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Abstract

This paper presents a numerical investigation of the natural heat transfer problem of a micropolar
boundary layer flow near a vertical surface with constant heat flux. The governing equations are solved
numerically using McCormack’s technique. Many results are obtained and a representative set is displaced
graphically to illustrate the influence of the various physical parameters on the velocity profiles, rotation
profiles, and transient wall coefficient of friction. It was found that the temperature increases inside the
boundary layer for the micropolar flows, as compared to the Newtonian flows. Moreover, increasing the
vortex viscosity parameter increased the rotation inside the boundary layer, which has a propensity to
increase the coefficient of friction and to decrease the local Nusselt numbers. Comparisons with previously
published work in the limits are performed and the results are found to be in excellent agreement.
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Introduction

In recent years, the dynamics of micropolar fluids has
been a popular area of research. As fluids consist of
randomly oriented molecules and as each volume el-
ement of the fluid has translation as well as rotation
motions, the analysis of physical problems in these
fluids has revealed several interesting phenomena not
found in Newtonian fluids. The theory of microp-
olar fluids and thermo micropolar fluids developed
by Eringen (1966, 1972) can be used to explain the
characteristics in certain fluids such as exotic lubri-
cants, colloidal suspensions, or polymeric fluids, liq-

uid crystals and animal blood. The micropolar fluids
exhibit certain microscopic effects arising from local
structure and microrotation of fluid elements. An ex-
cellent review about micropolar fluid mechanics was
provided by Ariman et al. (1973, 1974).

In the past decades, researchers have focused
mainly on the heat transfer of micropolar fluid flow
over flat plates (Ahmadi, 1976; Gorla et al., 1983;
Agarwal and Dhanapal, 1988) or regular surfaces
(Lien et al., 1986, 1990). Yao (1983) studied natural
convection heat transfer from wavy surfaces. Cheng
and Wang (2000) studied the effect of wavy surfaces
on micropolar fluids’ forced convection heat transfer,
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and they found that increasing the micropolar fluid
parameter results in decreasing heat transfer rates
and increasing local coefficient of friction and hydro-
dynamic and thermal boundary layer thicknesses.

More recently, Bhargava and Takhar (2000) stud-
ied the micropolar boundary layer near a stagnation
point on a moving wall; it was found that the temper-
ature increases inside the boundary layer compared
to the Newtonian flows. Mansour et al. (2000) stud-
ied heat and mass transfer effects on the magneto-
hydrodynamic flow of micropolar fluid on a circular
cylinder with uniform heat and mass flux, and the
results indicated that micropolar fluids display a re-
duction in drag as well as heat transfer when com-
pared with Newtonian fluids. Kelson and Desseaux
(2001) set self-similar solutions for the boundary
layer flow of micropolar fluids driven by a stretching
sheet with uniform suction or blowing through the
surface. Ibrahim and Hassanien (2001) obtained lo-
cal similarity solutions for mixed convection bound-
ary layer flow of a micropolar fluid on horizontal flat
plates with variable surface temperature. Kim and
Lee (2003) performed analytical studies on MHD os-
cillatory flow of a micropolar fluid over a vertical
porous plate, and the effects of non-zero values of
micro-gyration vector on the velocity and temper-
ature fields across the boundary layer were studied
using small perturbation approximation. Elbarbary
and Elgazery (2004) studied the effect of thermal ra-
diation and variable viscosity and thermal conduc-
tivity on micropolar fluids using the Chebshev finite
difference method. The results showed that the vari-
able viscosity and thermal conductivity in the pres-
ence of thermal radiation had significant influences
on the velocity, the angular velocity and tempera-
ture profiles, shear stress, couple shear stress, and
Nusselt numbers.

The aim of the present work was to analyse the
transient and steady natural convection heat trans-
fer problems adjacent to a vertical finite plate for
incompressible, micropolar fluid with constant heat
flux. The governing equations are written in their di-
mensionless forms using a set of dimensionless vari-
ables and solved numerically using McCormack’s
technique. Numerical results of velocity profiles, mi-
crorotation profiles, temperature profiles, local co-
efficient of friction and local Nusselt numbers under
the effect of vortex viscosity parameter, spin gradient
viscosity parameter, material parameter and micro-
gyration parameter are presented in graphs and ta-
bles.

Mathematical Formulation

Consider laminar free convection boundary layer flow
of micropolar fluid above a heated vertical plate with
prescribed wall heat flux in an unsteady manner.
The problem is described in a rectangular coordi-
nate system attached to the plate such that the x-
axis lies along the plate surface and y-axis is normal
to the plate (Figure 1). It is assumed that at time
t̄ ≤ 0 the temperatures of the plate and the micropo-
lar fluid are maintained at the constant temperature
T∞, and at time t̄ > 0 heat is supplied to the plate at
a constant rate. The continuity, momentum, micro-
rotation and energy equations under boundary layer
approximations can be written as follows:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (1)

ρ

(
∂ū

∂t̄
+ ū
∂ū
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∂2T
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with the following initial and boundary conditions:

t̄ ≤ 0, ū = 0, v̄ = 0, ω̄ = 0, T = T∞ for all x̄ ≥ 0, ȳ ≥ 0

t̄ > 0,

8>><
>>:

ū = 0, v̄ = 0, ω̄ = 0, T = T∞ for x̄ = 0, ȳ ≥ 0
ū = 0, v̄ = 0, ω̄ = −n(∂ū/∂ȳ),
q = −k(∂T/∂ȳ) for ȳ = 0, x̄ ≥ 0
ū = 0,ω̄ = 0, T = T∞ for ȳ → ∞

(5)

In the boundary condition for microrotation vari-
able ω̄, which defines its relation with the surface
shear stress, the parameter n is a number between
0 and 1 that describes the microrotation vector to
the shear stress at the wall. The value for n = 0
corresponds to the case where the particle density is
sufficiently large so that microelements close to the
wall are unable to rotate. The value of n = 0.5 rep-
resents a weak representation of the microelements
and the value of n = 1.0 corresponds to the turbulent
flow inside boundary layers of microrotation. Define
the non-dimensional variables as
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Figure 1. Schematic diagram for flow model and coordi-
nate system.

t = Gr1/2(υ/L)t̄, x = x̄/L, y = Gr1/4(ȳ/L) (6)

u = Gr−1/2(υ/L)ū, v = Gr−1/4(υ/L)v̄,
θ = k(T − T∞)/qL (7)

Substituting Eqs. (6) and (6) into Eqs. (1) to (4)
gives

∂u

∂x
+
∂v

∂y
= 0 (8)
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+ v
∂u

∂y
= (1 + R)

∂2u

∂y2
+ R

∂ω

∂y
+ θ (9)

∂ω

∂t
+ u
∂ω

∂x
+ v
∂ω

∂y
= R.B

(
−∂u
∂y

− 2ω
)
+ λ
∂2ω

∂y2

(10)

∂θ

∂t
+ u

∂θ

∂x
+ v
∂θ

∂y
=

1
Pr
∂2θ

∂y2
(11)

with the corresponding boundary conditions:

t ≤ 0, u = 0, v = 0, ω = 0, θ = 1 for allx ≥ 0, y ≥ 0

t > 0,

8>><
>>:

u = 0, v = 0, ω = 0, θ = 0 forx = 0, y ≥ 0
u = 0, v = 0, ω = m(∂u∂y),
(∂θ/∂y) = −1 fory = 0, x ≥ 0
u = 0, ω = 0, θ = 0fory → ∞

(12)

where L is the characteristic length of the plate,
R = κ/µ is the vortex viscosity parameter, B =
L2

/
jGr1/2 and λ = γ/µj are dimensionless material

parameters, m is the dimensionless micro-gyration
vector, Pr = µcp/k is the Prandtl number, and
Gr = gβ(Tw − T∞)L3

/
υ2 is the Grashof number.

The values of local coefficient of friction and local
Nusselt numbers are given by

CfGr
3/4 = (1 + R)

∂u

∂y

∣∣∣∣
(x,0,t)

+ R ω|(x,0,t) (13)

NuGr−1/4 =
1
θ

∣∣∣∣
(x,0,t)

(14)

The boundary layer equations describe the conserva-
tion of mass; momentum, microrotation and energy
are formulated and solved in their time-dependent
formulation using McCormack’s technique, which is
an explicit finite difference technique and a second
order accuracy in space and time. The details of this
solution are clearly explained by Anderson (1995).
The numerical solution used is a time marching tech-
nique giving the downstream velocity microrotation
and temperature profiles using the known upstream
profiles. In the present work the above quanti-
ties were calculated by obtaining explicitly the flow
field variables at grid point (i, j) at time t + ∆t
from the known flow field variables at grid points
(i, j),(i+1, j),(i−1, j), (i, j−1) and (i, j+1) at time
t. The flow field variables at all other grid points at
time t +∆t are obtained in a similar fashion. Then
the local coefficient of friction and local Nusselt num-
bers are calculated from Eqs. (12) and (13). In order
to verify the accuracy of the present method a com-
parison of results with similarity solutions presented
in Kayes and Crawford (1980) is shown in Table 1
for the steady laminar free convection over a vertical
plate of Newtonian fluids. The comparison reveals
excellent agreement.

Results and Discussion

The transient laminar free convection heat transfer
effects from the vertical surface of micropolar fluids
are studied. The governing equations are written
in dimensionless form using a set of variables and
then solved using a finite difference technique. The
micropolar fluid effects on this problem are found
to be proportional to material parameters and vor-
tex viscosity parameter. The material parameter
B = L2

/
jGr1/2 is found to be proportional directly

to the length of the plate and inversely to microro-
tation density and Grashof number, while the ma-
terial parameter λ = γ/µj is directly proportional
to the spin-gradient viscosity and inversely to abso-
lute viscosity and microrotation density. Note that
the material parameters’ effects of micropolar fluid
decrease as the Gr or buoyancy effect increases.
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Table 1. Correspondence between the values of NuxGr
−1/4
x for various Prandtl numbers for the present code and that

presented in Kayes and Crawford (1980).

Pr 0.01 0.1 0.72 1.0 10 100 1000

NuxGr
−1/4
x

Present code 0.0680 0.195 0.408 0.455 0.926 1.73 3.13
[19] 0.0669 0.189 0.406 0.457 0.931 1.74 3.14

Figure 2a-c shows the dimensionless steady veloc-
ity profiles u(x, y, t), temperature profiles θ(x, y, t)
and rotation profiles ω(x, y, t) for different vortex
viscosity parameter R = 0, 1, 2, 5 and for cer-
tain values of B = 0.5,Pr = 1.0, λ = 5.0, m =
0.0 and x = 0.5. The increasing of the vortex viscos-

ity parameter increased the velocity and temperature
inside the boundary layer and broadened the hydro-
dynamic and thermal boundary layer thicknesses and
increased rotation and rotation boundary layer thick-
ness. This is due to extra mixing of fluid layers due
to the new used shear stress. Figure 3a-c shows the
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Figure 2. a, b, c, Dimensionless velocity, temperature and angular velocity profiles, respectively, for different values of

vortex viscosity parameter R and for certain values of B = 0.5,Pr = 1.0, λ = 5, m = 0 and x = 0.5.

228



DAMSEH, AL-AZAB, SHANNAK, AL HUSEIN

  2 

  1 

  0 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x 

 R = 5 
B  = 0.5 
Pr = 1.0 
λ  = 5.0 

m = 0.0 b 

4/3GrC f 

4/3GrC f

 R = 5 

  2 

  1 

  0 

0 4 8 12 16 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

t 

B  = 0.5 
Pr = 1.0 
λ  = 5.0 

m = 0.0 

a 

4/1−NuGr 

R = 0, 1, 2, 5 

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t 

B  = 0.5 
Pr = 1.0 
λ  = 5.0 

m = 0.0 c 

 

 

 

 

 

 

 

 

 

 
Figure 3. a, b, c, Local coefficient of friction and Nusselt numbers for different values of vortex viscosity parameter R

and for certain values of B = 0.5,Pr = 1.0, λ = 5, m = 0 and x = 0.5.

variation in local coefficient of friction CfGr
3/4and

local Nusselt numbers NuGr−1/4against transient
times (x = 0.5) or streamwise direction distance
along the plate (t → ∞) for different values of vor-
tex viscosity parameter and for certain values of
B = 0.5,Pr = 1.0, λ = 5.0 and m = 0.0. These
figures show that the increasing of the vortex vis-
cosity parameter increased the coefficient of friction
due to higher mixing of fluid layers and decreased lo-
cal Nusselt numbers due to excessive heating of fluid
layers. These figures show also how the steady state
solutions are approached as the transient time in-
creases at t→ ∞. The case of R = 0 corresponds to
Newtonian fluids.

Figure 4a and b shows dimensionless steady ve-
locity profiles u(x, y, t)and rotation profiles ω(x, y, t)

for different dimensionless material parameter B =
0.2, 0.4, 0.6, 0.8, 1.0 and for certain values of R =
2.0,Pr = 1.0, λ = 5.0, m = 0.5 and x = 0.5. The in-
creasing of the dimensionless material parameter de-
creases velocities inside boundary layers due to the
retarding effect of micro inertia density and conse-
quently small buoyancy forces; this is similar to a
flow against adverse pressure gradient. The increas-
ing dimensionless material parameter also increased
rotation inside boundary layers because of favourable
non-Newtonian effects, and has negligible effects on
temperature profiles, which are not presented here.
Figure 5a and b show the variations in local coef-
ficient of friction against transient times (x = 0.5)
and streamwise direction distance along the plate
(t → ∞) for different values of dimensionless mate-
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rial parameter where the increasing of this parameter
increased coefficient of friction, and the figures again
show how the steady state solutions are approached.

The effects of the dimensionless material pa-
rameter, which represent spin-gradient viscosity, are
drawn in Figure 6a and b on both steady state ve-
locity and angular velocity profiles. It is clear from
these figures that the increasing of this material pa-
rameter increases the velocity and decreases the ro-
tation inside the boundary layer. The reason is that
the material parameter λ is a viscosity ratio param-

eter and decreasing the dynamic fluid viscosity (in-
creasing λ) causes the friction between the fluid lay-
ers to decrease and to decrease the rotation inside the
boundary layer at the same time. Figure 7a and b
show the variations in the local coefficient of friction
against transient times t (x = 0.5) and streamwise
direction distance (t → ∞) for different values of
dimensionless material parameter λ. As can be con-
cluded from Figure 6, the effect of the dimensionless
material parameter λ is to decrease the local coeffi-
cient of friction.
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Figure 4. a, b. Dimensionless velocity and angular velocity profiles, respectively for different values of material parameter
B and for certain values of R = 2.0,Pr = 1.0, λ = 5.0, m = 0.5 and x = 0.5.
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Figure 6. a, b, Dimensionless velocity and angular velocity profiles, respectively, for different values of dimensionless
material parameter λ and for certain values of R = 2.0,Pr = 1.0, B = 0.5, m = 1.0 and x = 0.5.
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Figure 7. a, b, Local coefficient of friction for different values of dimensionless material parameter λ and for certain
values of R = 2.0,Pr = 1.0, B = 0.5, m = 1.0 and x = 0.5.

Finally, by comparing Figures 4 and 5 (m = 0.5)
with Figures 6 and 7 (m = 1.0) we can study the
effect of micro-gyration vector m on angular velocity
profiles and local coefficient of friction. As the micro-
gyration dimensionless parameter increases the an-
gular rotation inside the boundary layer and local
coefficients of friction decrease. This is due to ex-
cessive angular momentum within fluid layers and
consequently this enhances local values of Nusselt
numbers.

Conclusions

The transient and steady natural convection heat
transfer problem of a micropolar fluid past a vertical
finite plate with constant heat flux is studied. The
governing equations are simplified by using a set of
dimensionless variables and then solved numerically
using McCormack’s technique. It was found that in-
creasing the vortex viscosity parameter R increased
the rotation inside the boundary layer, which has a
propensity to increase the coefficient of friction due
to higher mixing of fluid layers and to decrease the
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local Nusselt numbers due to excessive heating of
fluid layers. The effect of the dimensionless material
parameter B is to increase the local coefficient of fric-
tion while increasing the material parameter, which
represents spin-gradient viscosity λ, and the micro-
gyration vector m causes a decrease in the coefficient
of friction.

Nomenclature

B dimensionless material parameter
Cf local coefficient of friction
Cp specific heat of the fluid at constant pres-

sure
g magnitude of acceleration due to gravity
Gr Grashof number, gβ(Tw − T∞)L3

/
υ2

h heat transfer coefficient
j microinertia density
k thermal conductivity
L characteristic length of plate
N microrotation
Nux local Nusselt number
Pr Prandtl number, υ/α
q surface heat flux
R vortex viscosity parameter
t dimensionless time
T temperature

T∞ ambient fluid temperature
u, v dimensionless velocity components along x-

and y-axes
x, y dimensionless coordinates

Greek symbols

α thermal diffusivity
β volumetric coefficient of thermal expansion
γ spin gradient viscosity
κ vortex viscosity
λ dimensionless material parameter
θ non-dimensional temperature
µ dynamic viscosity
υ kinematic viscosity
ρ fluid density
ω microrotation component

Subscripts

∞ free stream condition

Superscripts

- dimensional variables
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