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Abstract

The steady laminar flow with heat generation of an incompressible non-Newtonian micropolar fluid
impinging on a porous flat plate is investigated. A uniform suction or blowing is applied normal to the
plate, which is maintained at a constant temperature. A new mathematical model is developed taking into
account the new elements introduced, such as uniform suction and heat generation. Numerical solutions for
the governing nonlinear momentum and energy equations are obtained. The effect of the uniform suction or
blowing and the characteristics of the non-Newtonian fluid on both the flow and heat transfer is presented
and discussed.
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Introduction

The two-dimensional flow of a fluid near a stagnation
point is a classical problem in fluid mechanics. It
was first examined by Hiemenz (1911), who demon-
strated that the Navier-Stokes equations governing
the flow can be reduced to an ordinary differential
equation of the third order using similarity transfor-
mation. Owing to the nonlinearities in the reduced
differential equation, no analytical solution is avail-
able and the nonlinear equation is usually solved nu-
merically, subject to two-point boundary conditions,
one of which is prescribed at infinity.

Later, the problem of stagnation point flow was
extended in numerous ways to include various physi-
cal effects. Axisymmetric three-dimensional stagna-
tion point flow was studied by Homann (1936). The
results of these studies are of great technical impor-
tance: for example in the prediction of skin-friction,
as well as heat/mass transfer near stagnation regions
of bodies in high speed flows, and also in the design
of thrust bearings and radial diffusers, drag reduc-
tion, transpiration cooling, and thermal oil recovery.

In either the two- or three-dimensional case, Navier-
Stokes equations governing the flow are reduced to an
ordinary differential equation of the third order using
a similarity transformation. The effect of suction on
the Hiemenz flow problem has been considered in the
literature. Schlichting and Bussman first gave the
numerical results in 1943. More detailed solutions
were later presented by Preston (1946). An approx-
imate solution to the problem of uniform suction is
given by Ariel (1994). In hydromagnetics, the prob-
lem of Hiemenz flow was chosen by Na (1979) to il-
lustrate the solution of a third-order boundary value
problem using the technique of finite differences. An
approximate solution of the same problem has been
provided by Ariel (1994). The effect of an exter-
nally applied uniform magnetic field on the two- and
three-dimensional stagnation point flow was given,
respectively, by Attia (2003, 2003) in the presence of
uniform suction or injection.

On the other hand, the study of heat transfer in
boundary layer flows is of importance in many en-
gineering applications, such as the design of thrust
bearings and radial diffusers, transpiration cooling,
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drag reduction, and thermal recovery of oil. Mas-
soudi and Ramezan (1990) used a perturbation tech-
nique to solve for the stagnation point flow and
heat transfer of a second grade non-Newtonian fluid.
Their analysis is valid only for small values of the
parameter that determines the behavior of the non-
Newtonian fluid. Later, Massoudi and Ramezan
(1992) extended the problem to nonisothermal sur-
faces. Garg (1994) improved the solution obtained
by Massoudi and Ramezan (1992) by numerically
computing the flow characteristics for any value
of the non-Newtonian parameter, using a pseudo-
similarity solution.

Non-Newtonian fluids were considered by many
researchers. Thus, among the non-Newtonian fluids,
the solution of the stagnation point flow for viscoelas-
tic fluids has been given by Arial (1992) and others;
for power-law fluid by Djukic (1974); and for sec-
ond grade fluids in the hydromagnetic case by Attia
(2000). Stagnation point flow of a non-Newtonian
micropolar fluid with zero vertical velocity at the
surface or heat generation was studied by Nazar et
al. (2004). It should be mentioned that the the-
ory of micropolar fluids has potential importance in
industrial applications due to its capability to de-
scribe complex fluids, such as particle suspensions,
liquid crystals, animal blood, lubrication, and tur-
bulent shear flows (Nazar et al., 2004).

The purpose of the present paper is to study the
effect of uniform suction or blowing directed normal
to the wall on the steady laminar flow of an incom-
pressible non-Newtonian micropolar fluid at a two-
dimensional stagnation point with heat generation.
The wall and stream temperatures are assumed to
be constants. A numerical solution is obtained for
the governing momentum and energy equations us-
ing finite difference approximations, which takes into
account the asymptotic boundary conditions. The
numerical solution computes the flow and tempera-
ture fields for the whole range of the non-Newtonian
fluid characteristics, and also such parameters as the
suction or blowing parameter, and the Prandtl num-
ber.

Formulation of the Problem

Consider the two-dimensional stagnation point flow
of an incompressible non-Newtonian micropolar fluid
impinging perpendicular on a permeable wall and
flowing away along the x-axis. This is an example
of a plane potential flow that arrives from the y-axis

and impinges on a flat wall placed at y = 0, divides
into 2 streams on the wall, and leaves in both di-
rections. The viscous flow must adhere to the wall,
whereas the potential flow slides along it. (u,v) are
the components for the potential flow of velocity at
any point (x,y) for the viscous flow, whereas (U ,V )
are the velocity components for the potential flow.
A uniform suction or blowing is applied at the plate
with a transpiration velocity at the boundary of the
plate given by –vo, where vo > 0 for suction. The
velocity distribution in the frictionless flow in the
neighborhood of the stagnation point is given by

U(x) = ax, V (y) = −ay
where the constant a(> 0) is proportional to the

free stream velocity far away from the surface. The
simplified two-dimensional equations governing the
flow in the boundary layer of a steady, laminar, and
incompressible micropolar fluid are

∂u

∂x
+
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∂y
= 0, (1)
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u
∂u
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(
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∂u
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)
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(3)

where N is the microrotation or angular velocity
whose direction of rotation is in the x − y plane,
µ is the viscosity of the fluid, ρ is the density, and
j, γ, and h are the micro-inertia per unit mass,
spin gradient viscosity, and vortex viscosity, respec-
tively, which are assumed to be constant (Nazar et
al., 2004). The appropriate physical boundary con-
ditions of Eqs. (1)-(3) are (Nazar et al., 2004)

u(x, 0) = 0, v(x, 0) = −vo, N(x, 0) = −n∂u
∂y
, (4a)

y → ∞ : u(x, y)→ U(x) = ax, v(x, y)→ 0, N(x, y)→ 0,
(4b)

where n is a constant and 0 ≤ n ≤ 1. The
case n = 1/2 indicates the vanishing of the anti-
symmetric part of the stress tensor and denotes weak
concentration of microelements (Nazar et al., 2004),
which will be considered here. The governing Eqs.
(1)-(3), subject to the boundary conditions Eqs. (4a)
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and (4b), can be expressed in a simpler form by in-
troducing the following transformation

η =
√

a
ν y, u = axf

′
(η), v = −√

aνf(η), N

= ax
√

a
ν
g(η), g(η) = −1

2
f

′′
(η)

(5)

so that Eqs. (2) and (3) reduce to the single equation
(
1 +

K

2

)
f

′′′
+ ff

′′ − f ′2 + 1 = 0 (6)

subject to the boundary conditions

f(0) = A, f
′
(0) = 0, f

′
(∞) = 1, (7)

where K = h/µ(>0) is the material parameter,
A = vo/

√
aν is the suction parameter, and primes

denote differentiation with respect to η. For microp-
olar boundary layer flow, the wall skin friction τw is
given by (Nazar et al., 2004)

τw =
[
(µ+ h)

∂u

∂y
+ hN

]
y=0

(8)

Using U(x) = ax as a characteristic velocity, the skin
friction coefficient, Cf , can be defined as

Cf =
τw
ρU2

, (9)

Substituting Eqs. (5) and (8) into Eq. (9), we get

CfRe
1/2
x = (1 +K/2)f

′′
(0) (10)

where Re1/2
x = xU/ν is the local Reynolds number.

Using the boundary layer approximations and ne-
glecting the dissipation, the equation of energy for
temperature T with heat generation or absorption is
given by Massoudi (1992),

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
+Q(T − Tw) (11)

where cp is the specific heat capacity at constant
pressure of the fluid, k is the thermal conductivity of
the fluid, andQ is the heat generation/absorption co-
efficient. A similarity solution exists if the wall and
stream temperatures, Twand T∞, are constants—a
realistic approximation in typical stagnation point
heat transfer problems (Massoudi, 1992).

The boundary conditions for the temperature
field are

y = 0 : T = Tw , (12a)

y → ∞ : T → T∞, (12b)

Introducing the non-dimensional variable

θ =
T − T∞
Tw − T∞

,

and using the similarity transformations given in Eq.
(5), we find that Eqs. (11) and (12) reduce to

θ
′′
+Pr fθ

′
+PrBθ = 0 (13)

θ(0) = 1, θ(∞) = 0, (14)

where Pr = µcp/k is the Prandtl number and B =
Q/aρcp is the heat generation/absorption parame-
ter. The heat transfer from the surface to the fluid
is computed by application of Fourier’s law

q = −k
(
∂T

∂y

)
y=0

Introducing the transformed variables, the expres-
sion for q becomes

q = −k(Tw − T∞)
√
a/νθ

′
(0) (15)

The heat transfer coefficient, in terms of the Nusselt
number, Nu, can be expressed as

Nu =
q

k(Tw − T∞)
√
a/ν

(16)

where
√
a/ν plays the role of a characteristic length.

Using Eq. (15), Eq. (16) becomes

Nu = −θ′ (0) (17)

The flow Eqs. (6) and (7) are decoupled from the
energy Eqs. (13) and (14), and need to be solved
before the latter can be solved. The flow Eq. (6)
constitutes a non-linear, non-homogeneous boundary
value problem (BVP). In the absence of an analytical
solution of a problem, a numerical solution is indeed
an obvious and natural choice. The BVP given by
Eqs. (6) and (7) may be viewed as a prototype for
numerous other situations, which are similarly char-
acterized by a BVP having a third order differential
equation with an asymptotic boundary condition at
infinity. Therefore, its numerical solution merits at-
tention from a practical point of view. The flow Eqs.
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(6) and (7) are solved numerically using finite dif-
ference approximations. A quasi-linearization tech-
nique is first applied to replace the non-linear terms
at a linear stage, with the corrections incorporated
in subsequent iterative steps until convergence. The
quasi-linearized form of Eq. (6) is

(1 +K/2)f
′′′
n+1 + fnf

′′
n+1 + f

′′
n fn+1

−f ′′
n fn − 2f

′
nf

′
n+1 + f

′2
n + 1 = 0

where the subscript n or n+1 represents the nth or
(n+1)th approximation to the solution. Then, the
Crank-Nicolson method is used to replace the differ-
ent terms by their second order central difference ap-
proximations. An iterative scheme is used to solve
the quasi-linearized system of difference equations.
The solution for the Newtonian case is chosen as an
initial guess and the iterations are continued until
convergence within prescribed accuracy. Finally, the
resulting block tri-diagonal system was solved using
the generalized Thomas algorithm.

The energy Eq. (13) is a linear second order
ordinary differential equation with a variable coef-
ficient, f(η), which is known from the solution of
the flow Eqs. (6) and (7), and the Prandtl num-
ber, Pr, is assumed to be constant. Equation (13)
is solved numerically under the boundary condition
Eq. (14) using central differences for the derivatives
and the Thomas algorithm for the solution of the
set of discretized equations. The resulting system of
equations has to be solved in the infinite domain 0
< η < ∞. A finite domain in the η-direction can
be used instead with η chosen large enough to en-
sure that the solutions are not affected by imposing
the asymptotic conditions at a finite distance. Grid-
independence studies show that the computational
domain 0 < η < η∞ can be divided into intervals,
each of uniform step size, which equals 0.02. This
reduces the number of points between 0 < η < η∞
without sacrificing accuracy. The value η∞ = 10 was
found to be adequate for all the ranges of parameters
studied here. Convergence is assumed when the ratio
of every one of f , f

′
, f

′′
, orf

′′′
for the last 2 approx-

imations differed from unity by less than 10−5 at all
values of η in 0 < η < η∞. It should be mentioned
that the results obtained herein reduce to those re-
ported by Nazar et al. (2004) when A = 0 and B =
0, which gives validity of the present solution.

Results and Discussion

Figures 1 and 2 present the velocity profiles of f
and f

′
, respectively, for various values of K and A.

The figures show that increasing the parameter K
decreases both f and f

′
, but increasing A increases

them. The figures also indicate that the effect of
K on f and f

′
is more pronounced for higher val-

ues of A (case of suction); however, the effect of A
on f and f

′
becomes more pronounced for smaller

values of K. Moreover, increasing K increases the
velocity boundary layer thickness, while increasing
A decreases it.
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Figure 1. Effect of the parameters K and A on the profile
of f .
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Figure 2. Effect of the parameters K and A on the profile
of f

′
.

Figure 3 presents the profile of temperature θ for
various values of K and A and for Pr = 0.5 and B
= 0. It is clear that increasing K increases θ and the
thickness of the thermal boundary layer. Increasing
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A decreases θ for all K and its influence becomes
more apparent for smaller K. This emphasizes the
influence of the injected flow in the cooling process.
The action of fluid injection (A < 0) is to fill the
space immediately adjacent to the disk with fluid
having nearly the same temperature as that of the
disk. As the injection becomes stronger, the blanket
extends to greater distances from the surface. As
shown in Figure 3, these effects are manifested by
the progressive flattening of the temperature profile
adjacent to the disk. Thus, the injected flow forms an
effective insulating layer, decreasing the heat transfer
from the disk. Suction, on the other hand, serves the
function of bringing large quantities of ambient fluid
into the immediate neighborhood of the disk surface.
As a consequence of the increased heat-consuming
ability of this augment flow, the temperature drops
quickly as we proceed away from the disk. The pres-
ence of fluid at near-ambient temperature close to
the surface increases the heat transfer.
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Figure 3. Effect of the parameters K and A on the profile
of θ (Pr = 0.5).

Figures 4 and 5 present the temperature profiles
for various values of K and Pr, and for A = –0.5
and 0.5, respectively, and for B = 0. The figures
bring out clearly the effect of the Prandtl number on
the thermal boundary layer thickness. As shown in
Figures 4 and 5, increasing Pr decreases the thermal
boundary layer thickness for all K and A. Figure
4 shows the influence of blowing in flattening of the
temperature profiles adjacent to the disk for higher
Pr. The effect of K on θ is more pronounced for
higher values of Pr for the blowing case (see Figure
4).
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Figure 4. Effect of the parameters K and Pr on the pro-
file of θ (A = –0.5).
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Figure 5. Effect of the parameters K and Pr on the pro-
file of θ (A = 0.5).

Tables 1 and 2 present the variation in the wall
shear stress CfRe

1/2
x and the heat transfer rate at

the wall −θ′ (0), respectively, for various values of K
and A, and for Pr = 0.5. Table 1 shows that for A <
0, increasing K steadily increases CfRe

1/2
x ; however,

for A ≥ 0, increasing K increases CfRe
1/2
x , and then

additionally increasing K decreases CfRe
1/2
x . In-

creasing A increases CfRe
1/2
x for all K and its ef-

fect is more apparent for smaller K. Table 2 shows
that increasing K decreases −θ′ (0), while increasing
A increases −θ′ (0) for all K.

Table 3 presents the effect of the parameters K
and B on −θ′ (0) for A = 0 and Pr = 0.7. Increas-
ing K decreases −θ′ (0) for all B, but increasing B
decreases −θ′ (0) for all K as result of increasing the
temperature, which reduces the heat transfer. Table
4 presents the effect of the parameters A and B on
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−θ′ (0) for K = 1 and Pr = 0.7. Increasing A in-
creases −θ′ (0) for all B, but increasing B decreases
−θ′ (0) for all A. Table 5 presents the effect of the

parameters Pr and B on −θ′ (0) for K = 1 and A
= 0. Increasing Pr increases −θ′ (0) for all B, but
increasing B decreases −θ′ (0) for all Pr.

Table 1. Variation in the wall shear stress CfRe
1/2
x with K and A(Pr = 0.7, B = 0.1).

A K = 0 K = 0.5 K = 1 K = 1.5 K = 2
-2 0.7137 0.7574 0.7986 0.8377 0.8751
-1 1.1349 1.1586 1.1839 1.2103 1.2372
0 1.2326 1.7915 1.7612 1.7469 1.7431
1 1.8892 2.6352 2.5116 2.4312 2.3779
2 2.6699 3.6299 3.3899 3.2271 3.1124

Table 2. Variation in the wall heat transfer −θ
′
(0)with K and A (Pr = 0.7, B = 0.1).

A K = 0 K = 0.5 K = 1 K = 1.5 K = 2
-2 –0.0356 –0.0364 –0.0372 –0.0379 –0.0385
-1 0.0809 0.0747 0.0694 0.0647 0.0605
0 0.4387 0.4259 0.4152 0.4060 0.3979
1 0.9722 0.9575 0.9454 0.9352 0.9262
2 1.5881 1.5744 1.5631 1.5536 1.5455

Table 3. Variation in the wall heat transfer rate −θ
′
(0) with K and B (A = 0, Pr = 0.7).

B K = 0 K = 0.5 K = 1 K = 1.5 K = 2
-0.1 0.5495 0.5389 0.5302 0.5228 0.5163
0 0.4959 0.4843 0.4747 0.4665 0.4593
0.1 0.4387 0.4259 0.4152 0.4060 0.3979

Table 4. Variation in the wall heat transfer rate −θ
′
(0) with A and B (K = 1, Pr = 0.7).

B A = –2 A = –1 A = 0 A = 1 A = 2
-0.1 0.0637 0.1962 0.5302 1.0346 1.6313
0 0.0152 0.1358 0.4747 0.9910 1.5977
0.1 0.00372 0.0694 0.4152 0.9454 1.5631

Table 5. Variation in the wall heat transfer rate −θ
′
(0) with Pr and B (K = 1, A = 0).

B Pr = 0.05 Pr = 0.1 Pr = 0.5 Pr = 1 Pr = 1.5
-0.1 0.1779 0.2378 0.4772 0.6367 0.7517
0 0.1662 0.2197 0.4329 0.5706 0.6676
0.1 0.1539 0.2007 0.3859 0.4997 0.5770
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Conclusion

The two-dimensional stagnation point flow of an in-
compressible non-Newtonian micropolar fluid with
heat generation is studied in the presence of uni-
form suction or blowing. A numerical solution for
the governing equations is obtained, which allows
the computation of the flow and heat transfer char-
acteristics for various values of the non-Newtonian
parameter K, the suction parameter A, the heat
generation/absorption parameter B, and the Prandtl
number Pr. The results indicate that increasing the
parameter K increases both the velocity and ther-

mal boundary layer thickness, while increasing A de-
creases the thickness of both layers. The effect of
the parameter K on the velocity is more apparent
for suction than it is for blowing. The influence of
the parameter K on the temperature is more appar-
ent for higher values of the Prandtl number. The
effect of the suction velocity on the shear stress at
the wall depends on the value of the non-Newtonian
parameter K. On the other hand, the influence of
the blowing velocity on the heat transfer rate at the
wall depends on the value of the non-Newtonian pa-
rameter K.
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