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Abstract

Since the simplex method requires the polyhedron to be in the positive domain, the 1-norm minimization
problems are formulated by substantially increasing the size of the linear programming (LP) problems.
This paper presents a simple modification that enables the simplex method to be directly applicable to a
polyhedron, which extends into the negative domain. That is, instead of requiring the problem to change,
the method is changed to fit the problem. The modification eliminates the need to increase the size of the
problem and thus eliminates the associated computational effort.
The proposed method skips iterations and Phase 1 of the simplex method. Its computational advantage

is verified in 2 examples.
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Introduction

The minimization of a sum of absolute deviations
(1-norm) arises in a number of fields and applica-
tions, e.g., statistical modeling, design, control, im-
age resolution, and signal processing. This objec-
tive is met by formulating the problem as a linear
programming (LP) problem. To minimize the abso-
lute deviations, one needs to consider both the pos-
itive and the negative values of the deviations. This
means that the polyhedron (sometimes called poly-
tope) to be searched lies in both the positive and
the negative domains. However, the simplex method
requires the variables to be nonnegative, that is, it
requires the polyhedron to be within the positive do-
main.

To meet this requirement of the simplex method,
the 1-norm minimization problems are formulated in
the following manner:

1. By introducing new variables, minimizing

their sum, and requiring that both positive and neg-
ative values of the deviations remain less than or
equal to the new variables (Maciejowski, 2002; Boyd
and Vandenberghe, 2004). In this formulation, the
equations relating the deviations with the other op-
timization variables (constraints) become doubled in
number.

2. By replacing each deviation by a difference of
2 nonnegative variables and then minimizing a sum
of these nonnegative variables (Chang and Seborg,
1983). In this formulation, the optimization vari-
ables representing the deviations become doubled in
number. One can see that to meet the requirement
of the simplex method both of the conventional for-
mulations mentioned above require a substantial in-
crease in the size of the LP problem, that is, they
require the search to be conducted in a significantly
higher dimensional polyhedron. Note that the num-
ber of iterations required in solving an LP problem
with m constraints and n variables through the sim-
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plex method usually varies between m and 3m, the
average being 2m (Reklaitis et al., 1983). Moreover,
the average computational effort (measured in terms
of multiplications and divisions required) approxi-
mately equals 2m(nm − m2 + n + m). Therefore,
both of the conventional formulations require a sig-
nificantly higher computational effort as compared
with a formulation that does not require an increase
in the size of the LP problem.

We find that it is possible to have such a formu-
lation. In other words, instead of requiring the prob-
lem to change; the method can be changed to fit the
problem; and we find that there are other opportu-
nities for reducing the computational effort. There-
fore, this paper presents a modified simplex method
for the solution, which incorporates the following 3
objectives:

1. To enable the simplex method to find the op-
timal point in a polyhedron that extends into the
negative domain, and thus avoid the increase in com-
putational effort faced by the conventional formula-
tions.

2. To skip the unnecessary iterations involved in
the search, and thus avoid any unnecessary compu-
tational effort.

3. To formulate the problem such that an initial
basic feasible solution is readily available, and thus
avoid the computational effort involved in Phase 1
of the simplex method.

The method is presented for the 1-norm mini-
mization problem as it arises in model predictive
control (MPC) and can be adapted to other appli-
cations. Although the method is explained by mak-
ing reference to the simplex tableau, the full tableau
is not needed in performing the calculations. The
method can find the same solution as obtained by
using the conventional formulations. Moreover, the
main modifications presented in the paper can also
be used in problems other than 1-norm minimization
problems.

In MPC, an optimization problem needs to be
solved at every control instant (time step). The
formulations of the optimization problem using LP
have been proposed in the literature (Chang and Se-
borg, 1983; Genceli and Nikolaou, 1993; Dave et al.,
1997; Rao and Rawlings, 2000). Since the on-line
computational effort may be significant for certain
formulations, several methods have been proposed
where the solution is obtained off-line and stored
(Seron et al., 2000; Bemporad et al., 2002; Kerrigan
and Maciejowski, 2002; Johansen and Grancharova,

2003). Then, depending on the current condition,
the stored solution is recalled and used. Since the
general programming software is often unable to take
advantage of the special feature of each application,
Wright (1997) has suggested that optimization algo-
rithms be customized to the applications. In this
paper, the computational advantage of the proposed
method over commonly used formulations is verified
by its application in 2 example problems for the cal-
culation of control moves.

Comparison of Simplex and Interior Point
Methods

The simplex method starts from a basic feasible so-
lution and moves along the boundary of the feasible
region until an optimum is reached. At each step,
the algorithm brings only one new variable into the
basic set, regardless of the total number of variables.
Thus, for problems with a large number of variables,
the method may take many steps before terminating.

This behavior of the simplex method motivated
researchers to develop another class of methods
known as interior point methods for solving LP prob-
lems. As the name implies, in these methods, one
starts from an interior feasible point and takes ap-
propriate steps along descent directions until an op-
timum is found. The following figure contrasts the
approach used in the simplex method with the one
used in the interior point methods.

Simplex
steps

Optimum point

Starting point

Steps of an interior
point method

Figure 1. Typical search paths in the simplex and inte-
rior point methods.

Although the interior point method is appealing
because of its superior theoretical convergence char-
acteristics, in practice the simplex method is still
more widely used.
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An Introduction to the Modified Simplex
Method

In this section we introduce the strategies used in
meeting the first 2 objectives. The third objective of
finding an initial basic feasible solution can be easily
achieved and the method for doing so is described in
the section “Solution of the Optimization Problem”.

To enable the simplex method to find the op-
timal point in a polyhedron that extends into
the negative domain

The basic strategy to accomplish this objective is as
follows. Use the simplex method in the usual manner
on the section (portion) of the polyhedron that lies
in the positive domain to locate the optimal point
in this section. Then, if the search needs to go in
the negative domain, flip the section of the poly-
hedron that is of interest into the positive domain
and continue the search. The flipping can be ac-
complished by switching the sign of an optimization
variable through redefinition. The slack variables are
not allowed to switch. A record is kept of the switch
status of the optimization variables to report their
correct sign at the end of the solution.

Simplified Example 1 The purpose of this exam-
ple is to illustrate the above strategy graphically. To
do so, we assume that the polyhedron can be ex-
pressed in terms of the deviations. This assumption
is not required in the proposed method where the
polyhedron is expressed in terms of the deviations
and the control moves. Let us consider the following
objective function:

Minimize J = |e1|+ |e2| (1)

and assume that the polyhedron is a parallelo-
gram. This parallelogram in the e2 − e1 plane may

be as shown in Figure 2(a). The contours of the ob-
jective function are shown by the dotted lines and the
optimal point is labeled Point 2. Let us assume that
the search is to start from Point 1. For this position
of the parallelogram, the optimal point can be found
by searching only the section of the parallelogram
that lies in the positive domain (the first quadrant).
The sections that are in the negative domain (the
third and fourth quadrants) can be ignored, and the
search can move from Point 1 to Point 2 in one iter-
ation.

Now consider another position of the parallelo-
gram as shown by the solid lines in Figure 2(b). In
this case the optimal point is labeled Point 3 and is
not in the first quadrant. Again, let us assume that
the search is to start from Point 1. The search in
the first quadrant will go to Point 2 in one iteration.
At this iteration, the parallelogram can be flipped
around the e1 axis. The resulting position of the
parallelogram is shown by the dashed lines. Now the
search can be continued in the first quadrant from
Point 2 to Point 3′. Note that we do not need to
search the section of the parallelogram that now lies
in the second quadrant. Therefore, there is no need
to flip this section into the first quadrant. At this
time the sign of the e2 coordinate of Point 3′ can
be switched back to report Point 3 as the solution.
The switching of Point 3′ to Point 3 is not an iter-
ation because an iteration involves the selection of
pivot column and pivot row and then the pivoting
operation.

We will formulate an initial basic feasible solu-
tion such that at least a portion of the polyhedron
is brought into the positive domain for the search
to start. The procedure for determining when and
how to flip a section of the polyhedron that lies in
the negative domain is described in the sub-section
“When and How to Flip the Polyhedron”.

1

2
e1

e2

Contours

(a)

1

2

e2

Contours

(b)

3

3'

After flipping

Before flipping

e1

Figure 2. Movement of search (a) Point 1 to Point 2, (b) Point 1 to Point 2, Point 2 to Point 3′ and then switch Point
3′ to Point 3.
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To skip the unnecessary iterations involved in
the search.

This section introduces the basic strategy to accom-
plish the above objective. For the situation discussed
in Figure 2(b) above, the search moves from Point 1
to Point 3 in 2 iterations. One may ask: Is it possible
to go from Point 1 to Point 3 in one iteration? In
other words, is it possible to skip the middle itera-
tion and avoid the flipping of the polyhedron? The
answer to this question is yes. To do this, we need
to take a larger step than normally taken and allow
e2 to become negative temporarily. This means that
we have to modify the method used for selecting the
pivot rows. For a high dimensional problem, one can
skip (jump over) several such iterations simultane-
ously before flipping the polyhedron to continue the
search.

While skipping iterations, one needs to ensure
that the search does not jump over an optimal point
in its path. To see this consider Figure 2(a) again.
While moving from Point 1 towards Point 2, the
search should not jump over Point 2. Otherwise,
cycling may occur. The procedure for selecting the
pivot rows is described in the sub-section “Selection
of the Pivot Row”.

Optimization Problem

The proposed solution is applicable to optimization
problems where the objective is to minimize the error
in controlled variables subject to constraints on the
manipulated variables. A model predictive control
algorithm (MPC) is used where the error is mini-
mized at one point P steps ahead on the prediction
horizon. P is a tuning parameter and changing its
value is similar to changing the move suppression
factor in the dynamic matrix control (DMC) algo-
rithm. By increasing (decreasing) the value of P , a
slower (faster) response can be obtained. The value
of P can be different for each of the controlled vari-
ables. The controlled performance and robustness of
the MPC algorithm have been shown to be similar
to that of the DMC algorithm in many cases.

The objective function considered for minimiza-
tion is given below. This objective function has also
been considered by Maciejowski (2002) and Chang
and Seborg (1983).

J =
Ny∑
i=1

qi

Hp∑
j=Hw

|ei(k + j)| (2)

where
ei(k + j) = predicted error in the ith controlled out-
put at j steps ahead
Hp = prediction horizon
Hw = starting point on prediction horizon for mini-
mization of error
Ny = number of controlled outputs
qi = weight on the ith controlled output
k = current control instant.

The number of coincidence points (the points at
which the error is minimized) on the prediction hori-
zon for each of the outputs is given by

Np = Hp − Hw + 1 (3)

The total number of coincidence points, Npt, and the
total number of control moves into the future,Nmt,
are given by

Npt = Np × Ny (4)

Nmt = Hu × Nu (5)

where Hu is the control horizon and Nu is the num-
ber of control inputs (manipulated variables).

The predicted error vector to be minimized can
be written as

e = A∆u − ec (6)

where
A = Npt × Nmt : dynamic matrix
∆u = Nmt: dimensional vector of control moves
ec = Npt : dimensional vector of difference between
the set points and the free response due to past in-
puts (as used in the DMC algorithm).

Two forms have been used in the literature for
writing the dynamic matrix A (Seborg et al., 2004).
Any of these forms may be used as long as the other
vectors in Eq. (6) are consistent with it. Equation
(6) can be rearranged as follows to bring the un-
knowns to the left-hand side:

−A∆u + e = −ec (7)

The magnitude and velocity (rate) constraints on the
control inputs and constraints on the controlled and
other outputs are considered. The constraints on
the controlled and other outputs can be expressed in
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terms of constraints on the control moves by using
the relationships between them. It is assumed that
the current value of controls is in a feasible region
since the process is already there. Then all of these
constraints can be expressed through the following
matrix equation:

C∆u ≤ b (8)

where the b vector is non-negative. By introducing
slack variables, Eq. (8) can be written as

C∆u+ s = b (9)

where s is a vector of slack variables. Thus the opti-
mization problem to be solved at any control instant
is to minimize the objective function in Eq. (2) sub-
ject to the constraints given in Eqs. (7) and (9).
The optimization variables are ∆u’s and e’s. Differ-
ent names have been used in the literature for the
variables to be optimized, such as design variables
and decision variables.

Solution of the Optimization Problem

In this section we describe the modified simplex
method to solve the above optimization problem. A
summary of the main steps in the proposed solu-
tion is presented in the sub-section “Summary of the
Main Steps in the Proposed Solution”. The initial
basic feasible solution is formed at the current value
of controls by setting ∆u = 0. If the right-hand side
of any equation in matrix Eq. (7) is negative, it
is made positive by multiplying the equation by -1.
The coefficient of the e term changed by the mul-
tiplication is set back to 1 and its switch status is
changed from 1 to -1. (The switch status for the
optimization variables at any time is either 1 or -
1). Now we have an initial basic feasible solution
where the e’s of Eq. (7) and slack variables of Eq.
(9) are basic variables and ∆u’s are non-basic vari-
ables. Note that an initial basic feasible solution can
be found easily. Therefore, Phase 1 of the 2-phase
simplex method is not needed. Moreover, the initial
solution formed above ensures that at least a por-
tion of the polyhedron is brought into the positive
domain for the search to start. The starting value
of the objective function is calculated by summing
the above nonnegative values of e’s after these are
multiplied by their weight q from Eq. (2). To start
the search, the constrained derivatives of the objec-
tive function with respect to the nonbasic variables
can be calculated by using the coefficients from the

starting simplex tableau and the weights q’s. We
present a general expression for doing so, because
this expression will be used later in deciding when
to flip the polyhedron. The constrained derivatives
of objective function J with respect to the nonba-
sic variables at any iteration of the simplex method
are given by the following equation (Beightler et al.,
1979):

vi = ci −
Nb∑
j=1

cj αji, i = 1, 2, . . ., Nnb (10)

where
vi : constrained derivative of J with respect to the
ith nonbasic variable
ci: ith cost coefficient in the objective function
αji : coefficient in simplex tableau for jth basic vari-
able and ith nonbasic variable
Nb: number of basic variables
Nnb: number of nonbasic variables

The first term on the right-hand side of the above
equation comes from the partial derivative and rep-
resents the direct effect of perturbations in a non-
basic variable on objective function J . These per-
turbations require the basic variables to change so
that the constraint equations remain satisfied. The
changes in basic variables affect J . The summation
term adds this effect for each of the basic variables.
The negative sign is present because in writing an ex-
pression for a basic variable the other α’s will need
to be moved to the right-hand side of the tableau.
Note that the constrained derivatives are switched
in sign before being placed in the objective row of
the simplex tableau.

Now the iterations can be started in the usual
manner to find the optimal point in the section of
the polyhedron that lies in the positive domain. The
above method can be used in a problem of any di-
mension. Before we describe when and how to flip a
section of the polyhedron that lies in the negative do-
main, we first show it in an example. The dimension
of the coordinate system in which the search moves
equals the number of optimization variables consid-
ered. Therefore, to illustrate the solution graphically
on a 2-dimensional sheet of paper, we consider the
following simplified situation.
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Simplified Example 2

Let us consider a SISO case where the control hori-
zon Hu = 1 and there are lower and upper bounds
on the control move ∆u. The control move is to be
calculated by minimizing the absolute value of the
predicted error at a single point P steps ahead. In
this case, the optimization problem (Eqs. (2), (7)
and (8)) can be written as

Minimize J = |e| (11)

subject to

−aP∆u + e = −ec (12)

∆umin ≤ ∆u ≤ ∆umax (13)

where the values of ∆umax and ∆umin are up-
dated at every control instant using the narrower
range resulting from the 2 types of constraints. aP

is the PP th step response coefficient. Let us assume
that the right-hand side of Eq. (12) has already been
made nonnegative by using the procedure mentioned
before this sub-section. Now an initial basic feasible
solution (value of e) can be found by setting ∆u = 0
in Eq. (12). Equation (12) imposes an equality con-
straint. Therefore, the polyhedron to be searched
collapses into a line segment, which can be exam-
ined by plotting Eq. (12) on an e versus ∆u graph.
When the slope of this line is negative, the line may
appear as shown in Figure 3(a). The contours of
the objective function are horizontal lines, which are
not shown. In this case, the minimum value of e oc-
curs in the positive domain (the first quadrant) at
∆u = ∆umax and there is no need to search the line
segment that lies in the negative domain (the second
quadrant). The optimal solution can be found by
making one iteration of the simplex method where
∆u will increase from zero to ∆umax. The start and
end points in Figure 3(a) show the movement of the
search along the line segment. When the slope of

the line represented by Eq. (12) is positive, it may
appear as shown in Figure 3(b). In this case, the
minimum value of e occurs in the negative domain
(the second quadrant) at ∆u = ∆umin. The starting
solution (∆u = 0) is optimal if only the positive sec-
tion of the line segment is searched. However, since
∆u = 0, we need to consider its negative value. This
can be accomplished by flipping the line segment hor-
izontally (around the vertical axis). The resulting
situation is shown in Figure 3(c). Note that the new
limit on ∆u in the first quadrant is –∆umin, which is
positive. Now the search can move in one iteration
from the start point to the end point shown in Figure
3(c). Since the sign of the variable ∆u was switched
once during the search, the sign of the ∆u resulting
from the simplex method will need to be switched
back to a negative value. As seen, only one of the
limits on ∆u(∆umax or ∆umin) is needed at any time.
Therefore, only the limit ∆umax will be included in
Eqs. (8) and (9). The other limit will be brought
into consideration through the same equation when
needed. This will cut the number of constraints on
∆u (the velocity constraints) in half.

When and how to flip the polyhedron

We now return to the solution of the optimization
problem in Eqs. (2), (7), and (9) and describe when
and how to flip a section of the polyhedron that lies
in the negative domain.

The search conducted in the section of the poly-
hedron that is in the positive domain can stop at a
point where one or more of the optimization variables
(∆u’s and e’s) are zero. In a non-degenerate case,
this can occur when one or more of the optimization
variables are nonbasic variables. We then need to
determine if objective function J can be decreased
by switching the sign of these variables. This can
be done by calculating the new values of their con-
strained derivatives that will result after the switch.
If one of these new constrained derivatives switches

end
start

uumaxumin origin

e(a)

endstart

u- umin- umax origin

e(c)

end

start

umaxumin origin

e(b)

u

Figure 3. Movement of search when (a) optimum is in first quadrant, (b) optimum is in second quadrant, (c) optimum
is brought into first quadrant.
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sign, then objective function J could be decreased,
otherwise the search can be stopped. In a degenerate
case, variables can be exchanged before calculating
their new constrained derivatives or degeneracy may
be avoided in other ways.

We first consider the calculation of the new con-
strained derivative of objective function J with re-
spect to an optimization variable e. If we switch an
e, the second term in the right-hand side of Eq. (10)
also switches in sign because of the changed alphas.
However, the first term remains unchanged because
of the absolute value sign in the objective function.
We still want to minimize the value of e in its changed
form. Therefore, the new value of vi is given by

vinew = ci +
Nb∑
j=1

cjαji, i = 1, 2, . . ., Nnb (14)

By adding and subtracting ci on the right-hand
side, the above expression can be written in terms of
the current value of vi as follows:

vinew = 2ci − vicurrent, i = 1, 2, . . ., Nnb (15)

Therefore, the new value of the constrained
derivative that will result after the switching can be
easily predicted from the above equation. This equa-
tion can also be written in terms of the coefficients
in the objective row.

α(nRow, i)new = −2ci − α(nRow, i)current,
i = 1, 2, . . ., Nnb

(16)

where nRow = objective row
For the situation in Figure 2(a), the new con-

strained derivative with respect to e2 stays positive
and the search stops at Point 2. This can be checked
by flipping the parallelogram around the e1 axis.
However, for the situation in Figure 2(b), the new
constrained derivative becomes negative after flip-
ping the parallelogram and the search continues from
Point 2 to Point 3′. The cost coefficients of ∆u terms
in the objective function are zero. Therefore, for the
new constrained derivative of objective function J
with respect to a ∆u, the first terms in the right-
hand side of Eqs. (10), (14), (15), and (16) drop
out. Moreover, Eq. (15) indicates that whenever a
∆u is a nonbasic variable the new constrained deriva-
tive with respect to this variable will always switch
in sign. In such cases, the decision will always be to

flip the polyhedron. This situation is described in
the sub-section “Simplified Example 2”.

Once the decision to switch an optimization vari-
able e or ∆u is made, the polyhedron can be flipped
by reversing the sign of coefficients of the correspond-
ing column in all rows except the objective row. The
coefficient for the objective row is calculated from
Eq. (16). If a ∆u term is being switched, the row
containing velocity constraints for this variable needs
to be reset. The coefficient in the column for the
∆u is set back to 1 and the value in the right-hand
column is switched from its current value (toggled
between ∆umax and -∆umin) as indicated in the sub-
section “Simplified Example 2”.

Selection of the pivot row

At any iteration in the simplex method, a pivot col-
umn is selected. Then the rows (constraints) that are
in the path of the current move are examined to find
the steps that the rows allow. The steps are calcu-
lated by taking ratios of coefficients in the right-hand
column to coefficients in the pivot column. The row
that allows the smallest step is then selected as the
pivot row to prevent its basic variable from becom-
ing negative. As indicated in the section “An Intro-
duction to the Modified Simplex Approach”, we can
allow the optimization variables to become negative
temporarily so that we can take larger steps and skip
unnecessary iterations. In this study, only the e’s
were allowed to become negative in this manner. As
mentioned in the sub-section “To Enable the Simplex
Method to Find the Optimal Point in a Polyhedron
That Extends into the Negative Domain”, we are us-
ing only one side of the velocity constraints at any
time to cut down the number of these constraints by
half. Therefore, the ∆u’s were not allowed to become
negative by skipping their rows to avoid complexity
in the required adjustments. The e’s that are al-
lowed to become negative temporarily (by skipping
their row) will need to be made positive by redefini-
tion at the end of the iteration to bring the relevant
sections of the polyhedron into the positive domain.
This redefinition will contribute to an increase in the
value of objective function J and will offset the de-
crease produced in J due to the pivoting operation.
To select the pivot row in the proposed method, the
rows are sorted in an ascending order with respect to
the steps that are calculated in the simplex method.
The rows are then examined one at a time to check
if a row can be skipped. This examination is con-
tinued until a row is encountered that should not be
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skipped. This row is then selected as the pivot row.
A row may be skipped only if both of the following
conditions are met.

• The basic variable for the row is a deviation, e

• Jnext < Jcurrent

where Jcurrent and Jnext represent the final val-
ues of J that will result by pivoting the current and
the next row, respectively. For calculating the final
value of J for a row under examination, we need:

• The decrease in J that will result from pivoting
this row. This is the usual calculation made at
each iteration in the simplex method.

• The increase in J resulting from all of the rows
that this row skips (jumps over).

The amount, ∆e, by which a deviation, e, becomes
negative if its row is skipped is given by

∆e = (step taken − step skipped )× slope (17)

where slope is the coefficient in the skipped row
of the pivot column. Note that the slope represents
the change in the basic variable for a unit change in
the nonbasic variable. The validity of this expres-
sion can be checked by examining a simplex tableau.
The increase in J that this skipped row causes equals
2c∆e, where c is cost coefficient of the deviation in
the objective function. For example, if c = 1, switch-
ing back an e from –5 to 5 would increase J by 10
(2∗1∗5 = 10).

As mentioned above, the right-hand column for
each of the basic variables needs to be nonnegative at
the end of an iteration. Therefore, after the pivoting
operation, the following adjustment is needed. If an
e in the jth column was allowed to become negative,
all coefficients in the row for this e are reversed in
sign except the coefficient in the jth column (which
needs to be maintained = 1). The switch status for
this e is also changed. Note that the above proce-
dure is the same as mentioned in the formulation of
the initial basic feasible solution. From Eq. (10),
we see that this reversal in sign will affect the value
of the constrained derivatives. Therefore, the coeffi-
cients in the objective row are adjusted through the
following assignment statement:

α(nRow, i)− α(nRow, i) +
∑
j

cj αji,

i = (1, 2, . . ., Nnb) and nCol
(18)

where nCol = right-hand column
The second term in the right-hand side of the

above equation is multiplied by 2 because correction
= 2 times the error. The summation in the above
equation is carried over those rows whose e’s were
allowed to become negative.

Summary of the main steps in the proposed
solution

a. Formulate an initial basic feasible solution.

b. Pick the pivot column containing the largest α
in the objective row.

c. Pick the pivot row by using Conditions (a) and
(b) in the sub-section “Selection of the Pivot
Row”.

d. Perform the pivot operation.

e. Switch back the e’s that became negative and
use Eq. (18).

f. Is one of the α’s in the objective row positive?

If yes, pick the largest α and go to Step (c).

If no, use Eq. (16) to check if an α can be
made positive by switching a nonbasic variable
(e or ∆u).

If yes, pick the largest α, flip the polyhedron,
and go to Step (c).

If no, stop.

Performance

At any control instant, the task of the optimiza-
tion algorithm is to compute the control moves based
upon the ec vector supplied to it. A time-based run,
e.g., a response to a step change in set points, may
not force the optimization algorithm to test values of
ec in all of the regions around the origin. Moreover,
a time-based run involves other computations, e.g.,
the current outputs, the predicted trajectories due to
past inputs, and bias terms for feedback. These ad-
ditional computations will interfere in studying the
computational effort of the optimization algorithm.
Therefore, to test the performance of the proposed
optimization algorithm, we supplied different val-
ues of the ec vector to it directly through Eq. (7)
and computed the control moves. The values of ec
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were supplied so that they covered all of the regions
around the origin. Both magnitude and velocity con-
straints on the control inputs are considered in the
example problems.

The control moves were also computed by us-
ing the following 2 commonly used formulations that
convert the optimization problem in Eqs. (2), (7),
and (8) into an LP problem. The LP problem was
then solved by using the simplex method:

1. LP formulation by increasing the number of
constraints: In this formulation, the e vector is re-
placed by another vector, γ. The absolute values are
then handled by replacing Eq. (6) by the following
2 equations where the number of these constraints
becomes doubled:

γ ≥ (A∆u − ec) (19)

γ ≥ −(A∆u − ec) (20)

The ∆u vector is replaced by a nonnegative ∆û
vector by using the following expression:

∆u ≡ ∆û + ∆umin (21)

Then only the right-hand side of the constraints
on these variables is needed as follows:

∆û ≤ ∆umax −∆umin (22)

Since the number of constraints in this LP for-
mulation is more than the number of optimization
variables, the dual of the LP problem was solved. As
expected, the dual formulation required less compu-
tational effort. This dual LP formulation is referred
to as Algorithm 2 (Yash, 2004) in this paper and its
results are reported.

2. LP formulation by increasing the number of
variables: In this formulation, the optimization vari-
ables e’s are replaced by a difference of 2 nonnegative
variables in Eq. (7) and are thus doubled in number.
A sum of these nonnegative variables is then mini-
mized. The ∆u vector is replaced by a nonnegative
∆û vector in all equations as in the previous formu-
lation. This formulation is referred to as Algorithm
3 (Yash, 2004) in this paper.

All 3 optimization algorithms were programmed
using Matlab. The control moves calculated by

the proposed algorithm for implementation were the
same as those obtained by the other algorithms.
However, the computational effort required was dif-
ferent. Since the information on the number of
floating-point operations required was unavailable in
Matlab, a rough estimate of the computational effort
of the algorithms is given by reporting the number
of iterations and the computational times taken in
reaching the optimal solution.

The performance of the proposed algorithm is
presented in 2 example problems for the following
3 tuning configurations:

1. Hu > 1, Np > 1, Hw = 1
2. Hu = 1, Np > 1, Hw = 1
3. Hu = 1, Np = 1, Hw > 1
When the control horizon Hu = 1, the magnitude

and velocity constraints on the control inputs can be
combined into the same equation and expressed as
follows:

∆umin ≤ ∆u ≤ ∆umax (23)

This can be done by calculating the narrower
range of ∆u’s at every control interval that results
from the 2 types of constraints, and then supply-
ing the updated values of ∆umax and ∆umin to the
optimization algorithm. This helps in reducing the
number of constraints in the optimization problem.
Therefore, the second tuning configuration above
was included in the study. In addition, since the sin-
gle prediction controller provides further reduction
in the size of the optimization problem, the third
tuning configuration above was also studied.

Example Problem 1

In this example, a pilot-scale distillation column
(Wood and Berry, 1973) is considered, where the
open-loop transfer function between the control in-
puts and the controlled outputs is

G(s) =

[
12.8e−s

16.7s+1
−18.9e−3s

21s+1
6.6 e−7s

10.9s+1
−19.4e−3s

14.4s+1

]
(24)

Five values of set points (origin + 2 values on each
side of the origin) for each of the output variable were
considered. This resulted in 25 (52 = 25) sets of the
ec vector. In these sets, the values of ec for a particu-
lar output over the prediction horizon were the same
as its set point because the process was assumed to
be at steady-state. Control moves were calculated
for each of the 25 sets and each set represented a
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run. The average number of iterations for a run was
calculated by dividing the total number of iterations
by 25. Similarly, the average computational time for
a run was calculated by dividing the total time by
25. The values of set points, constraints, and other
parameters are as follows:

T = 1minN = 100|∆u| ≤ 0.05|u| ≤ 0.15q′s = 1

Five values of set points = (1 0.5 0 -0.5 -1)
The average numbers of iterations for a run are

shown in Table 1 and the average computational
times for a run are shown in Table 2. The proposed
algorithm provides a large reduction in the number
of iterations and in the computational time in the
first 2 cases. In the case of the single prediction con-
troller, since the number of iterations was very small,
there was no appreciable difference in the results of
the 3 algorithms.

Example Problem 2

In this example, the “Shell” heavy oil fractionators
(Prett and Morari, 1987) are considered, where the
open-loop transfer function between the control in-

puts and the controlled outputs is

G(s) =




4.05e−27s

50s+1
1.77 s−28s

60s+1
5.88e−27s

50s+1
5.39e−18s

50s+1
5.72 e−14s

60s+1
6.90e−15s

40s+1
4.38e−20s

33s+1
4.42 e−22s

44s+1
7.20

19s+1


 (25)

Three different values of set points (origin + one
value on each side of the origin) for each of the 3
output variables were considered. This resulted in
27 (33 = 27) different sets of the ec vector. The cal-
culations were performed as described for Example
Problem 1. The values of set points, constraints, and
other parameters are as follows:

T = 4minN = 65|∆u| ≤ 0.2|u| ≤ 0.5q′s = 1

Three values of set points = (0.5 0 -0.5)
The average numbers of iterations for a run are

shown in Table 3 and the average computational
times for a run are shown in Table 4. Again, the
proposed algorithm provides a large reduction in the
number of iterations and in the computational time
in the first 2 cases. In the case of the single pre-
diction controller, since the number of iterations was
very small, there was no appreciable difference in the
results of the 3 algorithms.

Table 1. Average number of iterations for a run (Example Problem 1).

Tuning parameters Proposed Algorithm Algorithm 2 Algorithm 3
Hu = 20
Np = 100 135 450 520
Hw = 1
Hu = 1
Np = 50 9 118 152
Hw = 1
Hu = 1
Np = 1 2 3 3
Hw = 5

Table 2. Average time for a run in milliseconds (Example Problem 1).

Tuning parameters Proposed Algorithm Algorithm 2 Algorithm 3
Hu = 20
Np = 100 932 9598 12430
Hw = 1
Hu = 1
Np = 50 16 474 553
Hw = 1
Hu = 1
Np = 1 1.1 1.1 1.2
Hw = 5
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Table 3. Average number of iterations for a run (Example Problem 2).

Tuning parameters Proposed Algorithm Algorithm 2 Algorithm 3
Hu = 10
Np = 65 185 531 614
Hw = 1
Hu = 1
Np = 50 35 184 243
Hw = 1
Hu = 1
Np = 1 3 5 4

Hw = 10

Table 4. Average time for a run in milliseconds (Example Problem 2).

Tuning parameters Proposed Algorithm Algorithm 2 Algorithm 3
Hu = 10
Np = 65 912 9915 10946
Hw = 1
Hu = 1
Np = 50 83 1563 1830
Hw = 1
Hu = 1
Np = 1 1.6 1.6 1.4

Hw = 10

Comments

• Because of the round-off error, epsilons are
needed in computer programs for deciding
when a number should be considered as a zero.
Some sensitivity in the results was observed to
the values of these epsilons.

• The proposed method uses a much smaller size
LP problem and skips Phase 1. One could
justify its computational advantage based on
these arguments. A verification of this advan-
tage has been provided by its application in 2
example problems.

• Most modern control packages use QP based
algorithms to solve the optimization problem
in MPC. Since the LP and QP based MPC
algorithms can be tuned to provide similar
control performance (Gillis, 1998), the com-
putational advantage offered by the proposed
method could improve the suitability of the LP
based algorithms for MPC. Small process con-
trol systems, common in many plants, can ben-
efit from faster algorithms.

• As mentioned in the introduction section, the

1-norm minimization problem arises in a num-
ber of fields and applications. This methodol-
ogy can also be adapted for other applications.

Conclusions

By using a simple modification, the simplex method
can find the optimal point in a polyhedron that ex-
tends into the negative domain. Thus the need to
increase the size of the LP problem to bring the
entire polyhedron into the positive domain is elimi-
nated. The unnecessary iterations in the search can
be skipped. The modifications presented can also be
used in problems other than the 1-norm minimiza-
tion problem.

The modified simplex method offers a significant
computational advantage over the conventional for-
mulations for the solution of 1-norm minimization
problems.

Nomenclature

aP change in output, P steps ahead due to a unit
step change in control input

ci ith coefficient in objective function
e deviation or error
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Hp prediction horizon
Hu control horizon
Hw starting point on prediction horizon for

minimization of error
J objective function
k current sampling instant
N model horizon, number of control intervals

in which the open-loop response settles.
Nmt total number of control moves (current and

future)
Np number of point at which the error is min-

imized for each output
Npt total number of coincidence points
Nu number of control inputs (manipulated

variables)
Ny number of controlled outputs (controlled

variables)

nCol right-hand column
nRow objective row
qi weight on the ith controlled variable
s slack variable
T control interval
∆u control move
∆umax upper bound on the control move
∆umin lower bound on the control move
vi ith constrained derivative of objective func-

tion

Greek letters

α coefficient in simplex tableau
γ new variable in LP formulation (algo-

rithm 2)
Bold face Indicates a vector or matrix
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