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Abstract

A cell-centered finite volume method with explicit dual time-stepping and a low Mach number precondi-
tioning technique is successfully applied to 2-dimensional Navier-Stokes equations for the numerical solution
of time-dependent flows ranging from near incompressible limit to high subsonic Mach numbers. Precondi-
tioning techniques have been widely used in order to remove the disparity between acoustic and convective
speeds that degrades the convergence rate noticeably at low subsonic Mach numbers. In dual time stepping,
a modified steady problem is solved by advancing in pseudo time at each physical time step. A multistage
explicit Runge-Kutta time-stepping scheme is used for marching in pseudo time. Convergence is accelerated
by means of local time stepping, residual smoothing, and multigrid. The accuracy of the time-accurate
Navier-Stokes solver is verified by comparing predictions of the Strouhal numbers for the Karman vortex
streets of the cylinder and of the blunt flat plate with the experimental data.
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Introduction

The simulation of time accurate flows at all speeds
is essential since many practical flows of engineering
interest are inherently transient and may range from
incompressible limit to supersonic speeds. It was
common to exploit “pressure-based” schemes for the
computation of incompressible flows and “density-
based” schemes for compressible flows. Today, flow
problems at all speeds can be handled by a well-
assessed flow solver employing a single solution algo-
rithm. A common practice for deriving a single so-
lution algorithm from “density-based” schemes is to
modify the Navier-Stokes equations via a low Mach
number preconditioning technique. The low Mach
number preconditioning technique resorts to multi-
plication of spatial derivatives by a suitable matrix
in order to equalize the eigenvalues and hence to al-
leviate the stiffness occurring when the flow speed is

very small in comparison to acoustic speed. How-
ever, preconditioning changes the original form of
the governing equations and breaks down the time
accuracy. Fortunately, time-accurate preconditioned
governing equations can be solved by means of a dual
time stepping approach (Jameson, 1991), where a
modified steady problem is solved at each physical
time step by advancing in pseudo time. In addi-
tion, the use of dual time stepping is beneficial in
the computation of viscous flows, where the smaller
time step is required for numerical stability due to
high aspect ratio cells existing in the computational
grid, since the use of dual time stepping allows the
physical time step not to be limited by the corre-
sponding values in the smallest cell and to be selected
based on the numerical accuracy criterion. Accelera-
tion techniques, such as local time stepping, implicit
residual smoothing and multigrid, which are devised
for steady flow computations, can be used to solve
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the modified steady problem as well.

In previous studies, preconditioning was applied
by adding a pseudo time derivative to the discrete
equation and by multiplying it by the precondition-
ing matrix (Dailey and Pletcher, 1996; Vatsa and
Turkel, 2003). In the current work, a new form of
dual time stepping for preconditioned time-accurate
governing equations is proposed. The resulting time
stepping scheme has a simpler form, since it has
considerably less matrix multiplication and no ma-
trix inversion. It also provides the conditions taken
into account in previous studies. The precondition-
ing matrix of Weiss and Smith (1995) is adopted.
Convective terms are evaluated using a central dif-
ferencing scheme (Jameson et al., 1981). The flux
vectors at the midpoint of a cell face are computed
by arithmetic averaging of flow variables at 2 neigh-
boring cells. The variables required for the compu-
tation of viscous terms are also averaged at a cell
face. Gradients at the midpoints of a cell face are
computed by means of Green’s theorem (Rizzi et al.,
1993). Preconditioned time-dependent equations are
integrated in pseudo time with a multistage explicit
Runge-Kutta scheme. Convergence is accelerated
by local time stepping (Arnone et al., 1995), resid-
ual smoothing (Jameson and Baker, 1983; Jameson,
1985a; Martinelli and Jameson, 1988) and multigrid.
A multigrid method based on a Full Approxima-
tion Storage (FAS) scheme (Jameson, 1983; Jame-
son, 1985b; Martinelli et al., 1986) is used together
with a Full Multigrid Algorithm (FMG) (Brandt,
1981).

The formulation, methodology, and validation
are presented in order to prove the efficiency of the
current flow solver for time-dependent flows. The
first test case involves low Reynolds number flows
past a cylinder at near incompressible and compress-
ible low subsonic flows. The second test case involves
high subsonic flow past a blunt flat plate. A sensitiv-
ity study is carried out including the effects of both
grid density and physical time step. Grid and time
step independent results are presented only. Predic-
tions of the Strouhal numbers for the Karman vortex
streets of the cylinder and of the blunt flat plate show
good agreement with numerical solutions (Belov et
al., 1995; Liu et al., 1998; Rogers and Kwak, 1990;
Massey and Abdol-Hamid, 2003) and experimental
data (Roshko, 1954; Willie, 1960; Heinemann et al.,
1976; Schlichting, 1979).

Governing Equations

Navier-Stokes equations are written in integral form
as ∫∫

Ω

∂ �C

∂t
dΩ+

∮
∂Ω

�F�ndS = 0, (1)

where Ω denotes the control volume surrounded by
the control surface ∂Ω. �C is the vector of conser-
vative variables. �F is the flux vector, which can be
split into a convective part �FC and a viscous part
�FV such that �F = �FC − �FV . �n = nx

�i + ny
�j is the

outward unit vector normal to the cell face ∂Ω.
The coefficient of laminar viscosity µL is com-

puted by the Sutherland formula. Assuming air as
an ideal gas, the equation of state is used to calculate
the pressure and temperature:

p = (γ − 1) ρ
[
E − u2 + v2

2

]
, T =

p

ρR
. (2)

γ is the ratio of specific heats and R is the gas con-
stant.

In the incompressible limit, the governing equa-
tions become stiff, since the convective speed is very
small in comparison to acoustic speed. This can be
shown by means of a condition number χ, which is
defined as the ratio of the largest to the smallest
convective eigenvalues of Eq. (1):

χ =
(ΛC)max

(ΛC)min

=
M + 1
M

(3)

When the condition number becomes large (i.e.
when M → 0), the wave propagation becomes less
efficient, since while the fastest wave is moving by
(ΛC)max the slowest wave moves by (ΛC)min . In or-
der to alleviate the stiffness, the governing equations
are transformed into a new form, whose convective
eigenvalues are equalized such that χ ≈ 1. The trans-
formation and its effect on convective eigenvalues are
shown with the aid of 1-dimensional Euler equations
in quasilinear form (Blazek, 2005).

∂ �W

∂t
+AC

∂ �W

∂x
= 0, (4)

where AC is the convective flux Jacobian. Transfor-
mation of Eq. (4) into a new form results in

T
∂ �Q

∂t
+ ACT

∂ �Q

∂x
= 0. (5)

T = ∂ �W
/
∂ �Q is the transformation matrix.

�Q =
[
p u v T

]T
is the vector of primitive vari-

ables. The matrix T in front of the time derivative
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is replaced by its modified form Γ such that (Mulas
et al., 2002)

∂ �Q

∂t
+ Γ−1ACT

∂ �Q

∂x
= 0. (6)

Transforming Eq. (6) from �Q to �W by means of
T−1 = ∂ �W

/
∂ �Q results in a preconditioned system

of equations:

∂ �W

∂t
+ PAC

∂ �W

∂x
= 0. (7)

P is the preconditioning matrix, which is defined as
P = TΓ−1. Convective eigenvalues of the precondi-
tioned system are computed from the matrix PAC.
Γ must be selected such that the convective eigenval-
ues are equalized and χ ≈ 1. In this work, the ma-
trix Γ, which is defined by Weiss and Smith (1995),
is used:

Γ =




ρm
P 0 0 0 ρT

ρm
P u ρ 0 0 ρT u

ρm
P v 0 ρ 0 ρT v

ρm
P w 0 0 ρ ρTw

Hρm
P − (1− ρhP ) ρu ρv ρw HρT + ρhT




(8)

where ρP , ρT , hP , hT are the derivatives of density
and enthalpy with respect to pressure and temper-
ature, respectively. Superscript m denotes for the
modified term.

ρm
P =

1
u2

r

− ρT

ρ̄hT
, (9)

where ur is the reference velocity, which is defined
as (Mulas et al., 2002)

ur = min

[
max

(∥∥∥�V ∥∥∥ , µL

ρ∆x
, ε

√
∆p
ρ̄

)
, c

]
. (10)

Equation (10) states that the reference velocity is
not allowed to go below local convection and diffu-
sion velocities and the velocity based on local pres-
sure gradient. ∆x is the characteristic length of the
cell. ε is a small number

(≈ 10−3
)
. c is the speed of

sound. When the flow is supersonic, the precondi-
tioning matrix becomes a unit matrix and the origi-
nal form of Navier-Stokes equations is recovered lo-
cally. Matrices T , Γ−1, P−1 and eigenvalues of the
preconditioned system for flow of an ideal gas are
presented in a previous work (Mulas et al., 2002).

Spatial Discretization

Following Eq. (7), preconditioned Navier-Stokes
equations are written in integral form as

∫∫
Ω

∂ �C

∂t
dΩ+ P

∮
∂Ω

�F�ndS = 0, (11)

The cell-centered finite volume method is used in or-
der to solve Eq. (11). Computational domain is di-
vided into quadrilateral control volumes (Figure 1).
In the cell-centered scheme, flow quantities are as-
sociated with the center of a control volume. The
finite volume method requires the evaluation of the
convective and viscous fluxes, which are assumed to
be constant along the individual cell face.

After writing Eq. (11) for all cells and employ-
ing the method of lines, where spatial and temporal
terms are discretized separately, a system of first-
order ODE is obtained (Jameson et al., 1981). Ap-
proximating the integrals with the mean value theo-
rem, Eq. (11) for a particular cell becomes

ΩI,J
d �CI,J

dt
= −�R

(
�CI,J

)
, (12)

where �R
(
�CI,J

)
is called the “residual,” which is de-

fined as

�R
(
�CI,J

)
= PI,J

4

Σ
ncf=1

(
�FC − �FV

)
ncf

(�n∆S)ncf .

(13)

I and J locate the particular cell and ncf identifies
cell faces. ∆S is the area of the cell face. In regions
where viscous effects are negligible, physical diffu-
sion is not adequate to prevent odd-even decoupling
of the cell-centered schemes. In order to remove odd-
even decoupling of the solution and oscillations near
shocks, stagnation points and boundary layer edges,
the artificial dissipation term �D is added to Eq. (13):

�R
(
�CI,J

)
= PI,J

4

Σ
ncf=1

[(
�FC − �FV

)
�n∆S − �DI,J

]
ncf

.

(14)
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Figure 1. Control volume (cell), control surface (cell
face) and auxiliary control volume.

The net dissipation flux through the faces of a
particular cell is calculated as (Jameson et al., 1981)

4

Σ
ncf=1

�D = �DI+1/2,J − �DI−1/2,J + �DI,J+1/2 − �DI,J−1/2.

(15)

The dissipation flux at the cell face AB (Figure 1)
is defined as

�DI+1/2,J =

αI+1/2,JP−1
I+1/2,J

�
ε
(2)
I+1/2,Jδ

(1)
I

�CI,J − ε
(4)
I+1/2,Jδ

(3)
I

�CI,J

�
,

(16)

where

P−1
I+1/2,J =

(
P−1

I,J + P−1
I+1,J

)/
2. (17)

δ(1) and δ(3) are 1st and third-order difference oper-
ators, respectively. ε(2) and ε(4) are the coefficients
of second and fourth difference types, respectively. α
is a scaling factor, which is written for I direction as
(Blazek, 1994)

αI+1/2,J =
[(
ΛI

c

)
I,J

+
(
ΛI

c

)
I+1,J

]/
2, (18)

where

ΛI
C =

[(
M2

r + 1
)

2

∣∣∣�V �n∣∣∣+
1
2

√(
�V �n
)2

(M2
r − 1)2 + 4u2

r

]
∆SI .

(19)

ΛC is the spectral radius of the convective flux Jaco-
bian. Mr = ur/c is the reference Mach number and
c is the local speed of sound.

Convective fluxes are evaluated by means of a
central differencing scheme (Jameson et al., 1981).

The total flux at the cell face AB (Figure 1) is ap-
proximated by

(�F�n∆S)I+1/2,J = [ �FC(�CI+1/2,J)−

�FV (�UI+1/2,J)](�n∆S)I+1/2,J,

(20)

where

�CI+1/2,J =
(
�CI,J + �CI+1,J

)/
2 and

�UI+1/2,J =
(
�UI,J + �UI+1,J

)/
2

(21)

�U represents the flow variables ũ, ṽ, k̄, µ̄, which are
required for the computation of the viscous terms
and of the stresses. Gradients at the midpoint of
the cell face BC are evaluated using Green’s theo-
rem with the aid of an auxiliary control volume ΩBC

(Figure 1), which is defined by the curve A′B′C ′D′

(Rizzi et al., 1993). The derivative of temperature
with respect to y coordinate is calculated as(

∂T

∂y

)
BC

=
1

ΩBC

∫∫
Ω

(
∂T

∂y

)
dΩ =

1
ΩBC

∫
∂Ω

TdSBC
y ≈ 1

ΩBC

4∑
ncf=1

(
T∆SBC

y

)
ncf

,

(22)

where

ΩBC =
1
2
(ΩI,J + ΩI,J+1) . (23)

Temperature at cell faces is obtained as cell-
centered values. The use of Eq. (22) yields a second-
order accurate scheme for smoothly stretched grids.

Time Stepping

Equation (7) states that preconditioning requires the
multiplication of spatial derivatives by the matrix
P . This changes the original form of the govern-
ing equations and breaks down the time accuracy.
Fortunately, time-accurate preconditioned equations
can be solved by means of dual time stepping ap-
proach (Jameson, 1991). In previous studies, pre-
conditioning was applied by adding a pseudo time
derivative to the left-hand side of the discrete equa-
tion and by multiplying it by the matrix P−1 (Dailey
and Pletcher, 1996; Vatsa and Turkel, 2003);

ΩI,JP
−1
I,J

d �CI,J

dτ
+ΩI,J

d �CI,J

dt
= −�R

(
�CI,J

)
, (24)
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where

�R
(
�CI,J

)
=

4

Σ
ncf=1

[(
�FC − �FV

)
�n∆S − �DI,J

]
ncf

.

(25)

τ is the pseudo time. Discretizing Eq. (24) with
second-order time accurate, 3 point backward differ-
ence formula (BDF) for the physical time derivative
and with first-order accurate BDF for the pseudo
time derivative results in

ΩI,J

(
�Ck+1

I,J − �Ck
I,J

∆τI,J

)
= −PI,J

�R∗
(
�Cn+1

I,J

)
, (26)

where

�R∗
(
�Cn+1

I,J

)
= �R

(
�Cn+1

I,J

)
+

3ΩI,J

2∆t
�Cn+1

I,J − �QI,J .

(27)

�R∗ is called the unsteady residual. The superscripts
indicate time level. �QI,J involves the terms that are
invariant through the time stepping:

�QI,J =
ΩI,J

2∆t

(
4 �Cn

I,J − �Cn−1
I,J

)
(28)

Time stepping in Eq. (26) is carried out using the
M-stage Runge-Kutta (R-K) scheme, which is given
as

�C
(0)
I,J = �C

(k)
I,J

...(
I + αm

3
2

∆τI,J

∆t
PI,J

)
�C

(m)
I,J = �C

(0)
I,J−

αm
∆τI,J

ΩI,J
PI,J

�R∗
(
�C

(m−1)
I,J

)
+ αm

3
2

∆τI,J

∆t PI,J
�C

(m−1)
I,J

...
�C

(k+1)
I,J = �C

(M)
I,J

,

(29)

where m = 1, 2, ...M . I is the identity matrix. Solu-
tion of Eq. (29) requires performing 3 matrix multi-
plications and 1 matrix inversion at each R-K stage.

In this work, preconditioning is applied by adding
a pseudo time derivative to the left-hand side of Eq.
(12):

ΩI,J
d �CI,J

dτ
+ΩI,J

d �CI,J

dt
= −�R

(
�CI,J

)
, (30)

where

�R
(
�CI,J

)
= PI,J

4

Σ
ncf=1

[(
�FC − �FV

)
�n∆S − �DI,J

]
ncf

.

(31)

Discretizing Eq. (30) with second-order time accu-
rate, 3 point BDF for the physical time derivative
and with first-order accurate BDF for the pseudo
time derivative results in

ΩI,J

(
�Ck+1

I,J − �Ck
I,J

∆τI,J

)
= −�R∗

(
�Cn+1

I,J

)
. (32)

�R∗ has the same form as that given in Eq. (27),
whereas the residual �R is calculated by Eq. (31).
Using the M-stage Runge-Kutta (R-K) scheme with
the point-implicit calculation of the unsteady terms
(Melson et al., 1993), the explicit time stepping reads

�C
(0)
I,J = �C

(k)
I,J

...
�C

(m)
I,J

(
1 + αmβ

3
2

∆τI,J

∆t

)
= �C

(0)
I,J−

αm
∆τI,J

ΩI,J

�R∗
(
�C

(m−1)
I,J

)
+ αmβ

3
2

∆τI,J

∆t
�C

(m−1)
I,J

...
�C

(k+1)
I,J = �C

(M)
I,J

(33)

where m = 1, 2, ...M . β ≥ 2 is adopted to stabilize
the scheme (Venkatakrishnan and Mavriplis, 1996).

The use of dual time stepping proposed in Eq.
(33) is advocated by 3 issues. First, as stated in Eq.
(7), the multiplication of P by spatial derivatives
only is sufficient to equalize the convective eigenval-
ues. Second, for both time stepping schemes pre-
sented in Eq. (29) and Eq. (33), pseudo time steps
are calculated using the same matrix, which is ob-
tained from the multiplication of the preconditioning
matrix by convective flux Jacobian. Third, regard-
ing the time stepping in Eq. (29), Vatsa and Turkel
(2004) suggest turning off the preconditioning in the
update stage and including the effect of precondi-
tioning only in the artificial dissipation, in case the
physical time step is sufficiently small. As can be
seen in Eq. (33), the proposed time stepping scheme
satisfies their suggestion by itself and requires no fur-
ther treatment. Moreover, Eq. (33) has a simpler
form than Eq. (29), since it has only 2 matrix mul-
tiplications (one for scaling artificial dissipation and
the other for equalizing eigenvalues) and no matrix
inversion at each R-K stage. Table 1 presents op-
timized Runge-Kutta coefficients for maximum sta-
bility of a centrally discretized scheme (Vatsa and
Turkel, 2004).

215



UYGUN, KIRKKÖPRÜ

Table 1. Optimized stage coefficients.

Central Differencing Scheme
m 1 2 3 4 5
α 0.25 0.18 0.40 0.51 1.00

The convergence rate of the explicit time-
stepping scheme is accelerated by local time step-
ping (Arnone et al., 1995) and residual smoothing
(Jameson and Baker, 1983; Jameson, 1985a; Mar-
tinelli and Jameson, 1988) and multigrid. A multi-
grid method based on a Full Approximation Stor-
age (FAS) scheme (Jameson, 1983; Jameson, 1985b;
Martinelli et al., 1986) was implemented together
with a Full Multigrid Algorithm (FMG) (Brandt,
1981). In this work, a V-cycle procedure with 3
grid levels is used to execute the multigrid strat-
egy. The preconditioned residuals are used through-
out the process. One Runge-Kutta time step before
the restriction and no Runge-Kutta time step after
prolongation are done on a fine grid. Robustness
of the multigrid scheme is improved by performing
2 Runge-Kutta time steps on the coarse grid, and
3 on all coarser grids. Residuals and flow variables
are restricted from fine to coarse grid by a weighted
average. A forcing function is introduced into the
time-stepping scheme. Solution corrections are pro-
longated from coarse to fine grid by bilinear inter-
polation. Implicit smoothing of solution corrections
with constant coefficients is used in order to damp
the high frequency errors, which are introduced by
interpolation of the solution corrections. The FMG
method is applied to provide an initial solution for
the fine grid. The artificial dissipation model with
constant coefficient, second-order differences is used
on the coarse grids to reduce computational effort.
The same Courant-Friedrichs-Lewy (CFL) number is
used on all grids so that larger time steps are used
on coarser grids. The viscous terms in Navier-Stokes
equations are computed on coarse grids too.

Boundary Conditions

Boundary conditions on all grid levels are treated
in the same way. Two layers of ghost cells are uti-
lized. The velocity components are zero (no slip) at
the solid wall. The wall pressure is obtained by ex-
trapolation from the interior domain. The normal
derivative of temperature is zero (adiabatic wall).
A continuity condition is enforced along the wake
cut. A characteristic boundary condition is applied
to farfield boundaries (Vatsa and Turkel, 2004).

Computational Results

The numerical results given here demonstrate the ac-
curacy and computational efficiency of the present
preconditioned Navier-Stokes solver for the compu-
tation of time-accurate laminar flows. Test cases for
the accuracy assessment are the flows past a circu-
lar cylinder and past a blunt flat plate. For both
cases, the flow is in the laminar regime and started
from steady conditions. Multigrid calculations are
first done on coarse grid level to speed up the vortex
shedding instability, and then fine grid computations
are performed with a smaller time step. A V-cycle
procedure with 3 grid levels is used in all computa-
tions in order to execute the multigrid strategy. The
induced vortices are shed from upper and lower sur-
faces successively, resulting in the well-known Kar-
man vortex street. The Strouhal number, which is a
dimensionless frequency, is given by St = f (D/U),
where Dis the diameter, U is the free stream veloc-
ity, and f is the frequency of the vortex shedding.
For both test cases, a sensitivity study is carried out
including the effects of both grid density and phys-
ical time step. Grid and time step independent re-
sults are presented only. The convergence criterion
in pseudo time is based on L2 norm of density and
was set to 10−4. Computations were done on a PC
with 1 Gbyte memory, operating Windows XP.

Flow past a circular cylinder

Near incompressible (M = 0.05 and M = 0.1) and
compressible (M = 0.3) low subsonic flows past a
circular cylinder are studied first. For all cases, the
Reynolds number, which is based on the free-stream
velocity and the cylinder diameter, is 200. A phys-
ical time step, which corresponds to about 50 steps
for each period of vortex shedding, is used to obtain
time independent solutions. A smaller physical time
step results in a faster convergence rate in pseudo
time. Larger time steps fail to resolve flow prop-
erties. An O-type computational grid with 256 ×
128 cells is used in all computations (Figure 2). The
spacing between the first grid point and the solid
surface is 0.002D. The farfield boundary is located
20 diameters away from the cylinder.

Figures 3a-d present a typical convergence his-
tory and the time evolution of aerodynamic forces.
Figure 4a presents the convergence rates in pseudo
time for preconditioned and non-preconditioned
schemes. When a small physical time step is used,
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preconditioning does not improve the convergence
rate significantly, since the CPU time required for a
pseudo time step gained due to preconditioning is not
significant in comparison to the non-preconditioned

scheme. However, the numerical accuracy is im-
proved, since the artificial dissipation is scaled. The
gain in overall computational time may be improved,
if the residual is to be reduced more than 4 levels.

(a) (b)

Figure 2. Computational grid (a) global view (b) close-up view.

Iteration in Pseudo-time
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Figure 3. Typical convergence rate and time evolution of aerodynamic forces.

217



UYGUN, KIRKKÖPRÜ

Iteration in Pseudo-time
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Figure 4. Convergence rates in a physical time step.

Table 2. Comparison of results, Re = 200.

Present
Belov Liu Rogers Wille
et al. et al. et al. (Exp.)

Strouhal Number
M = 0.05 0.197

0.193 0.192 0.185 0.19M = 0.1 0.194
M = 0.3 0.192

Cl
M = 0.05 ±0.701

±0.64 ±0.69 ±0.65M = 0.1 ±0.665
M = 0.3 ±0.639

Cd
M = 0.05 1.11 ± 0.04

1.19 ±0.042 1.31 ±0.049 1.23 ±0.050 1.30M = 0.1 1.11 ± 0.041
M = 0.3 1.15 ± 0.04

Figure 4b presents the convergence rates of the
preconditioned scheme in pseudo time for small and
large time steps. A large time step is obtained
by doubling the small time step. A smaller phys-
ical time step results in a faster convergence rate
in pseudo time. Isomach contours during 1 cycle of
the Karman vortex shedding are plotted in Figure 5.
t/T = 0 and t/T = 1 correspond to the locations in
time where a maximum value of lift is calculated.
The computed Strouhal number and aerodynamic
coefficients agree with numerical solutions and ex-
perimental data given in Table 2. As the Mach num-
ber decreases, the Strouhal number and lift slightly

increase.

Flow past a blunt flat plate

The capability of the present solver for handling wide
range of flow speeds is assessed by calculating from
low subsonic (M = 0.43) to high subsonic (M = 0.8)
compressible flows past a flat plate. The flat plate
has end caps, whose diameter is 1 m. The ratio of
diameter to plate length including end caps is 0.03.
An O-type computational grid with 680 × 192 cells
is used in all computations (Figure 6).

Table 3. Comparison of results.

Strouhal Num.
M∞ = 0.43 M∞ = 0.61 M∞ = 0.80

Rel = 5.3x105 Rel = 6.5x105 Rel = 7.5x105

Present 0.193 0.185 0.172
Massey et al. 0.246 0.211 0.190
Heinemann et al. (Exp.) 0.196 0.189 0.178
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t/T=0.00

t/T=0.25

t/T=0.50

t/T=0.75

t/T=1.00

Figure 5. Isomach contours during one cycle of the Karman vortex shedding (M = 0.1, Re = 200).
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Figure 6. Computational grid (close-up view).
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Figure 7. Aerodynamic forces and isomach contours past a flat plate (M = 0.61).

The spacing between the first grid point and the
solid surface is 0.001D. The farfield boundary is lo-
cated at a distance of 15 plate lengths. A physi-
cal time step, which corresponds to about 70 steps
for each period of vortex shedding, is used to ob-
tain time independent solutions. Table 3 presents
the Reynolds numbers, which are based on the free-
stream velocity and the plate length. Predictions
of the Strouhal numbers agree well with the exper-

imental data (Heinemann, 1976). Figures 7 and 8
indicate the isomach contours. The fore and aft sep-
aration and vortex street formation are evident and
they agree with the simulated Schlieren experimen-
tal results presented by Massey and Abdul-Hamid
(2003). Although a coarser grid is used here, calcu-
lated Strouhal numbers are in better agreement with
experimental data in comparison to those calculated
by Massey and Abdul-Hamid (2003).
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Figure 8. Isomach contours at leading and trailing edges (M = 0.61).

Conclusions

The capability of an existing density based solver,
which incorporates a low Mach number precondi-
tioning and dual time stepping method to accu-
rately calculate time-accurate flows at wide range
of Mach numbers, was investigated. The present
code implements a proposed time stepping scheme
and works efficiently in solving near incompressible
as well as compressible subsonic flows with time ac-
curacy. Computational results agree well with the
experimental data. When the physical time step is
sufficiently small, the preconditioning technique does
not improve the convergence significantly. However,
the solution accuracy is improved owing to scaled
artificial dissipation. The CPU time per pseudo
time step for the preconditioned scheme is almost
the same as that for the non-preconditioned one.
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Nomenclature

�C vector of conservative variables;
c speed of sound;
�D dissipation flux vector;
D cylinder diameter;
f frequency of vortex shedding;
�F flux vector;

�FC convective flux vector;
�FV viscous flux vector;
�i,�j unit vectors associated with the carte-

sian coordinates;
Mr reference Mach number;
�n outward unit normal vector;
p pressure;
ρ density;
R gas constant;
�R residual;
�R∗ unsteady residual;
T temperature, transformation matrix;
u, v velocity components;
x, y cartesian coordinates;
t physical time;
P preconditioning matrix;
�Q source vector, vector of primitive vari-

ables;
ur reference velocity;
�V velocity vector;
α scaling factor, stage coefficient of

Runge-Kutta time stepping;
β constant parameter;
δ(1), δ(3) first- and third-order difference opera-

tors;
∆S face area;
∆t physical time step;
∂Ω control surface;
Γ modified form of the transformation

matrix;
γ ratio of specific heats;
ε(2) coefficient for artificial dissipation of

second difference type;

221



UYGUN, KIRKKÖPRÜ

ε(4) coefficient for artificial dissipation of fourth
difference type;

µ viscosity coefficient;
Ω control volume.

Superscripts

I, J cartesian coordinate directions;
k pseudo time step counter;
n physical time step counter;
* unsteady terms.

Subscripts

C, V convective and viscous terms;
I, J cell indices;
L laminar quantity;
m stage number in Runge-Kutta time step-

ping.
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