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Abstract

A model is proposed to investigate the forces and stresses acting on bones in a shoulder-hand system due
to straining of muscles during daily physical activities. This model is proposed as a truss system consisting
of beams, or rods, corresponding to the considered bones and muscles, connected by frictionless joints. One
of the hard loading positions, which occurs when one does pull-ups while holding onto a bar (a common
fitness activity), is considered in the proposed model as an example. The stress is found to increase from
the elbow end of the humerus bone toward the shoulder end. The stress in the example study reached
a maximum value of approximately 8000 N/cm2 near the shoulder end during the pull-up motion, which
is about 20% less than the maximum stress calculated when the straining of muscles was neglected. The
difference between these 2 maximum values of stress indicates the effect of strained muscles, which was first
taken into consideration in this study. This stress value is considerably high when the strength of bones
is taken into account. It is also necessary to take into account the stress fluctuations in the human body
during various daily activities; fluctuating stresses acting on an implant may create fatigue cracks at the
shoulder end of the humerus in addition to a high stress concentration factor due to shape and size changes
in the humerus bone.
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Introduction

Nowadays, total joint replacements for the hip, knee,
shoulder, and other joints are routine in orthopedic
surgery. Implants that are inserted during ortho-
pedic treatment in bones that have suffered trauma
are affected by various factors in the human body
such as mechanical and thermal loading and corro-
sion. The character and intensity of mechanical loads
in bones must be analyzed in detail for optimal im-
plant design. These analyses require some surgical
simulations (Fung, 1990; Winter, 1990; Gordon and
Robertson, 1997; Ozkaya and Nrodin, 1999; Alexan-
der, 2002; Schneck and Bronzino, 2003). Surgical
simulations are particularly appropriate for the large
volume and expense of joint replacement procedures

in orthopedics (O’Toole et al., 1995; Anglin et al.,
2000; Szivek et al., 2000).

The human shoulder is highly flexible, and there-
fore provides a large range of motion to the arm
and hand, despite the expense of precarious sta-
bility of the articulations. The shoulder is flexible
enough to provide the arm with an enormous range
of motion, yet it can simultaneously provide a sta-
ble platform for the arm even when very strenuous
forces are exerted against the environment (Kirsch
and Acosta, 2002). Presently used shoulder endo-
prostheses show unsatisfactory results in terms of
functionality and long-term fixation. Complications
are mainly due to joint pathology and insufficient
bone material for glenoid component fixation (pa-
tient factors), application of less efficient materials as
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compared to anatomical tissues and the introduction
of interfaces (design factors), and difficulties with the
insertion and alignment of the components (surgical
factors) (Oosterom et al., 2002; Wakabayashi et al.,
2003; Debski et al., 2005).

The maximum acceptable workload for each ele-
ment of a joint can be calculated individually as a
function of the external load and the geometry of the
articulating surfaces, muscles, and ligaments. The
proposed model provides sets of humerus positions
that are acceptable in terms of muscle and ligament
strength and stresses at the bone-on-bone contact
points. The force applied at the hand is a critical
element in assessing individual force limitations dur-
ing different activities (Gielo-Perczak and Leamon,
2002).

In the present study, a model is proposed to in-
vestigate the forces and stresses acting on bones in a
shoulder-hand system due to muscle straining occur-
ring during daily activities. This model is proposed
as a truss system consisting of rods corresponding
to the considered bones and muscles connected by
frictionless joints. One of the hard loading positions,
which occurs when one does pull-ups while holding
onto a bar (a common fitness activity), is considered
in the proposed model as an example. In earlier stud-
ies (Linde et al., 1992; Anglin et al., 1999; Au et al.,
2005), stresses acting on bones due to external loads

were evaluated without considering the stress that
developed due to strained muscles. In this work, the
stresses that developed on bones due to both exter-
nal loads and strained muscles were studied.

Modeling of Forces Formed in the Shoulder-
Hand System

The model developed for 1 of the 2 shoulder-hand
systems of the body is shown in Figure 1. The radius-
ulna and humerus bones and muscle groups are mod-
eled via the rods AD and BD and BC, AC, and CD,
respectively. The rods are connected by frictionless
joints A, B, C, and D.

The hand area affected by the reaction force (Q)
and the shoulder area affected by G (which is half of
the body weight) are represented by points A and B
in Figure 1, respectively. Angles ϕ1 and ϕ2 given in
Figure 1 are related by:

ϕ2 = arctan(mtanϕ1), (1)

where the parameter m = OD
OC.

As the geometry of this static system and the ap-
plied forces are symmetrical, we can write F1 = F2

and F3 = F4. The internal forces occurring in the
rods were found using static equilibrium conditions
(Timoshenko and Young, 1983):

ϕ
Shoulder

Figure 1. (a) The pull-up motion of a person (b) Model developed for shoulder-hand system during pull-up motion (1-
Humerus, 2-Radius-Ulna, 3-Extensors of the hand-brachioradialus, palmarislongus, extensordigitorum muscles,
4-Biceps, triceps, deltoid, brachialus muscles, 5-Extensor carpi radials longus and pronator teres muscles).

F1 = G
cos ϕ2

sin(ϕ2 − ϕ1)
, F3 = G

cos ϕ1

sin(ϕ2 − ϕ1)
, F5 = 2G

cos ϕ1.cosϕ2

sin(ϕ2 − ϕ1)
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Using Eq. (1), the above relations can be written:

F1 = G
cos [arctan(m tan ϕ1)]

sin [arctan(m tanϕ1) − ϕ1]
; F3 = G

cosϕ1

sin [arctan(m tanϕ1) − ϕ1]
;

F5 = 2G
cosϕ1cos [arctan(m tan ϕ1)]
sin [arctan(m tanϕ1) − ϕ1]

. (2)

These equations show that the parameter m
strongly affects the results of force calculations.
Therefore, the value for m should be chosen cau-
tiously.

After the forces acting on the bones and muscles
are determined, stresses that formed on these ele-
ments can be investigated by analytical and experi-
mental methods (Belyaev, 1953; Timoshenko, 1976).

Stresses in the Humerus Bone

The effects on the bones due to forces resulting from
physical activities are analyzed by assuming small
deformations and linearly elastic behavior. Related
works show that the application of such hypotheses is
typically sufficient for orthopedic treatments and the
design of implants and prostheses (Liebowitz, 1972;
Martens et al., 1983; Cowin, 1989; Linde et al., 1992;
Anglin et al., 1999; Au et al., 2005).

When length, vertical section dimensions, and
the working conditions of the humerus bone are
taken into account, we can assume a design scheme
for investigation of stresses consisting of a simple
beam supported at the ends and loaded by eccen-
tric forces F = F1 (Figure 2). The natural curvature
of the humerus, the initial maximum deflection in
the middle section (y0), and the forces acting at the
shoulder end of the humerus at point B with eccen-
tricity (e) are taken into consideration.

The initial deflection of the beam (y0) is small
with respect to length �; therefore, the equation of
the axis of the beam (y1) can be assumed as sinu-
soidal during the unloading condition:

y1 = y0sin
πx

�
. (3)

Deflections formed by forces acting on the humerus
can be found according to y − y1:

y − y1 = asin
πx

�
, (4)

where y is the total deflection of the beam axis and
a is the deflection of the beam at x = �

2 .

Using Eq. (3), we obtain

y = (a + y0)sin
πx

�
. (5)

The energy U due to bending is

U =

�∫
0

M2
b dx

2EI
=

1
2

�∫
0

EI
[
(y − y1)

′′]2
dx,

where E is the elastic modulus of the humerus, I is
the axial moment of inertia of the section, Mb is the
bending moment, and the symbol (.)′′ denotes the
second derivative with respect to x.

Then we obtain

U =
π4a2

2�4
k , (6)

where

k =

�∫
0

EIsin2 πx

�
dx. (7)

By differentiating Eq. (6) with respect to a, we ob-
tain

dU =
π4a

�4
kda. (8)

The displacement ∆ (Figure 2) can be determined as
the difference between length � and the projection of
the deflection curve on the straight line joining points
A and C. Clearly, it can then be stated that

∆ =

�∫
0

(dx − ds cosϑ).

However, for small deflections,

|∆| = 1
2

�∫
0

(y′)2dx, (9)
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R

∆

(a)

(b)

Figure 2. Investigation of stresses on the humerus bone: (a) Calculation scheme of stresses, (b) Cross-section of humerus
bone.

where the symbol (.)′ denotes the first derivative
with respect to x.

If we consider Eq. (5), Eq. (9) becomes

|∆| =
π2(a + y0)2

4�
. (10)

The displacement of the beam in the vertical direc-
tion (Figure 2) is given as

∆F = BB1 + B1B2 = |∆|+ |y′| e, (11)

where e is as defined above.
Taking into account that |y′|x=� = (a + y0)π

�
in

Eq. (5), we obtain

∆F =
π2(a + y0)2

4�
+

πe(a + y0)
�

. (12)

By differentiating this displacement with respect to

a,

d∆F =
[
π2(a + y0)

2�
+

πe

�

]
da. (13)

Work done by the Fxcomponent of the force F due
to the above displacement is

dUF = Fxd∆F .

Introducing Eq. (13) into the above relation yields

dUF = F

[
π2(a + y0)

2�
+

πe

�

]
cosαda. (14)

We can write Eq. (14) in the following form:

dU = dUF .

Taking into account Eqs. (8) and (14), we obtain

π4a

�4
kda =

[
π2(a + y0)

2�
+

πe

�

]
F cosαda.
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Next, by simple rearrangement, we find

a =
F�3(πy0 + 2e) cosα

π(2π2k − �3F cosα)
. (15)

Introducing Eq. (15) into Eq. (5), we obtain

y =
2(e�3F cos α + π3ky0)
π(2π2k − �3F cosα)

sin
πx

�
. (16)

The bending moment Mb acting on the humerus is
given as

Mb = F [(� − x) sinα − (e + y)cosα] .

Then by introducing Eq. (16) into the above rela-
tion,

Mb = F
{
(� − x)sinα

−
[
e +

2(e�3F cosα + π3ky0)
π(2π2k − �3F cosα)

sin
πx

�

]
cosα

}
.

(17)

If we assume that bending occurs only along the xoy
plane, we obtain normal bending stresses (σxb) af-
fecting the vertical section of the beam by using

∫∫
A

σxby∗dA = Mb ,

where y∗ is the ordinate of the section points (Figure
2) and A is the area of the cross section.

When stress distribution in the vertical section
of the beam is taken into account, the normal bend-
ing stress (σxb) can be calculated from the following
equation:

σxb =
Ey∗∫∫

A

Ey2∗dA
Mb,

or by using Eq. (17) we obtain

σxb =
EFy∗∫ ∫

A

Ey2∗dA

{
(� − x)sinα-

[
e +

2(F�3ecosα + π3ky0)
π(2π2k − F�3cosα)

sin
πx

�

]
cosα

}
. (18)

The total normal stresses (σxT ) in the beam, which consist of axial compressive stresses (Fcosα/A) and bending
stress (σxb), can be calculated from the following equation:

σxT =
F cosα

A
± EFy∗∫ ∫

A

Ey2∗dA

{
(� − x)sinα-

[
e +

2(F�3ecosα + π3ky0)
π(2π2k − F�3cosα)

sin
πx

�

]
cos α

}
. (19)

Calculation of Stresses in the Humerus Bone
as a Case Study

A person with a weight of 800 N is considered as
an example scenario for the case study. During the
pull-up motion of this person, one hand will carry
half of the weight, which is 400 N. We assume that
the cross section of the humerus bone is circular with
a radius (R) and its modulus of elasticity, E= 89 ×
104N/cm2, is constant along its length for simplifica-
tion of calculations (Liebowitz, 1972). However, the
modulus of elasticity changes at the cross section of
the bone according to the polar radius (r), as given
by the function

E = N

[
1 + n

( r

R

)2
]

,

where
r =

√
y2
∗ + z2. Taking into account the modu-

lus of elasticity of the humerus, N , its value is as-
sumed to be approximately equal to 45 × 104 N/cm2

(Liebowitz, 1972). Additionally, it has been assumed
that the parameter n = 1.00 to simplify calculations.

The dimensions of the humerus bone, which is
considered as a beam, are assumed to have the fol-
lowing values (Figure 2):

� = 22.50 cm, R = 1.00 cm, y0= 0.25 cm,
e =1.00 cm, α = arctan e

� ≈ 2.50, I = πR4

4
∼=

0.79cm4, and G = 400 N. Assuming ϕ1 = 250and m
= 1.25, we can find the force acting on the humerus
using Eq. (2):

F =F1 =400
cos

[
arctan(1.25 tan250)

]
sin [arctan(1.25 tan250) − 250]

≈ 3784 N

Taking into account that the elemental area is dA =
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rdrdω, y∗ = rsinω, and parameter k from Eq. (7) is

k = EI

�∫
0

sin2 πx

�
dx =

IE�

2
,

from Eq. (18), we find

σxb =
12(R2 + nr2)
πR6(3 + 2n)

y∗F

{
(� − x)sinα-

[
e +

2(e�2F cosα + 0.5π3EIy0)
π(π2EI − �2F cosα)

sin
πx

�

]
cosα

}
.

For points on only the xoy plane (z= 0) and at the humerus boundaries of y∗ = r = ±1, stresses can be given
as

σxb = ± 24
5π

3784
{

(22.5 − x)sinα-
[
1 +

2(22.52 × 3784× cosα + 0.5π3 × 90.104 × 0.79× 0.25)
π(π290.104 × 0.79− 22.52 × 3784× cosα)

sin
πx

22.5

]
cosα

}

or

σxb = ±5782 {(22.5− x)sinα- [1 + 0.58 sin(0.14x)] cosα} .

The total stress will be the sum of the bending stress
(σxb) calculated from the above equation and the
axial compressive stress (Fcosα/A=1200 N/cm2), as
given in Figure 3.

Figure 3. Total normal stress distribution along the
length of the humerus bone for m = 1.25 in
Eq. (1).

In general, the stress increases from the end of the
humerus bone near the elbow toward the end near
the shoulder. The stress reaches a maximum value
of 8000 N/cm2 near the shoulder end of the humerus
bone for the studied condition. As shown in Figure
3, this stress value is considerably high. However,
this result strongly depends on the value of m in Eq.
(1), as shown in Figure 4.

Figure 4. F/G variation as a function of the value of m.

To evaluate the results obtained from the method
presented in this study, a comparison is made relative
to previous related studies (Fung, 1990; Linde et al.,
1992; Anglin et al., 1999; Ozkaya and Nrodin, 1999;
Szivek et al., 2000; Currey, 2002; Au et al., 2005),
which neglect the effect of muscle straining. This
comparison is made below by applying the method
of the previous studies using the case study example
data from the present study.

The elbow region of the humerus (point D, Fig-
ure 1) is assumed to be fixed, although in actuality it
is a hinged joint. Therefore, the investigated case of
the humerus can be considered as a cantilever beam,
loaded with the force G at the free end, point B. Its
length, �, is 22.50 cm. The origin of the coordinate
axes is selected as point B. The x-axis is along the
humerus axis oriented toward the end, point D. The
force, G, has an angle of ϕ1 = 250 with respect to the
normal of the x-axis. The x-component of the force,
Gsinϕ1, occurs on the beam, resulting in a tension
of σx = (G/A) sinϕ1, where A represents the cross-
sectional area of the humerus, which is equal to πR2.
The normal component of force, G, with respect to
the axis of the beam is Gcosϕ1. This component
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causes a bending stress, which can be expressed as
σx = ± M/W. The bending moment, M, is xGcosϕ1.
Variation in the bending moment is linear along the
beam and reaches its maximum value at point D,
where x is equal to � and the section modulus, W,
is equal to πR3/4. The total stress is obtained by
superimposing the tension and bending stresses and
can be calculated with the following expression:

σmax =
G

πR2

(
4�

R
cos ϕ1 + sin ϕ1

)

=
400
π

(4 × 22.50× cos 25o + sin 25o)

= 10, 439.33N/cm2

This resulting stress state has a different char-
acter and maximum value relative to the results
of the method demonstrated in this study above.
The above resulting maximum stress value (∼=10,439
N/cm2), where strained muscles are neglected, is sig-
nificantly different from the result of the method
presented in this study (∼=8000 N/cm2). The differ-
ence between these 2 maximum stress values exceeds
20% and is clearly due to the neglect of the effect of
strained muscles by the previous studies’ approach.
The case presented in this study considering the ef-
fect of strained muscles better reflects actual condi-
tions.

Conclusion

The stresses exerted on the bones in a shoulder-hand
system during the pull-up motion onto a bar, a com-
mon fitness activity, due to both external loads and
strained muscles were evaluated in this study. The
maximum stress in the considered example was cal-
culated to be approximately 8000 N/cm2, which is
about 20% less than the stress calculated when mus-
cle straining was neglected. The difference between
these 2 maximum stress values represents the effect
of strained muscles, which was first taken into con-
sideration in this study.

During the design of an implant at the shoul-
der end of the humerus bone, the stress distribution
calculated in this study must be taken into consid-
eration, particularly with respect to the strength of
the bones. It is also necessary to take into account
the stress fluctuations in the human body occurring
during daily activities; fluctuating stresses acting on
an implant may create fatigue cracks at the shoulder
end of the humerus and, additionally, may impose
a high stress concentration factor due to shape and
cross-sectional size changes in the humerus bone. As
a result, the stress distribution in the humerus bone
calculated in this study may help in the appropriate
design of an implant for a humerus bone.
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