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Abstract

This work considers the analysis of a cracked infinite cylinder with a rigid inclusion. The material of the
cylinder is assumed to be linearly elastic and isotropic. The ends of the infinite cylinders are subjected to
axial tension. Solution of this problem can be obtained by superposition of solutions for an infinite cylinder
subjected to uniformly distributed tensile loads at infinity (I), and an infinite cylinder having a penny-shaped
rigid inclusion at z =0 and 2 penny-shaped cracks at z = ± L (II). General expressions for the perturbation
problem (II) are obtained by solving Navier equations using Fourier and Hankel transforms. Formulation of
the problem is reduced to a system of 3 singular integral equations. By using the Gauss-Lobatto integration
formula, these 3 singular integral equations are converted to a system of linear algebraic equations, which
are solved numerically.
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Introduction

Cylinders, like shafts, pins, bolts, screws, pipes, etc.,
are the most widely used machine elements with
axisymmetric geometries, and, due to singularities,
they have particular importance in fracture mechan-
ics. They may have discontinuities in the form of
holes, notches, cracks, or inclusions, which are very
important factors influencing stress distributions in
loaded elements. Stresses around these discontinu-
ities may reach very large values in small regions,
a phenomenon known as stress concentration. Fur-
thermore, stresses become infinite at the corners of
elements or the edges of cracks and inclusions. In
such cases, stress concentration cannot be defined
as a strength parameter, and it is necessary to con-
sider the stress distributions from a fracture mechan-
ics point of view. Fracture toughness, which is a
widely accepted fracture parameter, can be easily
calculated in terms of stress intensity factors. For
cracked semi-infinite or infinite cylinder configura-
tions subjected to external forces, it is possible to de-

rive closed-form expressions for stresses in the body,
assuming isotropic linear elastic material behavior.
For linear elastic materials, individual components of
stress, strain, and displacement are additive (super-
position). In many instances of analytical solutions,
the principle of superposition allows stress intensity
solutions for complex configurations to be built from
simple cases for which the solutions are well estab-
lished. In this context, the problem of a cracked
infinite cylinder with a rigid penny-shaped inclusion
has not been solved by the analytical method used
in this study.

Sneddon and Welch (1963) analyzed the distri-
bution of the stress in a long circular cylinder of
elastic material when it is deformed by the appli-
cation of pressure to the inner surfaces of a penny-
shaped crack situated symmetrically at the cen-
ter of the cylinder. The equations of the classical
theory of elasticity have been reduced to a Fred-
holm integral equation of the second kind. Ben-
them and Minderhoud (1972) solved the problem of a
solid cylinder compressed axially between rough rigid
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stamps. Gupta (1973) considered a semi-infinite
cylinder problem with a fixed short end. An ex-
act formulation of the problem in terms of a sin-
gular integral equation has been provided. Using
transform methods, the axisymmetric end-problem
for a semi-infinite elastic circular cylinder has been
reduced to a system of singular integral equations by
Agarwal (1978). As an application, an axisymmet-
ric solution for joined dissimilar elastic semi-infinite
cylinders under uniform tension has been given. Er-
dol and Erdogan (1978) studied an elastostatic ax-
isymmetric problem for a long thick-walled cylinder
containing a ring-shaped internal crack, or an edge
crack, using the transform technique. Nied and Er-
dogan (1983) analyzed a long hollow cylinder con-
taining an axisymmetric circumferential crack sub-
jected to general non-axisymmetric external loads.
The problem has been formulated in terms of a sys-
tem of singular integral equations, with the Fourier
coefficients of the derivative of the crack surface dis-
placement as density functions for a cylinder under
uniform tension, bending by end couples, or self-
equilibrating residual stresses. Isida et al. (1985)
made an analysis of an infinite solid containing 2
parallel elliptical cracks located in staggered posi-
tions. Xiao et al. (1996) investigated the stress in-
tensity factors of 2 penny-shaped cracks with differ-
ent sizes in a three-dimensional elastic solid under
uniaxial tension. A closed-form analytical solution
for the stress intensity factors on the boundaries of
the cracks was obtained when the center distance
between the 2 cracks is much larger than the cracks.
Leung and Su (1998) extended the two-level finite
element method (2LFEM) to the accurate analysis
of axisymmetric cracks, where both the crack geom-
etry and applied loads were symmetrical about the
axis of rotation. Chen (2000) evaluated stress inten-
sity factors in a cylinder with a circumferential crack
with an indirect method, the computing compliance
method. Lee (2001, 2002) made analyses of the stress
distribution in long circular cylinders of elastic ma-
terial, one containing a penny-shaped crack and the
other a circumferential edge crack, when each was
subjected to a uniform shearing stress. Meshii and
Watanabe (2001) presented the development of a
practical method, using prepared tabulated data, to
calculate the Mode I stress intensity factor for an
inner surface circumferential crack in a finite length
cylinder. The method was derived by applying the
author’s weight function for the crack based on the
thin shell theory. Selvadurai (2002) examined the

axial tensile loading of a rigid circular disc, which
was bonded to the surface of a half-space weakened
by a penny-shaped crack. Tsang et al. (2003) inves-
tigated the stress intensity factors of multiple penny-
shaped cracks in an elastic solid cylinder under ax-
ial tensile loading. The fractal-like finite element
method is employed to study the interaction of mul-
tiple cracks. An Eigen function expansion method
was presented to obtain three-dimensional asymp-
totic stress fields in the vicinity of the front of a
penny-shaped discontinuity, e.g., crack and anticrack
(infinitely rigid lamella), subjected to far-field tor-
sion (Mode III), extension/bending (Mode I), and
sliding shear/twisting (Mode II) loading (Chaudhuri,
2003).

This study considers the axisymmetric elasticity
problem for an infinite cylinder containing 2 concen-
tric penny-shaped cracks at z = ± L and a penny-
shaped rigid inclusion with virtually zero thickness
at z = 0. The ends of the infinite cylinder of radius A
at z = ±∞ are under the action of axial tensile loads
of uniform intensity p0. The material of the cylinder
is assumed to be linearly elastic and isotropic. The
surface of the cylinder is free of stresses. General ex-
pressions are obtained by using Hankel and Fourier
transforms on Navier equations. First, the bound-
ary conditions at the surface of the infinite cylinder
are satisfied. By using the boundary conditions of
the cracks and the rigid inclusion, formulation of the
problem is reduced to a system of 3 singular integral
equations. By using the Gauss-Lobatto integration
formula (Krenk, 1978), these singular integral equa-
tions are converted to a system of linear algebraic
equations, which are solved numerically. Variations
in Mode I and Mode II stress intensity factors at
the edges of the cracks, and the inclusion, probable
propagation angle, and the energy release rate for
the cracks are presented in graphical form.

Formulation of the problem

An axisymmetric, linearly elastic, isotropic, and in-
finite cylinder of radius A, containing 2 concentric
penny-shaped cracks of radius a symmetrically lo-
cated at z = ±L planes and a concentric penny-
shaped rigid inclusion of radius b with negligible
thickness at the symmetry plane z = 0 is considered.
Both ends of this infinite cylinder are subjected to
axial tensile loads of uniform intensity p0 at infinity
(Figure 1).
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Figure 1. Geometry and loading of the infinite cylinder.

For the linearly elastic, isotropic, and axisymmet-
ric elasticity problems, Navier equations can be writ-
ten as (Geçit, 1986)
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where u and w are displacements in r- and z-
directions in the cylindrical coordinate system κ =
3−4ν , and ν is the Poisson’s ratio. Necessary stress-
displacement relations can be listed as follows (Geçit,
1986):
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,
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τrz = µ(
∂u
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+

∂w

∂r
), (2a-c)

where σ and τ denote normal and shearing stresses,
and µ is the shear modulus. Solution for the infinite
cylinder having a rigid penny-shaped inclusion and
2 penny-shaped cracks, which is loaded at infinity,
is obtained by superposition of the following 2 prob-
lems: (I) an infinite cylinder subjected to uniformly
distributed axial tension of intensity p0 at infinity,
with no cracks or inclusion; (II) an infinite cylinder
with an inclusion and 2 cracks for which the load-
ing is the negative of the stresses at the location
of the cracks and displacements at the location of
the inclusion calculated from the solution of prob-
lem (I). General expressions of the displacement and
the stress components for the perturbation problem
with no loads at infinity can be obtained by adding
the general expressions of (II-i) an infinite cylinder
containing 2 penny-shaped cracks of radius a sym-
metrically located at z = ±L planes, (II-ii) an infi-
nite cylinder having a penny-shaped rigid inclusion
of radius b at the symmetry plane z = 0, and (II-
iii) an infinite cylinder without cracks and inclusion
under the action of arbitrary axisymmetric loading
(Figure 2). This is necessary in order for the expres-
sions to contain a sufficient number of unknowns so
that all of the boundary conditions can be satisfied.

General expressions for the infinite cylinder (0 ≤
r < A) problems may be adequately obtained from
infinite medium (0 ≤ r < ∞) solutions with appro-
priate boundary conditions imposed at r = A. Due
to symmetry about the z = 0 plane, it is sufficient to
solve the problem only in the upper half space z ≥ 0.
By these considerations, general expressions for the
sub-problems can be obtained from the solution of
Eqs. (1) and (2), which can be written in the form
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Figure 2. Addition of several solutions for the perturbation problem.

ui(r, z) =
1

2(κ + 1)

∞∫
0

{[(κ − 1− 2αL− 2αz)F1(α) + (1 + κ − 2αL− 2zα)F2(α)] e−α(L+z)

+ [(κ − 1− 2αL+ 2αz)F1(α)− (1 + κ − 2αL+ 2αz)F2(α)] e−α(L−z)
}

J1(αr)dα,

wi(r, z) =
−1

2(κ + 1)

∞∫
0

{ [(1 + κ + 2αL+ 2αz)F1(α) + (1− κ − 2αL− 2αz)F2(α)] e−α(L+z)

− [(1 + κ + 2αL− 2αz)F1(α) + (1− κ − 2αL+ 2αz)F2(α)] e−α(L−z)
}

J0(αr)dα, (3a,b)

σri(r, z) =
2µ

κ + 1

∞∫
0

{[(1− αL− αz)F1(α) + (2− αL− αz)F2(α)] e−α(L+z)

+ [(1− αL + αz)F1(α) − (2− αL+ αz)F2(α)] e−α(L−z)
}

α J0(αr)dα

+
µ

κ + 1
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0

{ [(1− κ + 2αL+ 2αz)F1(α) + (1 + κ − 2αL− 2αz)F2(α)] e−α(L+z)
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+ [(1− κ + 2αL− 2αz)F1(α) + (1 + κ − 2αL+ 2αz)F2(α)] e−α(L−z)
} J1(αr)

r
dα,

σzi(r, z) =
2µ

κ + 1

∞∫
0

{[(1 + αL+ αz)F1(α)− α(L + z)F2(α)] e−α(L+z)

+ [(1 + αL− αz)F (α)− α(L− z)G(α)] e−α(L−z)
}

α J0(αr)dα,

τrzi(r, z) =
2µ

κ + 1

∞∫
0

{ [α(L + z) F1(α) + (1 − αL− αz)F2(α)] e−α(L+z)

+ [−α(L+ z) F1(α)− (1− αL+ αz)F2(α)] e−α(L−z)
}

α J1(αr)dα, (4a-c)

where J0 and J1 are the Bessel functions of the first kind of order zero and one, respectively,
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such that fi(r) = 0 , (i = 1, 2) when (a < r < ∞), in (0 ≤ z ≤ L) for II-i,
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τrz ii(r, z) =
1

2(κ + 1)

∞∫
0

(1 + κ − 2αz)F3(α)e−α zαJ1(αr)dα, (8a-c)

where

F3(α) =

∞∫
0

f3(r)rJ1(αr)dr, (9)

τrz ii(r, 0+) − τrz ii(r, 0−) = f3(r), (0 ≤ r < ∞) (10)

f3(r) is the jump in the shearing stress τrz through the rigid inclusion and it is such that f3(r) = 0 when
(b < r < ∞), in (0 ≤ z < ∞) for II-ii, and

uiii(r, z) =
1
π

∞∫
0

[−c1I1(αr) + 2c2αrI0(αr)] cos(αz)dα,
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1
π

∞∫
0

{c1I0(αr)− 2c2 [(κ + 1)I0(αr) + αrI1(αr)]} sin(αz)dz , (11a,b)

σr iii(r, z) =
2µ
π
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{c1 [I1(αr)/r − αI0(αr)] +c2
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(κ − 1)αI0(αr) + 2α2rI1(αr)
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cos(αz)dα ,
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0
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{c1αI1(αr) − c2
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] }
sin(αz)dα, (12a-c)

where I0 and I1 are the modified Bessel functions of the first kind of order zero and one, respectively, and c1

and c2 are arbitrary constants in (0 ≤ z < ∞) for II-iii.
Now, the general expressions for the infinite medium containing 2 penny-shaped cracks and a penny-shaped

inclusion that is subjected to arbitrary axisymmetric loads (not at infinity) may be obtained when the individual
expressions are added:

uII = ui + uii + uiii,

wII = wi + wii + wiii, (13a,b)

σrII = σri + σrii + σriii,

σzII = σzi + σzii + σziii,
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τrzII = τrzi + τrzil + τrziii. (14a-c)

These expressions may give those for the perturbation problem for an infinite cylinder with a stress-free surface
if they are forced to satisfy the homogeneous boundary conditions

σrII(A, z) = 0, (0 ≤ z < ∞)

τrzII (A, z) = 0, (0 ≤ z < ∞) (15a,b)

which give

c1 = Aα {[(κ − 1)I0(αA) + 2AαI1(αA)]αE1 + [(κ + 1)I1(αA) + 2AαI0(αA)]E2} /d0 ,

c2 = −{[AαI0(αA) − I1(αA)]αE1 +AαI1(αA)E2} /d0 , (16a,b)

in which one may show that

E1 = 4

a∫
0

[d1 cos(αL)f1(t) + d2 sin(αL)f2(t)] tdt − (1/µ)

b∫
0

d3f3(t)tdt ,

E2 = 4

a∫
0

{
d4 cos(αL)f1(t) +

[
d5α + d6/A− (κ + 1)/2α2A2

]
sin(αL)f2(t)

}
tdt

−(1/µ)

b∫
0

{d4 + (κ + 1) [K0(αA) + K1(αA)/αA] I1(αt)/2}f3(t)tdt , (17a,b)

d0 = (κ + 1) [2 A2α2I2
0 (Aα)− (1 + κ + 2A2α2)I2

1 (Aα )] ,

d1 = AK0(αA)I1(αt)− tK1(αA)I0(αt) ,

d2 = AK0(αA)I0(αt)− tK1(αA)I1(αt) ,

d3 = d1 + (κ + 1)K1(αA)I1(αt)/2α ,

d4 = αAK1(αA)I1(αt)− αtK0(αA)I0(αt) + d3/A ,

d5 = AK1(αA)I0(αt)− tK0(αA)I1(αt) ,

d6 = d2 + (κ + 1)K1(αA)I0(αt)/2α , (18a-g)

K0 and K1 are the modified Bessel functions of the second kind of order zero and one, respectively. Then,
with the addition of the uniform solution (Artem and Geçit, 2002; Kaman, 2006; Toygar and Geçit, 2006),
general expressions for the problem of an infinite cylinder with 2 cracks (0 ≤ r < a , z = ±L), an inclusion
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(0 ≤ r < b , z = 0), and a stress-free lateral surface (r = A) that is subjected to uniaxial tension of intensity
p0 at z = ±∞ become

ucyl(r, z) =
3− κ

κ − 7
p0

2µ
r +

1
κ + 1

a∫
0

[d11(r, z, t)f1(t) + d12(r, z, t)f2(t)] tdt

+
1

µ(κ + 1)

b∫
0

d13(r, z, t)f3(t)tdt ,

wcyl(r, z) = − 4
κ − 7

p0

2µ
z +

1
κ + 1

a∫
0

[d21(r, z, t)f1(t) + d22(r, z, t)f2(t)] tdt

+
1

µ(κ + 1)

b∫
0

d23(r, z, t)f3(t)tdt , (19a,b)

σrcyl(r, z) =
µ

κ + 1

a∫
0

[d31(r, z, t)f1(t) + d32(r, z, t)f2(t)] tdt

+
1

κ + 1

b∫
0

d33(r, z, t)f3(t)tdt ,

σzcyl(r, z) = p0 +
µ

κ + 1

a∫
0

[d41(r, z, t)f1(t) + d42(r, z, t)f2(t)] tdt

+
1

κ + 1

b∫
0

d43(r, z, t)f3(t)tdt,

τrzcyl(r, z) =
µ

κ + 1

a∫
0

[d51(r, z, t)f1(t) + d52(r, z, t)f2(t)] tdt +
1

κ + 1

b∫
0

d53(r, z, t)f3(t)tdt , (20a-c)

where dij(r, z, t), (i = 1−5, j = 1−3) have long expressions in the form of infinite integrals containing Bessel
functions, etc. and are given in Kaman (2006).

Integral equations

The expressions for the stresses and the displacements, Eqs. (19) and (20), contain 3 unknown functions,fi(t) , ( i =
1 − 3). Since crack surfaces are free of stress and the rigid inclusion is assumed to be perfectly bonded to the
cylinder, the stress and the displacement expressions must satisfy the following conditions

σz(r, L) = 0, (0 ≤ r < a)
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τrz(r, L) = 0, (0 ≤ r < a) (21a,b)

on the crack and

u(r, 0) = 0, (0 ≤ r < b) (21c)

on the rigid inclusion. Eqs. (21a) and (21b) are stress type boundary conditions, while Eq. (21c) is a displace-
ment type, which is satisfied if

1
r

∂

∂r
[ru(r, 0)] = 0 (0 ≤ r < b) (21d)

is satisfied instead. Now, Eqs. (21a), (21b), and (21d) all are of the same (stress) type conditions.
Substituting Eqs. (19) and (20) in Eqs. (21a), (21b), and (21d), and noting that f1(t) and f3(t) are odd,

and f2(t) is even, the following singular integral equations may be obtained
a∫

−a

{f1(t) [1/(t − r) +M2(r, t) + |t|N11(r, t) + |t|S1(r, t)] +f2(t) [N12(r, t) + S2(r, t)] |t|} dt

+(1/2µ)

b∫
−b

f3(t) [N13(r, t) + S3(r, t)] |t|dt = −(κ + 1)π p0 /2µ, (−a < r < a)

a∫
−a

{f1(t) [N21(r, t) + S4(r, t)] |t| + f2(t) [1(t − r) + M1(r, t) + |t|N22(r, t) + |t|S5(r, t)]} dt

+(1/8µ)

b∫
−b

f3(t) [2N23(r, t) + S6(r, t)] |t|dt = 0, (−a < r < a)

a∫
−a

{f1(t) [N31(r, t) + S7(r, t)] + f2(t) [N32(r, t) + S8(r, t)]} |t| dt

+(1/2µ)

b∫
−b

f3(t) [−κ/(t − r)− κM2(r, t) + |t|N33(r, t)]dt

= (κ − 3)(κ + 1)π p0 /2µ(κ − 7), (−b < r < b) (22a-c)

where

Mi(r, t) = [mi(r, t) − 1] /(t − r) , (i = 1 , 2) , (23a,b)

m1(r, t) =




|t/r|E(|t/r|), |t| < |r|

E(|r/t|)t2/r2 − K(|r/t|)(t2 − r2)/r2, |t| > |r|
,

m2(r, t) =




|r/t|E(|t/r|) + K(|t/r|)(t2 − r2)/ |tr| |t| < |r|

E(|r/t|), |t| > |r|
(24a,b)
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in which Kand E are the complete elliptic integrals
of the first and the second kinds, respectively. The
kernels Nij(r, t) (i, j = 1 − 3) are in the form of
improper integrals,

Nij(r, t) =

∞∫
0

Kij(r, t, α)dα, (i, j = 1− 3) (25)

where the integrands Kij(r, t, α), (i, j = 1 − 3) to-
gether with Si(r, t), (i = 1− 8) containing complete
elliptic integrals are given in the Appendix. The 3
singular integral equations, Eqs. (22a), (22b), and
(22c) must be solved in such a way that the single-
valuedness conditions for the cracks and the equilib-
rium equation for the rigid inclusion

a∫
−a

fi(t)tdt = 0 , (i = 1, 2),

b∫
−b

f3(t)tdt = 0

(26a-c)

are also satisfied. In Eqs. (22a), (22b), and (22c),
the simple Cauchy kernel, 1/(t − r), becomes un-
bounded when t = r. The unknown functions,
fi(t) , ( i = 1 − 3), are expected to have integrable
singularities at the respective edges of cracks and the
inclusion. The singular behavior of these unknown
functions can be determined by writing

fi(t) = f∗
i (t) (a

2 − t2)−β , (i = 1, 2) , (0 < Re(β) < 1)

f3(t) = f∗
3 (t) (b

2 − t2)−γ , (0 < Re(γ) < 1)
(27a-c)

where f∗
i (t) , (i = 1−3) , are Hölder-continuous func-

tions (Muskhelisvili, 1953) in the respective inter-
vals (−a, a) and (−b, b). β and γ are unknown con-
stants, which can be calculated by examining the

integral equations, Eqs. (22a) and (22b) near the
ends r = ∓a, and Eq. (22c) near the ends r = ∓b.
By substituting Eq. (27) in Eqs. (22a), (22b), and
(22c), calculating the integrals near r = ∓a and
r = ∓b with the help of the complex function tech-
nique given in Muskhelishvili (1953), following a pro-
cedure similar to that given in Cook and Erdogan
(1972), one can obtain the following characteristic
equations:

cot(πβ) = 0, (0 ≤ Re(β) < 1) (a < A) (28a)

at the edge r = a , z = L of the penny-shaped
crack,

cot(πγ) = 0, (0 ≤ Re(γ) < 1) (b < A) (28b)

at the edge r = b , z = 0 of the penny-shaped in-
clusion. The acceptable numerical value for β is 1/2
from Eq. (28a). This is the very well known re-
sult for an embedded crack tip in a homogeneous
medium (Cook and Erdogan, 1972; Erdol and Erdo-
gan, 1978; Artem and Geçit, 2002; Toygar and Geçit,
2006). Similarly, Eq. (28b) gives γ = 1/2, which is
in agreement with previous results (Erdogan et al.,
197n; Gupta, 1974; Nied and Erdogan, 1983; Artem
and Geçit, 2002; Yetmez and Geçit, 2005; Toygar
and Geçit, 2006).

Solution of integral equations

The integral equations will be expressed in terms
of non-dimensional quantities. Defining non-
dimensional variables φ and ψ on the crack by

r = aψ, t = aφ, (−a < (r, t) < a , −1 < (ψ, φ) < 1) (29a,b)

and η and ε on the inclusion by

r = bε, t = bη, (−b < (r, t) < b, −1 < (ε, η) < 1) (30a,b)

the system of singular integral equations, Eqs. (22) and (26), take the following form

1∫
−1

{
F1(φ) (1− φ2)−1/2

[
1/(φ− ψ) +M2(ψ, φ) + |φ|N11(ψ, φ) + |φ|S1(ψ, φ)

]

+F2(φ) (1− φ2)−1/2
[
N

12
(ψ, φ) + S2(ψ, φ)

]
|φ|} dφ
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−
1∫

−1

F3(η) (1− η2)−1/2
[
N13(ψ, η) + S3(ψ, η)

]
( |η| /κ)dη = π(κ + 1)/ κ, (−1 < ψ < 1)

1∫
−1

{
F1(φ) (1− φ2)−1/2

[
N21(ψ, φ) + S4(ψ, φ)

]
|φ|

+ F2(φ) (1− φ2)−1/2
[
1/(φ − ψ) + M1 (ψ, φ) + |φ|N22(ψ, φ) + |φ|S5(ψ, φ )]

}
dφ

−
1∫

−1

F3(η) (1− η2)−1/2
[
N23(ψ, η) + S6(ψ, η)

]
(|η| /κ)dη = 0, (−1 < ψ < 1)

1∫
−1

{
F1(φ) (1 − φ2)−1/2

[
N31(ε, φ) + S7(ε, φ)

]
+ F2(φ) (1− φ2)−1/2

[
N32(ε, φ) + S8(ε, φ)

]}
|φ| dφ

+

1∫
−1

F3(η) (1 − η2)−1/2
[
1/(η − ε) +M2(ε, η)− (|η| /κ)N33(ε, η)

]
dη

= 2π(κ − 3) (κ + 1)/(7− κ)κ, (−1 < ε < 1) (31a-c)

1∫
−1

Fi(φ) (1− φ2)−1/2φ dφ = 0 , (i = 1− 3), (32a-c)

where

Fi(φ) = −2µ (1− φ2)1/2fi(aφ)/κ p0 , (i = 1, 2), F3(η) = (1− η2)1/2f3(bη)/p0, (33a-c)

M i (i = 1, 2) , N ij (i, j = 1− 3), Si (i = 1− 8) are dimensionless kernels, as defined by Kaman (2006). The
integrals in Eqs. (31) and (32) may be calculated by the use of the Gauss-Lobatto integration formula (Krenk,
1978; Artem and Geçit, 2002). Then, Eqs. (31) and (32) may be put into the form

n/2∑
i=1

Ci

{
F 1(φi)

[
m4(ψj , φi) + φiN11(ψj , φi) + φiS1(ψj, φi)

]

+F2(φi)
[
N12(ψj , φi) + S2(ψj , φi)

]
φi −F3(ηi)

[
N13(ψj , ηi) + S3(ψj, ηi)

]
(ηi/κ)

}

= (κ + 1)/κ, (j = 1, ..., n/2)

n/2∑
i=1

Ci

{
F1(φi)

[
N21(ψj , φi) + S4(ψj , φi)

]
φi
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+F2(φi)
[
m3(ψj , φi) + φiN22(ψj , φi) + φiS5(ψj, φi)

]

− F3(ηi)
[
N23(ξj , ηi) + S6(ξj , ηi)

]
(η2

i /κ)
}
= 0, (j = 1, ..., n/2)

n/2∑
i=1

Ci

{
F 1(φi)

[
2N31(εj , φi) + 2S7(εj , φi)

]
φi + F2(φi)

[
2N32(εj , φi) + 2S8(εj , φi)

]
φi

+F3(ηi)
[
m4(εj , ηi) − (2ηi/κ)N33(εj , ηi)

]}
= 2(κ − 3) (κ + 1)/(7− κ)κ,

(j = 1, ..., n/2) (34a-c)

where

m3(ψj, φi) =
{ [

2φi/(φ2
i − ψ2

j )
]
E(φi/ψj) φi < ψj[

2φ2
i /(φ

2
i − ψ2

j )ψj

]
E(ψj/φi)− (2/ψj) K(ψj/φi) φi > ψj

,

m4(εj , ηi) =
{

(2/εj)K(ηi/εj) +
[
2εj/(η2

i − ε2
j )

]
E(ηi/εj) ηi < εj[

2ηi/(η2
i − ε2

j )
]

E(εj/ηi) ηi > εj
, (35a,b)

φi, ηi = cos [(i − 1)π/(n − 1)] , (i = 1, ..., n)

ψj, εj = cos [(2j − 1)π/(2n − 2)] , (j = 1, ..., n− 1) (36a,b)

C1 = Cn = 1/(2n− 2), Ci = 1/(n− 1). (i = 2, ..., n− 1) (37)

Note here that Eqs. (32a) and (32c) are automati-
cally satisfied since F 1(φ) and F3(η) are even func-
tions. The system of equations, Eq. (34), contains
3n/2 equations for 3n/2 unknowns, Fj(φi) , (i =
1, ..., n/2; j = 1 − 3). However, if n is chosen to
be an even integer, it can be shown that Eq. (34b),
corresponding to ψn/2 = 0, is satisfied automatically
since

τrz(0, L) = 0. (38)

The missing equation, Eq. (34b), for j = n/2, is
complemented by Eq. (32b), which can be converted
to

n/2∑
i=1

CiφiF3(φi) = 0. (39)

It must be noted here that calculation of the coef-
ficients for j = n/2, which corresponds to r = 0 in

Eqs. (34a) and (34c) requires special attention. In-
finite integrals for kernels Nij(r, t), (i, j = 1− 3) are
calculated numerically by using the Laguerre inte-
gration formula (Abramowitz and Stegun, 1965).

Numerical Results

The system of linear algebraic equations for the
particular problems defined in the previous sec-
tion is solved and the values of unknown functions
Fj(φi) , (i = 1, ..., n/2 ; j = 1− 3) can be calculated
at discrete collocation points. Then, stress distri-
butions, stress intensity factors at the edges of the
crack, and the inclusion for an infinite cylinder can
be calculated numerically. From the viewpoint of
fracture, of particular importance are the stress in-
tensity factors. Stresses become infinitely large at
the edges of the crack and the inclusion. In this case,
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stress states around those edges can be expressed in
terms of the power of stress singularity and stress in-
tensity factors. The normal (Mode I) and the shear
(Mode II) components of the stress intensity factors,
k1a and k2a, at the edge of the crack may be defined
as

k1a = lim
r→a

[2(r − a)] 1/2
σz(r, L),

k2a = lim
r→a

[2(r − a)] 1/2
τrz(r, L). (40a,b)

From Eqs. (20b) and (20c), one may write the ex-
pressions for the stress components appearing in Eq.
(40), separate the singular parts, calculate the inte-
grals by the method given in Muskhelishvili (1953),
substitute in Eq. (40), and obtain

k1a =
κ

(κ + 1)
p0

√
a F 1(1) (42)

from which

k1a =
k1a

p0
√

a
=

κ

(κ + 1)
F 1(1) (43)

is obtained for the normalized Mode I stress intensity
factor at the edge of the penny-shaped crack. One
can similarly write

k2a =
κ

(κ + 1)
F2(1) (44)

for the normalized Mode II stress intensity factor at
the edge of the penny-shaped crack.

Mode II stress intensity factor k2b at the edge of
the rigid inclusion may be defined as

k2b = lim
r→b

[2(b − r)] 1/2
τrz(r, 0), (45)

and can be calculated in the form

k2b =
√

b

2
p0F3 (1). (46)

Then, the normalized stress intensity factor becomes

k2b =
k2b

p0

√
b
=

F3(1)
2

. (47)

For the sake of generalizing the use of the numerical
results, dimensionless geometrical parameters a/A,
b/A, and L/A normalized by the radius of the cylin-
der are used. Since the normalized stress intensity

factors are calculated, particular numerical values
are not selected for µ and p0, and ν is used to de-
scribe the material. Some of the calculated results
for the following 5 cases are shown in Figures 3-15.

1. Two parallel penny-shaped cracks in an infi-
nite solid:

Figure 3 shows the normalized Mode I and Mode
II stress intensity factors k1a and k2a at the edges
of 2 parallel penny-shaped cracks in an infinite solid
defined by Eqs. (42) and (43). These figures are
produced for the purpose of comparison with the re-
sults given by Isida et al. (1985). k1a increases and
k2a decreases with increasing L/a ratio, and remains
unchanged after L/a ∼= 4. As L/a goes to infinity,
k1a goes to 2/π and k2a goes to zero, which are the
values for a single penny-shaped crack. The results
seem to be in very good agreement with those given
by Isida et al. (1985).

2. Infinite cylinder with a central rigid inclusion:
Figure 4 shows the normalized Mode II stress in-

tensity factor k2b at the edge of the rigid inclusion
defined by Eq. (46). As can be seen from this figure,
k2b is negative and it increases with increasing ν , but
decreases with increasing b/A ratio. Note that k2b is
zero when ν = 0. For this situation, there is no Pois-
son’s effect. Consequently, the constraint due to the
rigid inclusion disappears and the shearing stresses
induced by the inclusion vanish. For b/A= 1, the
problem reduces to that of a semi-infinite cylinder
with a fixed end at z = 0 (Gupta, 1974; Kaman
and Geçit, 2006). In this special case, the power of
singularity γ is < 0.5 and the stress intensity fac-
tor calculated on the basis of γ = 0.5 must tend to
zero as b/A→1. On the other hand, when b/A→0,
the problem reduces to that of a finite rigid penny-
shaped inclusion in an infinite medium.

3. Infinite cylinder with a single crack:
Figure 5 shows the normalized Mode I stress in-

tensity factor k1a at the edge of a single transverse
penny-shaped crack in an infinite cylinder, together
with the results given in Benthem and Koiter (1973),
Leung and Su (1998), and Tsang et al. (2003) for
comparison. The results seem to agree with the pre-
vious ones, the best agreement being with Benthem
and Koiter (1973). The limiting value of k1a for
a/A→0 is 2/π, which is the value for an infinite
medium, and it increases with increasing crack ra-
dius.
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Figure 3. Normalized Mode I k1a and Mode II k2a stress intensity factors at the edge of 2 parallel penny-shaped cracks
in an infinite solid.
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4. Infinite cylinder with 2 parallel cracks:
Figure 6 shows k1a at the edges of 2 parallel

penny-shaped cracks in an infinite cylinder. k1a

is almost insensitive to ν . In most cases, k1a in-
creases with increasing a/A and/or L/A ratios. As
L/A → ∞, the infinite cylinder problem with 2
penny-shaped cracks becomes similar to that of an
infinite cylinder with a central crack at the z = 0
plane. Note that k1a converges to 2/π as a/A→0
for fixed values of L/A.

Figure 7 shows variation in k2a at the edges of
2 parallel penny-shaped cracks in an infinite cylin-
der for ν = 0.3. From this figure, one may conclude
that k2a increases with increasing crack radius. k2a

decreases as the cracks move away from each other.
Note also that k2a converges to zero as a/A→0 for
fixed values of L/A.

In most fracture analyses, approaches based on
energy considerations are used with some variation
(Geçit, 1988). A crack is claimed to propagate if the
rate of release of the stored energy per unit growth
of the crack exceeds the rate of change of the surface

energy required by the new surfaces. The energy re-
lease rate for the crack may be calculated in the form
(Erdogan and Sih, 1963; Geçit, 1988),

∂U

∂a
=

π2a

µ
( k2

1a + k2
2a ) (48)

where U is the strain energy. Figure 8 shows the
dimensionless energy release rate

w =
µ

π2a2p2
0

∂U

∂a
(49)

for one crack when ν = 0.3. Note that w is larger
for larger L/A ratios, i.e. when interaction between
the 2 cracks is less. w starts with the value 4/π2,
which is the value for a single penny-shaped crack in
an infinite medium:

k1a =
2
π

p0

√
a , k2a = 0 ; w =

4
π2

(50)

for a/A→0 and increases significantly with increas-
ing a/A ratio.
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Figure 7. Normalized Mode II stress intensity factor k2a at the crack edge, when v = 0.3.
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If the material of the cylinder is brittle, crack
propagation may be expected to take place, as sug-
gested by Erdogan and Sih (1963), in a direction per-
pendicular to the maximum cleavage stress, which is
defined by

k2a [1− 3 cos(θ)] − k1a sin(θ) = 0,

3k2a sin(θ) − k1a cos(θ) < 0. (51a,b)

Figure 9 shows the variation in the probable
cleavage angle θ at the edge of the penny- shaped
crack at the z = L plane, when v = 0.3. As can
be seen in this figure, the 2 cracks propagate away
from each other, a tendency that is more pronounced
when the cracks are closer to each other. As a/A→0,
θ → 0 for all fixed values of L/A since very small
cracks may be thought of as if they are far from all
surrounding effects and proceed within their planes.

5. Infinite cylinder with a central rigid inclusion
and 2 parallel cracks:

Variation in the normalized Mode I stress inten-
sity factor k1a at the edges of penny-shaped cracks
with a/A is shown in Figure 10, when b = 0.5A. It

seems that k1a assumes its minimum value around
a = 0.5A. This effect is most pronounced for larger
values of ν and smaller values of L/A. Relatively
high stresses around the edge of the rigid inclusion
are responsible for this behavior. It is obvious that
the interaction between the rigid inclusion and the
cracks is greater when the cracks are closer to the
inclusion. The effect of the inclusion is greater for
larger ν . In addition to the interaction, k1a increases
as the crack radius increases. Figure 11 shows varia-
tion in k1a with b/A, when a = 0.5A. Maximum val-
ues of k1a are realized at b ∼= 0.8A for a = L = 0.5A.

Figures 12 and 13 show variation in the normal-
ized Mode II stress intensity factor k2a at the edges
of the cracks. In Figure 12, variation in k2a with
a/A, when b = 0.5A is given. k2a converges to
zero as a/A→0 for fixed values of L/A is negative,
and its magnitude increases as the crack radius a
and/or crack distance L increase(s) for b = 0.5A
and ν = 0.3. In Figure 13, variation in k2a with
b/A is shown for a constant crack radius a = 0.5A
and L = 0.5A for several values of ν . As can be
seen in Figure13, k2a is always negative. Relatively
small variation for smaller values of ν and consider-
able variation for larger values of ν are observed.
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Figure 9. Probable crack propagation angle θ, when ν = 0.3.
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In Figure 14, variation in k2b with a/A is shown,
when b = L = 0.5A. It is observed that k2b changes
sign from negative to positive as a/A increases. For
very small values of a/A, the numerical values given
in Figure 4 for b = 0.5A are recovered. Figure 15
shows variation in k2b with b/A, when a = 0.5A and
ν = 0.3. As can be seen in this figure, k2b increases
as b/A increases until b ∼= 0.75A; then it starts de-
creasing with further increases in b/A for relatively
small values of L/A, L/A <∼ 1. For greater values of
L/A, k2b decreases monotonically as b/A increases.
For b/A= 1, the problem reduces to that of a semi-
infinite cylinder with a fixed end at z = 0, containing
a penny-shaped crack at z = L (Kaman and Geçit,
2006). In this special case, the power of singularity
γ is > 0.5 and the stress intensity factor calculated
on the basis of γ = 0.5 must tend to zero as b/A→1.

Conclusions

From the formulation and the presented figures, the
following conclusions may be deduced:

1. Singularity at the edge of an internal crack or
an internal rigid inclusion is 1/2.

2. The Mode II stress intensity factor k2b at the

edge of an internal rigid inclusion in an infi-
nite cylinder is negative and it increases with
increasing ν .

3. Mode I and Mode II stress intensity factors k1a

and k2a at the edges of 2 parallel penny-shaped
cracks in an infinite cylinder are insensitive to
ν (except when a → A), but they increase as
a/A increases and/or L/A decreases.

4. There is considerable interaction between the
cracks and the rigid inclusion when ν is large
and the cracks are close to the rigid inclusion.

Nomenclature

a radius of penny-shaped cracks
A radius of cylinder
b radius of penny-shaped inclusion
ci arbitrary integration constants
Ci weighting constants of the Gauss-

Lobatto polynomials
f1(r), f2(r) crack surface displacement derivatives
f3(r) shear stress jump on rigid inclusion
f∗

i (t) Hölder-continuous functions on cracks
and inclusion

Fi(α) Hankel transforms of fi(r)
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Fi normalized Hölder-continuous
functions on cracks and inclusion

Fi normalized bounded functions
on cracks and inclusion

I0, I1; K0 , K1 modified Bessel functions of the
first and second kinds of order
zero and one

J0, J1 Bessel functions of the first kind
of order zero and one

k1a, k2a Mode I and II stress intensity
factors at the edge of crack

k1b, k2b Mode I and II stress intensity
factors at the edge of inclusion

k1a, k2a normalized Mode I and II stress
intensity factors at the edge of
crack

k1b, k2b normalized Mode I and II stress
intensity factors at the edge of in-
clusion

K, E complete elliptic integrals of the
first and the second kinds

Kij integrands of the kernels Nij

L distance between cracks and in-
clusion

m(r, t), m∗(r, t) kernels

mi, Mi, Ri, Si kernels
Nij kernels of the integral equa-

tions
p0 intensity of the axial tensile

load
r, z radial and axial cylindrical

coordinates
t integration variable
u, w displacement components in

r- and z-directions
U strain energy
w normalized energy release

rate
α Fourier and Hankel transform

variable
β, γ powers of singularity at the

edge of cracks and inclusion
η, ε ; φ, ψ normalized variables on inclu-

sion and cracks
θ probable crack propagation

angle
κ 3− 4ν
µ shear modulus of elasticity
ν Poisson’s ratio
σ, τ normal and shearing stresses
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Appendix

The expressions for the integrands Kij(r, t, α)(i, j = 1− 3) appearing in Eq. (25) are as follows

K11(r, t, α) =
2α
d0

[
tαg7H00 + (2g5 − g1)H01 − 2trα2H10 + rαg5H11

]
c2
L , (A.1)

K12(r, t, α) =
2

Ad0

[
Aαg1(2g4 − 1)H00 + Atα2g7H01 + Arα2g5H10 − 2Atrα3H11

+(κ1 + 2g3)AαR0 −κ1A1(rαR1 + 2R0)] cLsL , (A.2)
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K13(r, t, α) = − α

2d0
[2tαg7H00 + g9H01 −4trα2H10 + 2rαg6H11

]
cL , (A.3)

K21(r, t, α) =
2α
d0

[
−2trα2H00 + rαg5H01 + tαg5H10 − g1H11

]
clsL , (A.4)

K22(r, t, α) =
2α
Ad0

[
Arαg5H00 − 2Atrα2H01 − Ag1H10 + Atαg5H11 + κ1(AA0R1 −rA1R0)] s2

L , (A.5)

K23(r, t, α) =
α

2d0

[
4trα2H00 − 2rαg6H01 − 2tαg5H10 + g8H11

]
sL , (A.6)

K31(r, t, α) =
1
d0

[
−2tα2g6H00 + αg8H01 + 2tαg2T0 − g2g5T1

]
cL , (A.7)

K32(r, t, α) = − 1
Aαd0

[
−Aα2g1(2 + κ1 g4) H00 + 2Atα3(g1 + g3 + κ1g4)H01+

Aαg2g5T0 − 2Atα2g2T1 − κ1g2A1 + κ2
1αR0A1 +Aα2(2κ1 − g3)R0A0

]
sL , (A.8)

K33(r, t, α) =
1
2d0

{
2tα2g6H00 − [g1 + 2κ1(κ + g3 + g5)]H01 − 2tαg2T0 + g2g6T1

}
, (A.9)

where

κ1 = κ + 1 , κ2 = (κ − 1)2 , κ3 = κ − 3 , cL = cos(αL) , sL = sin(αL) , (A.10)

g1 = κ1 + 2A2α2, g2 = 4αR0 + 2rα2R1, g3 = 2A2α2A0K0, g4 = A1K1, g5 = g3 + g1g4 ,

g6 = g5 + κ1 , g7 = g5 − 4 , g8 = 2 g1 + κ1g5 , g9 = 2g1 − κ3g3 + κ2g1g4, (A.11)

Hij = RiTj , (j = 0, 1), Ri = Ii(rα) , Ti = Ii(tα) , Ai = Ii(Aα) , Ki = Ki(Aα) , (i = 0, 1) (A.12)
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