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Abstract

In many engineering problems the need for accurate and rapid computation of stresses and deformations
in Levy plates on 2-parameter foundations is encountered. The challenge may be met in a simplified way
by resorting to a finite grid model of intersecting beams on generalized elastic foundations. The simplified
formulation in this article is based on the discretized representation for plates composed of interlocking
girders endowed with exact stiffness, geometric stiffness, and consistent mass matrices. These have been
obtained through the use of exact shape functions. Sample problems of bending, buckling, and free vibration
problems for rectangular Levy plates supported on elastic foundations are solved. Comparisons with known
analytical solutions and other numerical solutions are presented.
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Introduction

Plates on elastic foundations represent a ubiquitous
problem in applied mechanics that has received con-
siderable attention in structural engineering. Since
the interaction between foundations and support-
ing soil has a great importance in many engineer-
ing applications, a considerable amount of research
has been conducted on plates on elastic foundations.
The subject represents a palimpsest of approaches
to solving the governing equations for plates altered
to account for the presence of the underlying media.
Much of this research has been conducted to deal
with bending, buckling, and vibration problems of
beams and plates on elastic foundations. The aim is
to solve some engineering problem such as founda-
tion analysis for buildings, pavements of highways,
water tanks, airport runways and buried pipelines.
The intent of this subsection is to give a brief syn-
optic overview of research accomplishments to date.

The ordinary approach in formulating closed so-
lutions for beams, plates, and shells continuously
supported by elastic media is based on the inclu-
sion of the foundation reaction in the correspond-

ing differential equation. In the 1-parameter model
the soil underneath beams or plates (the Winkler
model) leads to a discontinuity of the foundation
deformation along the domain boundary. For pur-
poses of satisfying the foundation displacement con-
tinuity, Hetényi (1946) suggested the use of an elas-
tic plate at the top of the independent Winkler el-
ements to represent an interaction between them.
The principal artifice of the 2-parameter elastic foun-
dation model is to provide a mechanical interaction
between the individual spring elements. Many oth-
ers have suggested such physical models of soil be-
havior. The second foundation parameter defined
by Filonenko-Boroditch, Pasternak, and Kerr (1964)
ensures in effect that the Winkler springs are inter-
linked by a thin elastic membrane, a layer of com-
pressible vertical elements, and rotational springs,
respectively. Depending on soil material proper-
ties and the thickness of the compressible soil layer
Vlasov and Leont’ev (1966) provide guidance to de-
termine both foundation parameters. Çelik and Say-
gun (1999) obtained the parameters by using the ide-
alization of each layer of the foundation with a sys-
tem of 1-dimensional vertical columns of intercon-
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nected shear springs. Since the second parameter
for each model is constant, the nature of the govern-
ing equation will not change if the second parame-
ter of the Filonenko-Boroditch model (T), Pasternak
model (G), and Kerr model (kθ) is replaced by a sin-
gle second parameter denoted as k2. Then the gov-
erning equation for transverse displacement w(x, y)
can be extended to plates on 2-parameter elastic
foundation as:

D(∂4w(x,y)
∂x4 + 2∂4w(x,y)

∂x2∂y2 + ∂4w(x,y)
∂y4 )+

k1w(x, y) + k2(
∂2w(x,y)

∂x2 + ∂2w(x,y)
∂y2 ) = q(x, y)

(1)

where k1 is the Winkler parameter with the unit
of force per unit area/per unit length (force/length3),
k2 is the second foundation parameter defined as
the reaction moment proportional to the local an-
gle of rotation in the generalized foundation model
with unit of moment per unit length/unit length
(force/length), and D is the flexural rigidity of the
plate element.

There exist many different methods to solve Eq.
(1) for transverse displacement and then internal
forces. In comparison with 2-dimensional plate el-
ements the solutions become more sophisticated and
mathematically less familiar for most engineering ap-
plications. El-Zafrany and Fadhil (1996) utilized
boundary integral equations and Wang et al. (1997)
examined the buckling loads using classical Kirchhoff
plate theory and shear deformable plate expressions.
Lam et al. (2000) represented canonical exact so-
lutions, based on Green’s functions, for the elastic
bending, buckling, and vibration problems of Levy-
plates on elastic foundations. On the other hand,
Sladek et al. (2002) observed that it is impossible to
solve analytically the governing equation for plates
with free edges. It would appear that for general
plate problems the 2-parameter elastic foundation
soil model cannot be solved analytically in readily
understood format for general load and boundary
conditions.

We may defer to gridwork models of plates for
general applications. A differential part of a plate
supported by a generalized foundation as shown in
Figure 1 can be represented by 2 parallel sets of beam
elements. The 2-dimensional plate element is re-
duced to intersecting 1-dimensional beam elements.
The governing differential equation of a line element
supported by the 2-parameter elastic foundation for
transverse displacement w(x) is a simplification of
Eq. (1):

EI
d4w(x)
dx4

+ k1w(x) + k2
d2w(x)
dx2

= q(x) (2)

In this case parameters k1and k2become
force/length2 and force/radians, respectively. EI is
the flexural rigidity. It is useful to examine where we
stand in relation to 1-dimensional beams on general-
ized foundations, i.e. Eq. (2). A broad range of the
engineering problems have been solved by computer-
based methods such as finite element and boundary
element methods. Closed form solutions have been
published for a limited number of cases. The for-
mulations based on interpolation (shape) functions
have been used in solution by the finite element
method. Wang (1983) and Eisenberger and Clas-
tornik (1987) have derived exact stiffness matrices
for beams. Razaqpur and Shah (1991) derived a new
finite element to eliminate the limitations of the solu-
tion, such as the requirement of certain combinations
of beam and foundation parameters. Gülkan and
Alemdar (1999) extended this to an analytical solu-
tion for the shape functions of a beam segment on a
generalized 2-parameter elastic foundation, leading
to exact element-level matrices.

The objective of this article is to develop an
approximate but computationally manageable finite
grid solution of plates on a generalized foundation.
It is an extension of the discrete parameter approach
where the physical domain is broken down into dis-
crete sub-domains, each endowed with a property
suitable for the purpose of mimicking the problem
at hand. Conceptually, it is an application of the
finite element method, except that each discrete el-
ement utilized is equipped with an exact solution
for a beam. Its errors are attributable to the tor-
sional constants of the grid members and the com-
promised effects of discretizing a continuous prob-
lem. In the method a plate edge is subdivided into
a number of strips and each strip is characterized
with the lumped characteristics of the correspond-
ing width and plate depth. It offers several attrac-
tive advantages. First, orthotropic plates, for which
we are aware of no analytical solutions, can be an-
alyzed with no additional effort. The analyses are
not confined to static deflection and internal force
calculations, but may cover vibration and stability
problems as well. Plates of any geometry, not only
of the Levy type, also can be analyzed. Shear defor-
mations can be easily considered.
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Figure 1. a) Model foundation representation of a 2-dimensional plate element by 1-dimensional beam elements on a
2-parameter (generalized) foundation, b) The local forces and displacements at nodes.

Representation of Plates as Grillages of Beam
Elements

As Wilson (2002) has indicated, the structural be-
havior of a beam resembles that of a strip in a plate,
and so replacing a continuous surface by an ideal-
ized discrete system can represent a 2-dimensional
plate. The differential equation requires that the

bond between the foundation and the plate be ac-
counted for, and the soffit of the “equivalent” strip
is not affected by the foundation in twisting. The
torsional constant for the rectangular beam strips is
adopted from Bowles (1988). The representation of
a plate through the gridwork (or lattice) analogy at
which the discrete elements are connected at finite
nodal points is shown in Figure 2.
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Figure 2. Idealized discrete system in which the elements are connected at nodal points of a rectangular plate.

Except for Levy plates it is not necessary to have
the elements intersect at right angles. The replace-
ment implies that there are rigid intersection joints
between all sets of beam elements, ensuring slope
and rotation continuity. Because of plane rigid in-
tersection, the elements can resist torsion as well as
bending moment and shear. Therefore, the ideal-
ized discrete element shown in Figure 2 can be re-
placed with a beam element that has 3 DOF at each
node. With suitable stiffness coefficients and equiva-
lent joint forces provided, the accuracy of the model
will improve. We call this formulation the finite grid
method (FGM). By this representation, plate prob-
lems including buckling and free vibration, with non-
uniform thickness and foundation properties, arbi-
trary boundary and loading conditions and discon-
tinuous surfaces, can be solved in a general form.
The system cannot truly be equal to the continu-
ous structure but solutions adequate for engineering
purposes can be found with greater ease (Hrennikoff,
1949).

Matrices for Beam Elements on 2-Parameter
Foundations

The 2-parameter foundation representation implies
that at the end of each translational spring element
there also exists a rotational spring to produce a re-
action moment proportional to the local slope at that
point. A display of the foundation with linear trans-
lational and rotational springs underlying a beam
element is shown in Figure 1.

Shape functions

The homogeneous form of the governing differen-
tial equation for a 1-dimensional beam element on
2-parameter elastic foundation given in Eq. (2) is
considered. The closed form of the solution depend-
ing on the foundation parameters k1 and k2 in terms
of hyperbolic and trigonometric functions are:
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(3)

where

β =
{ √

λ2 − δ for k2 <
√
4k1EI√

δ − λ2 for k2 >
√
4k1EI

}
, α =

√
λ2 + δ and λ = 4

√
k1

4EI
, δ =

k2

4EI

The generalized displacement vector defined in Fig-
ure 1 is obtained by enforcing the boundary condi-
tions at x = 0 and x = L. The arbitrary constants
can be related to the end displacements. Then the
closed form of the solution in terms of shape func-
tions [N] and the generalized displacements, [d]T=
{w1,θ1, w2,θ2 }, are obtained as:

w(x) = [N] [d] (4)

After performing the necessary symbolic calcu-
lations, the 4 shape functions {ψ2, ψ3 , ψ5, ψ6} for
flexural behavior are obtained. However, referring

to Figure 1, the linear variation of the angular dis-
placement Ø1 = a1 + a2x by neglecting foundation
effects can be used to derive the shape functions {ψ1,
ψ4} for torsion. After inserting the decoupled shape
functions for torsion into the solution, the interpola-
tion function [N] series is expanded to a 6 × 1 array.

Element stiffness matrix

The element stiffness matrix, [Ke], for the prismatic
beam element shown in Figure 1 that relates the
nodal forces to the nodal displacements can be ob-
tained from the minimization of strain energy func-
tional U as follows:

[Ke] =
∂U

∂ {d} (5)

where

U =
EI

2

L∫
0



d2w(x)
dx2

d2w(x)
dx2

dx+
k1

2

L∫
0

w(x)w(x)dx+ k2
2

L∫
0

dw(x)
dx

dw(x)
dx dx


 (6)

Substituting w(x) and its derivatives from Eq. (2) into Eq. (6), the stiffness matrix can be written in the
following form:

[Ke] = EI

L∫
0



d2 {N}
dx2

T
d2 {N}
dx2

dx+ k1

L∫
0

{N}T {N}dx+ k2

L∫
0

d {N}
dx

T
d {N}
dx

dx


 (7)
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N is a 4 × 1 sub-matrix of the exact shape functions
for flexure. After carrying out the necessary inte-
grals and procedures and assembling the torsion and
bending terms with respect to Figure 1, 6 × 6 stiff-
ness matrices are obtained. Since these effects are
uncoupled the related influence coefficients are zero.

[Ke] =




k11 0 0 k14 0 0
0 k22 k23 0 k25 k26

0 k32 k33 0 k35 k36

k41 0 0 k44 0 0
0 k52 k53 0 k55 k56

0 k62 k63 0 k65 k66




(8)

     p

  k36/(-12EI/L3)

     t

     p

  k35/(-6EI/L2)

     t

     p

  k33/(12EI/L3)

     t

    p

  k26/(6EI/L2)

   t

    p

  k25/(2EI/L)

     t

    p

  k22/(4EI/L)

   t

Figure 3. The normalized stiffness terms for the 2-parameter foundation.
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The stiffness terms normalized with respect to
those for an ordinary beam element are plotted in
3-dimensional view as in Figure 3 to display the in-
fluence of the foundation parameters. The dimen-
sionless p and t terms given in the figures represent
effects of the first and the second foundation param-
eters, respectively, as follows:

p = Lλ and t =
δ

λ2
(9)

Work equivalent nodal loads

The work equivalent nodal loads of a beam element
are formed by the exact shape functions. Many types
of loading can be represented with uniformly dis-
tributed loads or point loads applied at the nodes.
Here, the nodal load vector will be derived only for
the uniform load case q(x) = q0. The equivalent
forces at nodes 1 and 2 for uniformly distributed
loading q0 on the span L referring to Figure 1 are
given by:

{P} =




F1

M1

F2

M2




=

L∫
0

q0




N2

N3

N5

N6



dx (10)

Here [N] is the array of the shape functions cor-
responding to flexure. Inserting the corresponding
expressions into Eq. (10), the nodal loads are ob-
tained.

Normalizing nodal loads with the conventional
terms can be used to observe the effect of the foun-
dation parameters. The normalized terms are shown
in Figure 4.

Consistent mass and geometric stiffness ma-
trices

It is possible to calculate consistent mass and ge-
ometric stiffness matrix coefficients of a structural
element with procedures similar to that for obtain-
ing the element stiffness matrix. The degrees of
freedom of the element are the torsional rotation,
vertical translation, and bending rotation at each
end. In the interest of consistency it can be as-
sumed that the displacements within the span are
defined again by the same interpolation functions as
those already derived. This is not strictly correct
because displacement interpolation functions under
nodal displacements do not apply when inertia or ax-
ial forces are involved. Using the principle of virtual
displacements the mass influence coefficients associ-
ated with the accelerations causing the nodal inertial
forces and the element geometric stiffness terms as-
sociated with a constant axial force can be evaluated,
respectively, by evaluating the following integrals:

mij = µ

L∫
0

ψi(x)ψj(x)dx (11)

kGij = N

L∫
0

dψi(x)
dx

dψj(x)
dx

dx (12)

Here µ is uniform mass per unit length, N is axial
force, and ψi and ψj are the shape functions as-
sociated with bending. Recalling the correspond-
ing shape functions for both cases and substituting
them into Eqs. (11) and (12) enable us to evaluate
the consistent mass and geometric stiffness matrices
(Karaşin, 2004).

     p

  F1/(q0L/2)

      t

     p

  M1/(q0L2/12)

      t

Figure 4. The normalized nodal forces for the 2-parameter foundation.
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Assembling the System Matrices for Dis-
cretized Elements

In Levy-type gridwork systems elements are con-
nected along external or internal lines. At interior
nodes 4 typical discrete individual beam elements as
shown in Figure 2 intersect. Matrix displacement is
the standard tool for arbitrary load and boundary
conditions. The applied loads are usually normal to
the plane of the plate as limited by the degrees of
freedom. For a typical member from the grid work
assembly with the ends denoted by i and j a sim-
ple transformation is indicated. By using any conve-
nient numbering scheme to collect all displacements
for each nodal point in a convenient sequence the
stiffness matrix for rectangular grids can be gener-
ated as follows:

[ksys] =
n∑

i=1

[ai]T [ki][ai] (13)

In Eq. (13) i is loops over n elements, [ai] is the
individual coordinate transformation matrix, [ki] is
the element stiffness matrix for a beam element on
a 2-parameter elastic foundation, and [ksys] is the
assembled stiffness matrix of the system. Similarly
a geometric stiffness matrix [kGsys] and consistent
mass matrix [Msys] can be assembled to handle buck-
ling vibration problems.

Numerical Tests

The validity of the solution technique is demon-
strated through examples for a wide range of plates.
The examples given for comparison in this article will
cover bending, buckling, and free vibration problems

examined by Lam et al. (2000) and Sladek et al.
(2002).

Plate bending problems

Firstly, a comparison of FGM with LBIE (meshless
local boundary integral equation) method solutions
by Sladek et al. (2002) for simply supported and
clamped square plates on a 2-parameter foundation
is given. In the case study the thickness t, side length
a, the flexural rigidity D, and Poisson ratio υ were
chosen as 0.1 m, 8 m, 1000 N.m, and 0.3, respec-
tively. The uniformly distributed load q was taken
as 1 N/mm2. Note that edges with free ends present
no difficulties in FGM, but abruptly ending ends re-
quire an artificial extension of the beam to account
for the proper shear force boundary conditions at the
free end. This artifice is not performed here.

For the simply supported case (ssss), Winkler and
Pasternak foundations are considered. The compar-
ison of the results along the centerline of the plate
for 3 different Winkler coefficients is plotted in Fig-
ure 5. From here one can see that the maximum
relative error for deflections of points located on the
axis passing through the center of the plate is about
1%.

The simply supported plate on a 2-parameter
foundation case is considered for the central deflec-
tion. Next, the same plate with all edges clamped
under the uniformly distributed load is considered to
rest on a Winkler foundation. The comparisons of
FGM with LBIE for the maximum deflections wmax

at the center of the plates for both cases are plotted
in Figure 6 and 7. From the figures it is noted that
the maximum relative error of the central deflections
is less than 3% for both cases.
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Figure 5. Comparison of the deflections at the centerline for a simply supported square plate resting on a Winkler
foundation with Sladek et al. (plate represented by a mesh 20 × 20 beams on a side).
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Figure 7. Comparison of maximum deflections of the clamped plate (cccc) on a Winkler foundation under uniformly
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FGM is compared next with the canonical ex-
act solutions derived by Lam et al. (2002) for Levy
plates on a 2-parameter foundation. In the article
it is noted that the solutions for Levy plates de-
rived through the use of Green’s functions can be
accepted as benchmark results to check the conver-
gence, validity, and accuracy of other numerical so-
lutions. For convenience and generality the following
non-dimensional parameters are defined for bending,
free vibration, and buckling problems. These are ex-
amined in detail in Tables 1-3.

k1 =
k1L4

y

D ; k2 =
k2L2

y

D ;Nx = NxL2
y

D ;

Ny =
NyL2

y

D ;ω2 =
ρHL2

y

D ω2

(14)

Here Lx and Ly are the length dimensions, H
is its thickness, ρ is the mass density, ω is the fre-
quency and Nx, Ny are the in-plane loads along
the x- and y-axes, respectively. The comparison of
the central deflections carried out for central point
loaded, all edges simple supported (SSSS), 2 opposite
edges simple supported the others clamped (SCSC)
and 2 opposite edges simple supported the others
free (SFSF) rectangular plates on 2-parameter elas-
tic foundations are given in Table 1 for different com-
binations of the foundation parameters and plate as-
pect ratios. From the table it can be seen that the
results are quite acceptable.
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Table 1. Comparison of central deflections of Levy-plates under concentrated load (P) at the centre on 2-parameter
elastic foundation (ν = 0.3).
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Error  

% 
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Study 

Lam  
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Error  

% 
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Study 

Lam   

 et al. 

(2000) 

Relative 

Error  

% 

1 1 3.86 3.84 0.42 29.21 27.67 5.58 1.83 1.77 3.40 

1 81 0.80 0.79 0.60 1.67 1.66 1.07 0.69 0.68 1.68 

1 625 0.16 0.16 0.55 0.28 0.28 0.16 0.16 0.16 0.10 

81 1 2.83 2.82 0.07 4.14 4.00 3.39 1.66 1.62 2.91 

81 81 0.76 0.76 0.65 1.33 1.31 1.11 0.67 0.66 1.76 

81 625 0.16 0.16 0.69 0.27 0.27 0.12 0.16 0.16 0.32 

625 1 1.27 1.26 0.31 1.30 1.28 1.70 1.11 1.09 1.88 

625 81 0.62 0.61 0.81 0.72 0.71 1.43 0.58 0.57 1.58 

0.5 

625 625 0.16 0.16 0.11 0.23 0.23 0.22 0.15 0.15 0.15 

1 1 10.62 11.07 4.08 23.09 21.10 9.43 6.82 6.87 0.73 

1 81 2.86 2.88 0.52 3.60 3.56 1.01 2.61 2.61 0.00 

1 625 0.63 0.63 0.00 0.72 0.72 0.14 0.62 0.62 0.16 

81 1 9.15 9.47 3.42 14.05 13.29 5.71 6.34 6.38 0.67 

81 81 2.78 2.80 0.47 3.41 3.37 0.95 2.55 2.55 0.04 

81 625 0.63 0.63 0.14 0.72 0.72 0.28 0.62 0.62 0.19 

625 1 5.07 5.14 1.44 5.22 5.21 0.19 4.41 4.42 0.38 

625 81 2.37 2.38 0.23 2.60 2.59 0.63 2.24 2.24 0.09 

1.0 

625 625 0.62 0.62 0.02 0.69 0.69 0.19 0.61 0.61 0.09 

1 1 16.01 16.24 1.40 17.76 17.11 3.82 14.79 15.13 2.29 

1 81 7.34 7.40 0.72 7.54 7.52 0.23 7.20 7.27 0.93 

1 625 1.98 1.98 0.01 2.00 2.00 0.10 1.98 1.98 0.01 

81 1 15.60 15.82 1.39 17.13 16.57 3.40 14.48 14.81 2.23 

81 81 7.28 7.33 0.71 7.47 7.45 0.20 7.14 7.21 0.93 

81 625 1.98 1.98 0.01 2.00 2.00 0.10 1.98 1.98 0.01 

625 1 13.39 13.58 1.35 14.04 13.85 1.39 12.72 12.98 2.00 

2.0 

625 81 6.88 6.93 0.68 7.01 7.01 0.03 6.77 6.83 0.86 
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Buckling problems

For the square plates defined formerly in the vibra-
tion example with different values of k1 and k2 the
buckling load parameters (Ncr) are compared in Ta-
ble 2 with the benchmark results given by Lam et
al. (2002). The non-dimensional buckling load pa-
rameters, defined in Eq. (14), due to uniaxial and
biaxial in-plane loads for square Levy-plates on 2-
parameter elastic foundations results are tabulated
with the corresponding canonical exact solutions as
shown in Table 2.

The comparison in this table is the least satisfac-
tory if the benchmark results in a number of cases
are accepted as being absolutely correct, as a bench-
mark result is expected to be. The greatest discrep-
ancies occur in those cases when uniform forces are
applied in the vertical y-direction. If the normal-
ized critical load coefficient is indeed 4 for the SSSS
case (for which our result is 3.99), then it cannot be
the same number for SCSC (second group), SSSC
(fourth group), SCSF (fifth group), or SSSF (sixth
group). Furthermore, the purported benchmark re-
sults appear to repeat cyclically for the last 3 sets
of plate boundary conditions (groups 4-6), which
clearly contravene the physics of the problem. We
must therefore conclude that the comparisons with
the benchmark results in Table 2 are not reliable be-
cause of a printing error in the original article that
has remained uncorrected. We have no way of know-
ing which of our values is compared with the correct
result from Lam et al. (2002), and so commenting
on these deviations is not possible.

Vibration problems

Free vibration analyses of square Levy-plates on 2-
parameter elastic foundation studied by Lam et al.
(2002) are compared next with the present study.
For the square plates with different combinations for
values of the non-dimensional foundation parameters
k1 and k2 defined in Eq. (14), the fundamental fre-
quencies are compared with the reference results in
Table 3 for various boundary conditions. Again the
results show that the method produces very good
results for the computational effort that goes into it.

Summary and Conclusions

Easily understood engineering approaches for anal-
ysis of plates on elastic foundations have not been
covered sufficiently in the literature. For particular
plate problems, closed form solutions have been ob-
tained. However, even for conventional plate analysis
these solutions can only be applied to the problems
with simple geometry, load and boundary conditions.
For plates supported by the 2-parameter elastic foun-
dations the solution is usually much too complex and
there is apparently no analytical solution other than
for simple cases. The objective of this article has
been to develop a more general simplified numerical
approach for plates on elastic foundations. A grid-
work analogy called the finite grid method involv-
ing discretized plate properties mapped onto equiv-
alent beams with adjusted parameters and matrix
displacement analysis is used. In this solution the
plate is modeled as an assemblage of individual beam
elements interconnected at joints. The exact fixed
end forces, stiffness, consistent mass, and geometric
stiffness matrices for beam elements resting on 1 or
2 parameter foundation are the tools to solve plate
bending, vibration, and buckling problems.

It is inferred that the presence of the second foun-
dation parameter k2 in the analysis is a remark-
ably dominant trend that is known from analyti-
cal solutions. Its presence leads to diminished dis-
placements, smaller internal stresses, larger buckling
loads, and larger free vibration frequencies. This
might have been anticipated because the strain en-
ergy density function includes an additional term in
the case of the 2-parameter foundation as compared
with the Winkler foundation. Comparisons with
known analytical or numerical solutions yield gen-
erally accurate results for this approximate method.
An acute exception occurs in comparing our results
with those of a benchmark study for problems involv-
ing critical loads for plates. It appears that printing
errors in the earlier article may be the primary cause
for the large discrepancies we list here. The simplic-
ity of this method that extends existing exact solu-
tions for beams to plates outweighs the small errors
it may produce.
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Table 2. Comparison of buckling load parameter for square Levy-plate under uniaxial and biaxial compressive loading
on 2-parameter foundation with the benchmark results (ν = 0.3).

Mesh:16x16, D=1 Nx=0 and Ny=N Nx=N and Ny=0 Nx=N and Ny=N 
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T
a
b
le

3
.C
o
m
p
a
ri
so
n
o
f
fu
n
d
a
m
en
ta
l
fr
eq
u
en
ci
es
(ω
)
o
f
sq
u
a
re
L
ev
y
-p
la
te
s
o
n
2
-p
a
ra
m
et
er
fo
u
n
d
a
ti
o
n
(ν
=
0
.3
).

 

B
o
u
n
d
ar

y
 

C
o

n
d

it
io

n
s 

S
S

S
S

  
S

C
S

C
  

S
S

S
C

  
S

F
S

F
  

S
C

S
F

  
 S

S
S

F
 

        

F
o
u
n
d
at

io
n
 

C
o
ef

fi
ci

en
ts

 
F

u
n

d
am

en
ta

l 
fr

eq
u

en
cy

 p
ar

am
et

er
 (

) 
 (

m
es

h
:1

0
x

1
0

, 
D

=
1

) 

k
1
  

 
k

2
  

  
T

h
is

 

S
tu

d
y

  

L
am

 

 e
t 

al
. 

(2
0
0

0
) 

R
el

at
i

v
e 

E
rr

o
r 

 %
 

T
h

is
 

S
tu

d
y

 

L
am

 

et
 a

l.
 

(2
0
0

0
)

R
el

at
iv

e

E
rr

o
r 

 %
 

T
h

is
 

S
tu

d
y

 

L
am

 

et
 a

l.
 

(2
0
0

0
)

R
el

at
iv

e

E
rr

o
r 

 

%
 

T
h

is
 

S
tu

d
y

  

L
am

 

et
 a

l.
 

(2
0
0

0
)

R
el

at
iv

e

E
rr

o
r 

 

%
 

T
h

is
 

S
tu

d
y

 

L
am

 

et
 a

l.
 

(2
0
0

0
)

R
el

at
iv

e

E
rr

o
r 

 

%
 

T
h

is
 

S
tu

d
y

 

L
am

 

et
 a

l.
 

(2
0
0

0
)

R
el

at
iv

e 

E
rr

o
r 

 %
 

0
 

 
 

 
 

 
 

 
 

 
1

0
0

4
7
.4

9
4

8
.6

2
2

.3
2

5
3
.1

9
5

4
.6

8
2

.7
2

3
2
.6

4
3

2
.9

0
0

.7
9

5
0
.0

4
 

5
1
.3

2
2

.4
9

3
7
.5

5
3

7
.9

8
1

.1
3

3
6
.7

4
3

7
.1

5
1

.1
0

0
 

 
 

 
 

 
 

 
1

0
0
0

1
4
0

.3
7

 
1

4
1

.9
2

1
.0

9
 

1
4
4

.8
2

1
4
6

.7
3

1
.3

0
9

9
.3

0
9

9
.8

3
0

.5
3

1
4
2

.5
1

 1
4
4

.2
4

1
.2

0
1

1
1

.6
9

1
1
2

.5
2

0
.7

4
1

1
1

.0
0

1
1
1

.7
1

0
.6

4

1
0
0

 
 

 
 

 
 

 
 

0
2

0
.3

8
2

2
.1

3
 

7
.9

1
 

2
8
.7

1
3

0
.6

3
6

.2
7

1
3
.6

7
1

3
.8

8
1

.5
1

2
3
.8

1
 

2
5
.6

7
7

.2
5

1
6
.0

2
1

6
.1

5
0

.8
0

1
5
.1

0
1

5
.3

8
1

.8
2

1
0
0

 
 

 
 

 
 

 
 

 
 

1
0
0

4
8
.5

1
4

9
.6

3
2

.2
6

5
4
.1

0
5

5
.5

9
2

.6
8

3
4
.1

2
3

4
.3

9
0

.7
9

5
1
.0

1
 

5
2
.2

9
2

.4
5

3
8
.8

3
3

9
.2

7
1

.1
2

3
8
.0

6
3

8
.4

7
1

.0
7

1
0
0

 
 

 
 

 
 

 
 

1
0
0
0

1
4
0

.7
2

 
1

4
2

.2
0

1
.0

4
 

1
4
5

.1
5

1
4
7

.1
3

1
.3

5
9

9
.7

9
1

0
0

.3
3

0
.5

4
1

4
2

.8
5

 1
4
4

.6
1

1
.2

2
1

1
2

.1
3

1
1
3

.0
0

0
.7

7
1

1
1

.4
4

1
1
2

.2
3

0
.7

0

1
0
0
0

 
 

 
 

 
 

 
 

 
 

0
3

6
.0

4
3

7
.2

8
3

.3
3

4
1
.2

7
4

2
.8

7
3

.7
3

3
2
.8

3
3

1
.6

2
3

.8
3

3
8
.0

6
 

3
9
.4

9
3

.6
2

3
3
.8

3
3

4
.0

7
0

.7
0

3
3
.4

2
3

3
.7

1
0

.8
6

1
0
0
0

 
 

 
 

 
 

 
 

 
 

1
0
0

5
6
.8

9
5

8
.0

0
1

.9
1

6
1
.7

0
6

3
.1

7
2

.3
3

4
5
.3

4
4

5
.6

4
0

.6
6

5
9
.0

2
 

6
0
.2

8
2

.0
9

4
8
.9

6
4

9
.4

2
0

.9
3

4
8
.3

5
4

8
.7

9
0

.9
0

1
0
0
0

 
1

0
0
0

 
1

4
3

.8
2

 
1

4
5

.4
3

 
 

 
1

.1
1

1
4
8

.1
6

1
5
0

.1
2

1
.3

1
 

1
0
4

.1
7

1
0
4

.7
2

0
.5

3
 

1
4
5

.9
1

 1
4
7

.6
2

1
.1

6
1

1
6

.0
3

1
1
6

.9
2

0
.7

6
 

1
1
5

.3
7

1
1
6

.1
2

0
.6

5
 

bq
 

a

a

 
a

a
a 

a

a

bq
 

a
a

 a

a 

a   

169
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