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Abstract

A technique is presented in order to evaluate the probability of failure in analytical form instead of
approximation methods like FORM/SORM and no series expansion is involved in this expression. This
technique is based on the Finite Element Method to obtain the expression of the response of stochastic
systems, and the transformation of random variables to obtain the probability density function of the
response. The transformation technique evaluates the probability density function (pdf ) of the system
output by multiplying the input pdf by the Jacobian of the inverse mechanical function. This approach has
the advantage of giving directly the whole density function of the response in closed form, which is very
helpful for reliability analysis.

Key words: Finite element method, Probabilistic methods, Reliability analysis, Sensitivity, Transformation
method.

Introduction

Mechanical modeling of physical systems is often
complicated by the presence of uncertainties. The
implications of these uncertainties are particularly
important in the assessment of reliability analysis.
Even though significant effort may be needed to in-
corporate uncertainties into the modeling process,
this could potentially result in the provision of useful
information that can help in decision-making.

For several decades, the theory of probability has
been used in mechanics to model the random struc-
tural properties (materials, geometry, boundary con-
ditions etc.) and phenomena (turbulence, seismic
wave, loads etc.) acting on mechanical systems. The
probabilistic approach takes into account the uncer-
tainties in the model data in order to improve the
robustness of the forecasts and optimized configura-
tion. The structural reliability has become a disci-
pline of international interest, addressing issues such
as performance-based cost-safety balancing (Procac-
cia and Morilhat, 1996).

In this work, a proposed technique is presented in
order to evaluate the stochastic mechanical response,
e.g., the probabilistic and statistical characteristics
of the response of stochastic mechanical system (a
mechanical system with an uncertain parameter like
Young’s modulus). The most important probabilis-
tic characteristic of a stochastic system is the Prob-
ability Density Function (pdf ) because on one hand
the evaluation of other characteristics (mean, stan-
dard deviation etc.) is based on it, and on the other
hand, it is very helpful for optimization of structure,
reliability and fatigue analysis. Unfortunately, we
do not have in the literature a deterministic method
that gives us the probability density function of a
stochastic mechanical system. Our method is based
on the combination of the probabilistic transforma-
tion methods (PTM) for a random variable (e.g.,
Young’s modulus or load) and the deterministic finite
element method (FEM). The probabilistic transfor-
mation technique evaluates the Probability Density
Function (pdf ) in closed form of the system output
by multiplying the input pdf by the Jacobian of the
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inverse mechanical function.

Reliability analysis

The problem of reliability analysis of stochastic me-
chanical systems is of central importance in the
safety assessment of structures. In a stochastic sys-
tem, a large number of random variables influence
the performance of the system, e.g., Young’s modu-
lus and external loads. The performance of the sys-
tem is evaluated by a best-estimate code. Consider
a performance criterion Y of the system depending
on the input variables X1, X2, . . . ,X n the function
Y = g(X1 , X2, . . . ,X n) is a random variable to be
determined.

In order to get information about the uncertainty
of Y , a number of FE runs have to be performed. For
each of these runs, all identified uncertain parame-
ters vary simultaneously.

According to the analysis of the FE results, the
uncertainty in the response can be evaluated either
in the form of an uncertainty range or in the form of
a probability density function (pdf ).

Uncertainty range

A 2-sided confidence interval [m,M ] of a response Y
for a fractile α and a confidence level β is given by

P {P (m ≤ Y ≤ M) ≥ α} ≥ β,

Such a relationship means that one can affirm, with
at the most (1-β), percent of possible error that at
least α percent of the response Y lie between the val-
ues m and M (Glaeser, 2000). To calculate the lim-
its m andM , the technique usually used is a method
of random simulation combined with the formula of
Wilks (1941).

The advantage of this technique is that the num-
ber of code runs needed is independent of the num-
ber of uncertain parameters. However, for reliability
evaluation, this method is not very useful because it
is impossible to interpret the 2 levels of probability
(α and β) in terms of reliability value for the system.

Probability density function

The uncertainty evaluation in the form of a pdf gives
richer information than a confidence interval. Once
the pdf of the system response is determined, the re-
liability can be directly obtained for a given failure

criterion. However, the determination of this dis-
tribution can be expensive in computing time. The
following paragraphs describe the various methods
available for this evaluation.

Monte-carlo simulation The Monte-Carlo met-
hod (Rubenstein, 1981; Devictor, 1996) is used to
build the pdf, as well as to assess the reliability of
components or structures or to evaluate the sensitiv-
ity of parameters. Monte-Carlo simulation consists
of drawing samples of the basic variables according
to their probabilistic characteristics and then feeding
them into the performance function. In this way, a
sample of response {Y j , j = 1,..,N} is obtained.

The main advantage of the Monte-Carlo method
is that it is valid for static, dynamic, and proba-
bilistic models with continuous or discrete variables.
The main drawback is that it often requires a large
number of calculations and can be prohibitive when
each calculation involves a long and onerous com-
puter time.

Response surface method To avoid the problem
of long computer time in the Monte-Carlo method,
it can be interesting to build an approximate math-
ematical model called response surface.

Experiments are conducted with design variables
X1, X2, . . . ,X n a sufficient number of times to define
the response surface to the level of accuracy desired.
Each experiment can be represented by a point with
coordinates x1j, x2j, . . . ,xnj in an n-dimensional
space. At each point, a value of yi is calculated.
The basic response procedure is to approximate by
a simple mathematical model such as an nth order
polynomial with undetermined coefficients.

When a response surface has been determined,
the system reliability can be easily assessed with
Monte-Carlo simulation using the approximate
mathematical model, yet this response surface must
be qualified. The practical problems encountered by
the use of the response surface method are in the
analysis of strongly nonlinear phenomena where it is
not obvious to find a family of adequate functions
and in the analysis of discontinuous phenomena. El-
Tawil et al. (1990, 1991) described the adaptive na-
ture of these methods.

FORM/SORM

We present now specific usable methods for a direct
evaluation of reliability without the need to define
the pdf of the system performance.
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The performance function of a stochastic system,
according to a specified mission, is given by

M = performance limit – response indicator =
g(X 1, X2, . . . ,X n) in which the Xi (i=1, . . . ,n)
are the n basic random variables (input parameters)
with g(.) being now the functional relationship be-
tween the random variables and the failure of the
system. The performance function can be defined
such that the limit state or failure surface is given
by M = 0. The failure event is defined as the space
where M < 0, and the success event is defined as
the space where M > 0. Therefore, a probability of
failure can be evaluated by the following integral:

Pf =
∫ ∫

...

∫
fX(x1, ..., xn)dx1...dxn, (1)

where fX is the joint density function of x1x2, . . . ,
xn, and the integration is performed over the region
where M < 0. As each of the basic random variables
has a unique distribution that interacts with the oth-
ers, the integral (1) cannot be easily evaluated. Two
types of methods can be used to estimate the prob-
ability of failure: Monte-Carlo simulation and the
approximate methods (FORM/SORM).

Direct Monte Carlo: simulation techniques can
be used to estimate the probability of failure defined
in Eq. (1). Monte-Carlo simulation (Figure 1) con-
sists of drawing samples of the basic variables ac-
cording to their probabilistic characteristics and then
feeding them into the performance function. An esti-
mate of the probability of failure Pf (Sundararajan,
1995) can be found by

Pf =
Nf

N
,

where Nf is the number of simulation samples in
which g(.) < 0, and N is the total number of sim-
ulation samples. As N approaches infinity, Pf ap-
proaches the true probability of failure.

Figure 1. Reliability assessment by Monte-Carlo simula-
tion.

The first and second order reliability methods
(FORM/SORM) consist of 3 steps (Figure 2):

a. The transformation of the space of the basic
random variables X1 , X2, . . . ,X n into a space of
standard normal variables.

b. The search (in this transformed space) of the
point of minimum distance from the origin on the
limit state surface (this point is called the design
point).

c. an approximation of the failure surface near
the design point:

FORM (First Order Reliability Method) consists
of approaching the surface of failure by a hyper plane
tangent to the failure surface at the design point
(Madsen and Ditlevsen, 1986). Then an estimate
of the failure probability is obtained by

Pf = Φ(−β),

where Φ is the cumulative Gaussian distribution of
the standard normal law and β is the reliability in-
dex according to Hasofer and Lind. The precision of
this approximation depends on the non-linearity of
the failure surface.

If the linear approximation is not satisfactory,
more precise evaluations can be obtained from ap-
proximations to higher orders of the failure surface at
the design point. The approximation by a quadratic
surface at the design point is called SORM (Second
Order Reliability Method) (Melchers, 1999). The
corresponding formula uses the knowledge of the (q-
1) principal curves κi of the failure surface at the
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design point:

Pf ≈ Φ(−βHL)
N−1∏
i=1

1√
(1 + βHlκi)

,

This result is known as asymptotically exact in the
sense that the approximation of the failure proba-
bility obtained is better for large reliability indexes.
The computing time is influenced by the calculation
of the matrix of the second-order derivatives.

Figure 2. Reliability assessment with FORM/SORM
methods.

The main drawbacks of FORM and SORM are
that the mapping of the failure function onto a stan-
dardized set and the subsequent minimization of the
function involve a significant computational effort for
nonlinear black box numerical models. In addition,
simultaneous evaluation of probabilities correspond-
ing to multiple failure criteria would involve signifi-
cant additional effort. Furthermore, these methods
impose some conditions on the joint distributions of
the random parameters that limit their applicability.

Proposed Technique FEM-PTM

The theory of the Probabilistic Transformation
Method (PTM) is based on the following theorem
(Soong, 1973; Hogg, 1989; Papoulis, 2002):

Theorem: Suppose that X is a continuous ran-
dom variable with pdf fX(x) and A ⊂ � is the
one-dimensional space wherefX (x) > 0 (differen-
tiable and monotonic). Consider the random vari-
able Y = u (X), where y = u (x) defines a one-to-one
transformation that maps the set A onto a set B ⊂ �
so that the equation y = u (x) can be uniquely solved
for x in terms of y, say x = u−1 (y). Then, the pdf
of Y is

fY (y) = fX
[
u−1 (y)

]
· |J | , y ∈ B

where J = dx
dy = du−1(y)

dy is the transformation Jaco-
bian, which must be continuous for all points y ∈ B.

The proposed technique is a combination of the
deterministic finite element method and the random
variable transformation technique. In this technique,
the differential equation is solved firstly using the
deterministic theory of finite element, which yields
accurate nodal solutions. These solutions are then
used to obtain the approximate pdf using the ran-
dom variable transformation between the input ran-
dom variables and the output variable. The algo-
rithm of this method is shown in Figure 3.

Algorithm of FEM-PTM:

Figure 3. Algorithm of the proposed method.

Advantages and Disadvantages of FEM-PTM

The advantage of the FEM-PTM technique in the
context of reliability analysis is clear. It gives the
pdf, which is the most important characteristic in the
probabilistic analysis of the response in closed form,
contrary to other numerical methods like perturba-
tion and Stochastic Finite Element Method (SFEM),
when giving only the first and second moments of the
response under some conditions (Sudret and Der Ki-
ureghian, 2000).

However, the main disadvantage of this technique
is that the transformation function must be one-to-
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one (e.g., bijective). Kadry et al. (2006) have pro-
posed a technique to solve this limitation.

Applications

I) In the first application, we are going to analyze
the reliability of a cantilever beam (Figure 4) with
random parameters (Young’s modulus E and dis-
tributed load W ).

A, E, L w

u1 u2 u3

A, E, L w

y

x

x

u(x)
u3

Θ3

Figure 4. Cantilever beam.

FEM modeling of the beam with 2 elements

The deformation and the bending stresses are given
by (Chateauneuf, 2005):

ε(x) = −u d2v(x)
dx2

σ(x) = E.ε(x)

Let l = L
2
, u1 = 0 and θ1 = 0, the assembly of 2

elements leads to the following system:

8EI
L3




12 6L −12 6L 0 0
6L 4L2 −6L 2L2 0 0
−12 −6L 24 −12L −12 6L
6L 2L −12L 8L2 −6L 2L2

0 0 −12 6L 12 −6L
0 0 6L 2L2 −6L 4L2







u1

θ1
u2

θ2
u3

θ3



=




T + wL
3

M + wL2

48
wL
3

wL2

48
wL
3

wL2

48




After simplification, the displacement of third node
is

u3 =
WL4

8EI
,

Probabilistic study of u3

Case 1 : E is uniformly distributed in the
range [108(N/m2), 3×108(N/m2)] with E = 2 ×
108(N/m2).

Using the proposed technique,

PDF (u3) = |J |PDF (E) = wL4

8Iu2
3
PDF (E)

=

{
WL4

16.108Iu2
3

if wL4

24.108I
≤ u3 ≤ wL4

8.108I

0 if not

Figure 5. pdf (u3) when E is uniformly distributed.

Reliability analysis

Let us suppose the limit displacement is u3l = L
180 =

0.0556mm. It is required to find the failure proba-
bility Pf = P (u ≥ u3l), which is as follows:

Numerical values:

w = 12N/m
L = 10m
I = 1, 8.10−3m4

139



KADRY, CHATEAUNEUF, EL-TAWIL

Figure 6. Probability of failure.

Pf =
∫ ∞

0.0556

PDF (u3) =
∫ ∞

0.0556

WL4

16.108Iu2
3

du3

=
∫ 0.0833

0.0556

12.104

16.108.1, 8.10−3.u2
3

du3 =
1
4
= 0.25

Table 1. Comparison with Monte Carlo.

Proposed Method Monte-Carlo
simulation (10,000)

Pf 0.25 0.2458

Case 2 : W is normally distributed with mean
equal to 12 and standard deviation equal to 1.

Using the proposed technique, the displacement

pdf is written as PDF (u3) =
{

8EI
L4

√
2π

e−
1
2 (

8EIu3
L4 −12)2

Figure 7. pdf (u3) when W is normally distributed.

Reliability analysis

Let us suppose now the limit displacement is u3l =
L

220
= 0.0455mm. The failure probability Pf =

P (u ≥ u3l)is:
Numerical values:

E = 2.108N/m
L = 10m
I = 1, 8.10−3m4

Figure 8. Probability of failure.

Pf =
∫∞
0.0455

PDF (u3)

=
∫∞
0.0455

8EI
L4

√
2π

e−
1
2 (

8EIu3
L4 −12)2du3

=
∫ 0.0546
0.0455

16.1,8.105

104
√

2.3,14
e
− 1

2

�
16.1,8.105u3

104
−12

�2

du3

= 0.1347

Table 2. Comparison with Monte Carlo.

Proposed Method Monte-Carlo
simulation (10,000)

Pf 0.1347 0.1328

II) In the second application, we are going to an-
alyze the reliability of a 3-bar truss structure (Figure
9) with random parameters (Young’s modulus E or
concentrated load P ).
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Figure 9. Three-bar truss structure.

FEM modeling the 3-bar truss:

The stiffness matrix in the global coordinate system
is given by

[Ke](i) =
AiEi

li




λ2 λµ −λ2 −λµ
λµ µ2 −λµ −µ2

−λ2 −λµ λ2 λµ
−λµ −µ2 λµ µ2




where

−i : number of element
−A : cross sec tion
−E : Y oung′s modulus
−l : length of bar
−λ : cosα
−µ : sinα
(α : angle between the element and the horizontal)

Element (1): 1-2

1 2l1

{
λ = cosα1 = 1
µ = sinα1 = 0

The stiffness matrix of element (1) is given by

[Ke](1) =
AE

l1



1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




To simplify, we supposeAi = A, Ei = E.
Element (2): 2-3

α2 = π − β = π
2
− θ2

λ = cosα2 = cos(π2 − θ2) = sin θ2 = sin π
3 =

√
3

2
µ = sinα2 = sin(π2 − θ2) = cos θ2 = cos π

3 = 1
2

l2 = l1
cosβ = 2l1√

3

The stiffness matrix of element (2) is

[Ke](2) =
AE

l2




3
4

√
3

4
−3

4
−

√
3

4√
3

4
1
4 −

√
3

4 −1
4

−3
4 −

√
3

4
3
4

√
3

4

−
√

3
4 −1

4

√
3

4
1
4




i.e. [Ke](2) = AE
l1




3
√

3
8

3
8

−3
√

3
8

−3
√

3
8

3
8

√
3

8 −3
8 −

√
3

8

−3
√

3
8 −3

8
3
√

3
8

3
8

−3
8

−
√

3
8

3
8

√
3

8




Element (3): 2-4

α3 = π − γ = π
2 − θ3

λ = cosα3 = cos(π2 − θ3) = sin θ3 = sin π
4 =

√
2

2

µ = sinα3 = sin(π
2
− θ3) = cos θ3 = cos π

4
=

√
2

2

l3 = l1
cosγ

= 2l1√
2
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The stiffness matrix of element (3) is

[Ke](3) =
AE

l3




2
4

2
4 −2

4 −2
4

2
4

2
4 −2

4 −2
4

−2
4 −2

4
2
4

2
4

−2
4 −2

4
2
4

2
4




i.e. [Ke](3) = AE
l1




√
2

4

√
2

4 −
√

2
4 −

√
2

4√
2

4

√
2

4 −
√

2
4 −

√
2

4

−
√

2
4

−
√

2
4

√
2

4

√
2

4

−
√

2
4 −

√
2

4

√
2

4

√
2

4




Using the Assembly technique (Chateauneuf,
2005) to form the global stiffness matrix for the entire
structure using the stiffness matrix of each element:

[K]g =
AE

l1




1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 8+3

√
3+2

√
2

8
3+2

√
2

8
−3

√
3

8
−3

√
3

8
−
√

2
4

−
√

2
4

0 0 3+2
√

2
8

3+2
√

2
8

−3
8

−
√

3
8

−
√

2
4

−
√

2
4

0 0 −3
√

3
8

−3
8

3
√

3
8

3
8 0 0

0 0 −3
8

−
√

3
8

3
8

√
3

8 0 0
0 0 −

√
2

4
−
√

2
4

0 0
√

2
4

√
2

4

0 0 −
√

2
4

−
√

2
4

0 0
√

2
4

√
2

4




Therefore, the assembly of 3 elements leads to the
following system:

{F } = [K]g . {U}

where

{F } =




F1x

F1y

0
P
F3x

F3y

F4x

F4y



, {U} =




u1

v1

u2

v2

u3

v3

u4

v4



=




0
0
u2

v2

0
0
0
0




After resolution, the vertical displacement of node 2
is

v2 = 3.25
P l1
AE

Probabilistic study of v2

Case 1 : E(N/m2) is uniformly distributed in the
range [5, 10]

Using our technique, the pdf of the displacement
is thus

PDF (v2) = |J |PDF (E) = 3.25Pl1
Av2

2
PDF (E)

=

{
3.25Pl1
Av2

2
if 3.25Pl1

10A
≤ v2 ≤ 3.25Pl1

5A

0 if not

Figure 10. pdf (v2) when E is uniformly distributed.

Reliability analysis

Let us suppose now the limit displacement is v2l =
2mm. It is requested to find the failure probability
Pf = P (v ≥ v2l), which is as follows:

Numerical values:

P = 1.2 N
l1 = 3 m
A = 1 m2
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Figure 11. Probability of failure.

Pf =
∫ ∞

2

PDF (v2) =
∫ ∞

2

3.25P l1
Av2

2

dv2

=
∫ 2.34

2

3.25× 1.2× 3
1.v2

2

dv2 =
17
100

= 0.17

Table 3. Comparison with Monte Carlo.

Proposed Method Monte-Carlo
simulation (10,000)

Pf 0.17 0.1681

Case 2 : P is normally distributed with mean
equal to 1.2 and standard deviation equal to 0.9.

Using our technique, the pdf of the displacement
is thus

PDF (v2) = |J |PDF (E) = AEv2
3.25l1

PDF (P )

=
{

AE
3.25l1

. 1
0.9

√
2π

.e
−(

AEv2
3.25l1

−1.2)2

2×0.92

Reliability analysis

Let us suppose now the limit displacement is v2l =
5mm. The failure probability Pf = P (v ≥ v2l) is

Numerical values:

E = 5 N/m2

l1 = 3 m
A = 1 m2

Figure 12. pdf (v2) when P is normally distributed.

Figure 13. Probability of failure.

Pf =
∫ ∞

2

PDF (v2)

=
∫ ∞

2

AE

3.25l1
.

1
0.9

√
2π

.e
−(

AEv2
3.25l1

−1.2)2

2×0.92 dv2

=
∫ 8.7562

2

5
9.75

.
1

0.9
√
2π

.e
−(

5v2
9.75−1.2)2

2×0.92 dv2

= 0.15

Table 4. Comparison with Monte Carlo.

Proposed Method Monte-Carlo
simulation (10,000)

Pf 0.5840 0.5823

III) In the third application, we are going to an-
alyze the reliability of a 25-bar truss structure (Fig-
ure 14) by using the unit load method with random
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parameters (Young modulus E, section S or the hor-
izontal load q).

Figure 14. 25-Bar truss structure.

The method of the unit load permits the calcula-
tion of the displacement at a point using the follow-
ing formula:

u =
n∑

i=1

NiNi

ESi
Li,

where Ni is the normal force due to the applied load,
Ni is the normal force due to a unit load to the point
and in the direction of searching displacement, E is
the Young’s modulus, and Si and Li are respectively
the section and the length of the bar i.

By symmetry, the sections of some bars are iden-
tical. We adopt the following distribution:

Bar Section
1 S1

2,5,7,8 S2

3,4,6,9 S3

10,11,12,13 S4

14,18,21,25 S5

15,16,17,19,20,22,23,24 S6

Normal forces:

Vertical Horizontal Length
Bar Load (N) Load (N) Fx1 =1N Fy1 =1N Fz1 =1N Fx2 =1N Fy2 =1N Fz2 =1N Li (mm)

1 118,496 0 -0.44 0 -0.11 0.44 0 -0.11 18,000

2 -182,632 -108,058 0.39 -0.88 0.45 0.31 -0.04 -0.08 25,632

3 -103,094 -181,168 -0.48 -0.65 0.10 -0.38 0.05 0.10 31,321

4 -103,094 24,564 -0.48 0.65 0.10 -0.38 -0.05 0.10 31,321

5 -182,632 236,220 0.39 0.88 0.45 0.31 0.04 -0.08 25,632

6 -103,094 -34,814 0.38 0.05 0.10 0.48 -0.65 0.10 31,321

7 -182,632 -227,820 -0.31 -0.04 -0.08 -0.39 -0.88 0.45 25,632

8 -182,632 99,670 -0.31 0.04 -0.08 -0.39 0.88 0.45 25,632

9 -103,094 191,418 0.38 -0.05 0.10 0.48 0.65 0.10 31,321

10 -2112.2 27,160 0.02 0.07 -0.01 -0.04 0.07 -0.01 18,000

11 25,438 25,416 0.14 0 -0.01 0.14 0 -0.07 18,000

12 -2112.2 -27,160 0.02 -0.07 -0.01 -0.02 -0.07 -0.01 18,000

13 25,438 -25,416 -0.14 0 -0.07 -0.14 0 -0.01 18,000

14 -261,700 -84,148 0.57 -0.52 0.35 0.57 -0.60 0.02 32,031

15 -142,550 -129,638 -0.14 -0.03 -0.04 -0.15 -0.54 0.24 43,474

16 -136,254 138,918 0.27 0.17 0.17 0.27 0.12 0.00 43,474

17 -142,550 -78,852 0.15 -0.54 0.24 0.14 -0.03 -0.04 43,474

18 -261,700 -322,780 -0.57 -0.60 0.02 -0.57 -0.52 0.35 32,031

19 -136,254 -30,232 -0.27 0.12 0.00 -0.27 0.17 0.17 43,474

20 -136,254 -70,148 -0.27 -0.12 0.00 -0.27 -0.17 0.17 43,474

21 -261,700 116,470 -0.57 0.6 0.02 -0.57 0.52 0.35 32,031

22 -142,550 133,196 0.15 0.54 0.24 0.14 0.03 -0.04 43,474

23 -136,254 -38,536 0.27 -0.17 0.17 0.27 -0.12 0.00 43,474

24 -142,550 75,296 -0.14 0.034 -0.04 -0.15 0.54 0.24 43,474

25 -261,700 290,460 0.57 0.52 0.35 0.57 0.60 0.02 32,031
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For the calculation of the horizontal displacement uy2 at the point 2, according to y direction, and due to
the load q, we put:

uy2 =
q

180000E




[(1.57898e− 10)(3.7646e− 17)18000] 1
S1
+[

(-108,058) (-0.04387) 25,632 + (236,220) (0.04387) 25,632 +
(-227,820) (-0.88916) 25,632 + (99,670) (0.88916) 25,632

]
1
S2
+[

(-181,168) (0.053606) 31,321 + (24,564) (-0.053606) 31,321 +
(-34,814) (-0.65356) 31,321 + (191,418) (0.65356) 31,321

]
1
S3
+[

(27,160) (0.075444) 18,000 + (25,416) (0) 18,000 +
(-27,160) (-0.075444) 18,000 + (-25,416) (0) 18,000

]
1
S4
+[

(-84,148) (-0.6071) 32,031 + (-322,780) (-0.52328) 32,031 +
(116,470) (0.52328) 32,031 + (290,460) (0.6071) 32,031

]
1
S5
+


(-129,638) (-0.54426) 43,474 + (138,918) (0.122694) 43,474 +
(-78,852) (-0.034886) 43,474 + (-30,232)(0.17921) 43,474+
(-70,148) (-0.17921) 43,474 + (133,196) (0.034886) 43,474 +
(-38,536) (-0.122694)43,474 + (75,296) (0.54426) 43,474


 1

S6




After simplification, the horizontal displacement of node 2 becomes

uy2 =
q

180000E


 0

S1
+ 7,850,940,221

S2
+ 4,285,580,903

S3
+ 73,766,125. 44

S4
+

1. 464 698 375 × 1010
S5

+ 6,428,099,237
S6




with:
E: Young’s modulus.
q: Vertical load.
Si: Section of bar i.

Probabilistic study of uy2

For simplification, we suppose Si = S leading to
uy2 = q

ES
(184, 918.723528)

Case 1 : E(N/m2) is uniformly distributed in the
range [105, 3105]

Using our technique, the pdf of the displacement
is thus

PDF (uy2) = |J |PDF (E)

=

(
q

u2
y2S

(184, 918.723528)

)
PDF (E)

=




q10−5

2u2
y2S

(184, 918.723528) if q(184,918.723528)
3.105S

0 if not

≤ uy2 ≤ q(184,918.723528)
105S

Numerical values:
q=180000N
S=2000mm2

Figure 15. pdf (uy2) when E is uniformly distributed.

Reliability analysis

Let us suppose now that the limit displacement is
uy2 = 1.20mm. It is required to find the failure
probability Pf = P (u ≥ uy2), which is as follows:
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Figure 16. Probability of failure.

Pf =
∫ ∞

120

PDF (uy2)duy2

=
∫ ∞

120

q10−5

2u2
y2S

(184, 918.723528) duy2

=
∫ 166

120

16, 642, 685.118× 10−5

2.u2
y2

duy2 = 0.19

Table 5. Comparison with Monte Carlo.

Proposed Method Monte-Carlo
simulation (10,000)

Pf 0.19 0.1890

Case 2 : q is exponentially distributed with unit
mean.

Using our technique, we can write

PDF (uy2) = |J |PDF (q)

=
(

ES

(184, 918.723528)

)
PDF (q)

=
{

ES

(184, 918.723528)
.e(− ESuy2

184, 918.723528
)

Numerical values:

E=200,000 N/m2

S=2000mm2

Figure 17. pdf (uy2) when q is exponentially distributed.

Reliability analysis

Let us suppose now that the limit displacement is
uy2 = 0.0005mm. It is requested to find the failure
probability Pf = P (u ≥ uy2), which is as follows:

Figure 18. Probability of failure.

Pf =
∫ ∞

0.0005

PDF (uy2)duy2

=
∫ ∞

0.0005

ES

(184, 918.723528)
.e(− ESuy2

184, 918.723528
)duy2

=
∫ 0.004

0.0005

4.610−4e(−4.610−4uy2)duy2 = 0.34
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Table 6. Comparison with Monte Carlo.

Proposed Method Monte-Carlo
simulation (10,000)

Pf 0.34 0.3382

Case 3 : S(mm2) normally distributed with mean
equal to 2000 and standard deviation equal to 1.

Using our technique, the displacement pdf is writ-
ten:

PDF (uy2) = |J |PDF (S)

=

(
q

u2
y2E

(184, 918.723528)

)
PDF (S)

=

{
q

u2
y2E

(184, 918.723528) .

1√
2π

e−
( q

uy2E
(184,918.723528)−20)2

2

Numerical values:
q=180,000N
E=200,000N/m2

Figure 19. pdf (uy2) when S is normally distributed.

Reliability analysis

Let us suppose now the limit displacement is uy2 =
8.500 mm. It is requested to find the failure proba-
bility Pf = P (u ≥ uy2), which is as follows:

Figure 20. Probability of failure.

Pf =
∫ ∞

8500

PDF (uy2)duy2

∫ 10272

8500

q

u2
y2E

(184, 918.723528) .

1√
2π

e−
( q

uy2E
(184,918.723528)−20)2

2 duy2

=
∫ 10272
8500

1.66426
u2

y2
. 1√

2π
e−

(1.66426
uy2

−20)2

2 duy2 = 0.33

Table 7. Comparison with Monte Carlo.

Proposed Method Monte-Carlo
simulation (10,000)

Pf 0.33 0.3334

Conclusion

In this paper, the reliability analysis of a mechan-
ical system with parameter uncertainties has been
considered. The uncertainty has been considered in
the material properties, e.g., Young’s modulus, cross
section and load. A proposed technique for the eval-
uation in ”exact” form of the probability of failure
is developed. Compared to other numerical meth-
ods like FORM/SORM, Monte-Carlo and Response
surface method, no-series expansion is involved in
this expression. This technique is based on the com-
bination of the probabilistic transformation method
(PTM) and the deterministic finite element method
(FEM). To prove the accuracy of the FEM-PTM
technique, the result is compared with 10,000 sam-
pling of direct Monte-Carlo simulation.
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