. Von Mises stress distributions along the hub
bore, while d/D = 0.4 and e = 0.001 (shaft
with shoulder and grooved hub-Figure 1d).

Conclusions

The interference fit problems are analysed using ax-
isymmetric boundary elements and a subregional
technique. It was shown that the BE method is a
more suitable method to analyse press fit problems.
Its results are more accurate than the FE method,
in spite of less mesh data.
The hub material selected was steel and grey cast

iron. The grey cast iron hub reduces the interface
pressures and vonMises stresses; yet, it must be care-
fully examined by considering the external loads and
design considerations.
The interference pressure and von Misses stress

concentrations at the corners of the hub can be re-
duced using shoulders on the shaft and their distri-
bution may be changed by grooved hubs. Various
designs can be developed by changing the radius of
the shoulders on the shaft and the grooves on the
hub.

Nomenclature

e interference per metre of shaft diam-
eter

D hub diameter
d shaft diameter
Es, Eh elasticity moduluses of the shaft and

hub
νs, νh Poisson’s ratios of the shaft and hub
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σr, σt, σV M radial, tangential, and von Mises
stresses

p, Q interior load point and field point
Γ boundary of the domain
rQ radial coordinate of the field point
ur, uz radial and axial displacements
tr, tz radial and axial tractions
Uij , Tij displacement and traction kernels
[u]s , [u]h displacement vectors in the domain of

the shaft and hub
[t]s , [t]h traction vectors in the domain of the

shaft and hub
us

ri, u
h
ri radial displacements at the interface

line of the shaft and hub
tsri, t

h
ri radial tractions

P interference pressure at the interface
line of the shaft and hub

[A]sri , [A]hri sub-matrices, including displacement
kernel terms

[B]sri , [B]hri sub-matrices, including traction ker-
nel terms

[uc]sri , [uc]hri sub-matrices, including zero and one
εh
ri, ε

h
zi strain components at the nodes at the

hub interface line
uh

zi tangential displacement components
at the interface line

J(ξ) Jacobian matrix
ξ local coordinates
Nc(ξ) shape functions
σh

zi, σ
h
ri, σ

h
zri tangential, radial, and shear stress
components at the hub interface

σh
θi, ε

h
θi hoop stresses and strains
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