
Turkish J. Eng. Env. Sci.
31 (2007) , 273 – 288.
c© TÜBİTAK
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Abstract

Analytical solutions for the elastoplastic deformation of rotating graded hollow shafts are presented.
The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction.
The plastic model is based on Tresca’s yield criterion, its associated flow rule, and ideal plastic material
behavior. Elastic, partially plastic, fully plastic, and residual stress states are investigated. It is observed
that the elastoplastic responses of the rotating functionally graded hollow shafts are affected notably by the
material nonhomogeneity. It is also observed that the fully plastic limit rotation speed of the shaft is almost
independent of the variation in the modulus of elasticity of the material. The nonhomogeneous solution
derived here reduces to that of a homogeneous one as the variation in the modulus of elasticity is slowed
down.

Key words: Functionally graded material, Elastoplasticity, Rotating shafts, Stress analysis, Tresca’s crite-
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Introduction

Estimation of elastic, partially plastic, and residual
stress states in rotating circular shafts is an impor-
tant topic in engineering because of the many known
rigorous applications. For this reason, a number of
important studies pertaining to the elastic and par-
tially plastic deformations of rotating homogeneous
circular shafts were performed in the past under
plane strain presupposition. Details of these investi-
gations may be found in research articles Gamer and
Lance (1983), Mack (1991a, 1991b, 1998), Gamer
et al. (1997), Eraslan (2002, 2004), Eraslan and
Mack (2005), and in the references cited therein.
More recently, the stress response of rotating solid
shafts made of functionally graded materials (FGMs)
was studied analytically in the elastic stress state by
Eraslan and Akis (2006), with emphasis on the on-
set of plastic deformation. However, a careful search
of existing literature reveals that the partially plas-
tic stresses and deformations in rotating FGM shafts

have never been investigated in theory, although var-
ious authors have recognized the advantages of using
FGM in operations (Horgan and Chan, 1999; Zim-
merman and Lutz, 1999; Güven, 2001, Tutuncu and
Ozturk, 2001; Liew et al., 2003; Eslami et al., 2005;
Eraslan and Akis, 2006). This work aims to fill to
some extent the gap in the literature in this respect.

The objective of this work is to derive a consistent
analytical solution to describe elastic and partially
plastic deformations of rotating FGM hollow shafts.
An FGM is nonhomogeneous in composition and so
its properties, especially those of modulus of elas-
ticity, thermal conductivity, and mass density, may
vary continuously throughout the material. Since
the modulus of elasticity, E, is important in the de-
termination of the strength of the structural element
during operation, it is of engineering interest to as-
certain the effect of variable modulus of elasticity on
the deformation behavior of basic structures. In this
work the modulus of elasticity of the shaft material
is assumed to vary radially according to a power law
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form given by (Horgan and Chan, 1999)

E(r) = E0

(r

b

)n

. (1)

Here, E0 is the reference value of E, b the outer
radius, r the radial coordinate, and n a material pa-
rameter. With this form, a wide range of nonlinear
and continuous profiles to describe reasonable varia-
tion in E in the material may be achieved.

The homogeneous counterpart of the problem un-
der consideration has already been solved by Mack
(1991a) for axially unconstrained ends. A sufficiently
long rotating hollow shaft of inner radius a and outer
radius b was taken into account. Assuming a per-
fectly plastic shaft material and using incremental
theory of plasticity accompanied by Tresca’s yield
criterion, all stages of elastoplastic response of the
homogeneous shaft were studied. It was demon-
strated by Mack in his article that the inner sur-
face of the elastic shaft is critical and the plastic
deformation commences at this surface by a side
regime in Tresca’s hexagon as soon as the rotation
speed is increased to the elastic limit. As this plas-
tic region propagates toward the outer surface with
increasing rotation speeds, another critical limit is
reached at which the stress state moves to a corner
regime. Thereafter, a corner regime and an adja-
cent side regime appear simultaneously, and hence
the plastic core consists of 3 annular regions gov-
erned by different forms of Tresca’s yield criterion.
All 3 plastic regions expand with increasing rotation
speeds until the homogeneous hollow shaft becomes
fully plastic. The present work represents an exten-
sion of Mack’s solution to shafts made of function-
ally graded materials. An elastic region as well as
3 plastic regions governed by different mathemati-
cal forms of Tresca’s yield criterion are formulated
for variable E and solved analytically. All stages of
elastic-plastic deformation are studied and the com-
plete solution is verified in comparison to Mack’s by
taking the limit as the material parameter n gets
smaller. It should be noted at this point that, de-
pending on how E varies in the shaft, even the rotat-
ing FGM solid shaft may undergo plastic deforma-
tion in a manner entirely different from that of its
homogeneous counterpart (Eraslan and Akis, 2006).
Therefore, the extremities of the material parameter
n as well as the aspect ratio a/b that possibly lead
to different partially plastic responses of the rotating
FGM hollow shaft are not dealth with in the present
work.

On the other hand, the solution of rotating hol-

low shaft with axially constrained ends can be ob-
tained as the subset of the present solution by letting
the deformation in the axial direction vanish. This
problem is also treated in this study, several exam-
ples are examined, and the results are presented in
graphical form. The homogeneous counterpart for a
linearly hardening shaft was the subject of the in-
vestigation carried out by Gamer and Lance (1983).
Nevertheless, the analytical solution for free ends is
more complicated.

Formulation

Cylindrical polar coordinates (r, θ, z) are considered.
The notation of Timoshenko and Goodier (1970) is
used. Hence, in the formulation, σj and εj denote
a normal stress and a normal strain component, re-
spectively, u is the radial component of the displace-
ment vector, and ρ and ω are the mass density and
constant angular speed of rotation, respectively. Fur-
thermore, a state of generalized plane strain, i.e.
εz = constant, and infinitesimal deformations are
supposed. In addition the shaft is assumed to be
sufficiently long compared with its outer diameter
and so the end effects are negligible. In the plastic
regions total strains are expressed as the superposi-
tion of elastic and plastic parts in the form

εj = εe
j + εp

j , (2)

where the superscripts e and p denote elastic and
plastic, respectively.

Elastic Region

Strain-displacement relations for small strains, and
the equations of generalized Hooke’s law together
with the equation of equilibrium in the radial direc-
tion:

d

dr
(rσr) − σθ + ρω2r2 = 0, (3)

are valid throughout (Timoshenko and Goodier,
1970). The stress-displacement relations take the
forms for the radial and circumferential components,
respectively, as

σr =
E0

(1 + ν)(1− 2ν)

(r

b

)n [
νεz +

ν

r
u+ (1− ν)u′

]
,

(4)

σθ =
E0

(1 + ν)(1− 2ν)

(r

b

)n
[
νεz +

(1− ν)
r

u+ νu′
]

,

(5)
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and from Hooke’s law

σz = E0

(r

b

)n

εz + ν (σr + σθ) . (6)

In the expressions above, a prime denotes differen-
tiation with respect to the radial coordinate. Sub-
stitution of Eqs. (4) and (5) into the equation of
equilibrium, Eq. (3), leads to the elastic equation

r2 d2u

dr2
+ (1 + n)r

du

dr
− 1− ν (1 + n)

1− ν
u = −(1 + ν) (1− 2ν) bn

(1− ν)E0
r3−nρω2 − nrνεz

1− ν
, (7)

with the general solution

u(r) = C1r
−(n+K)/2 +C2r

−(n−K)/2 − (1 + ν) (1− 2ν) bnr3−nρω2

[8− 3n − 4(2− n)ν ]E0
− rνεz. (8)

in which C1 and C2 represent arbitrary integration constants and the symbol K has been defined as

K =
√
4 + n2 − 4nν

1− ν
. (9)

The stresses become

σr = − E0

2 (1 + ν) (1− 2ν) bn
r(−2−K+n)/2 {C1 [(K + n) (1− ν)− 2ν ]

+C2r
K [(n −K) (1− ν)− 2ν ]

} − [3− n(1− ν)− 2ν ] r2ρω2

8− 3n − 4ν(2− n)
, (10)

σθ =
E0

2 (1 + ν) (1− 2ν) bn
r(−2−K+n)/2 {C1 [2− (2 +K + n) ν ]

+C2r
K [2− (2−K + n) ν ]

} − [1 + (2− n)ν ] r2ρω2

8− 3n − 4ν(2− n)
, (11)

σz = − (4− n)νr2ρω2

8 (1− ν)− n (3− 4ν)
+

νE0

2 (1 + ν) (1− 2ν) bn
r(−2−K+n)/2

× [
C1(2− K − n) + C2r

K(2 +K − n)
]
+

rnE0εz

bn
. (12)

It is noted that, although this solution is used throughout this work, it is not finite only when 8−3n−4(2−
n)ν = 0. From 8− 3n − 4(2− n)ν = 0, the critical value of the material parameter is determined as

n = nC =
8(1− ν)
3− 4ν

. (13)

As an example, for ν = 3/10, the critical value is nC = 28/9. Although, as indicated earlier, parameter values
as large as n = 28/9 are not considered in this work, the exact solution at n = nC may be derived. For
n = 8(1− ν)/(3− 4ν), the elastic equation, Eq. (7), takes the form

r2 d2u

dr2
+

(
3 +

2
3− 4ν

)
r
du

dr
− 3(1− 4ν)

3− 4ν
u = −b2−2/(3−4ν)r1−2/(3−4ν)(1 + ν)(1− 2ν)ρω2

(1 − ν)E0

− 8rνεz

3− 4ν
, (14)

and assumes the exact solution
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u(r) =
Ĉ1

r3
+ Ĉ2r

1−2/(3−4ν)+
b2+2/(3−4ν)r1−2/(3−4ν)D̂ [3− 4ν − 2 (5− 8ν) ln r] ρω2

4(1− ν)(5− 8ν)2E0
− rνεz, (15)

where

D̂ = (1 + ν)(1− 2ν)(3− 4ν). (16)

Since the ends of the shaft are free, it contracts as it rotates. The net force Fz in the axial direction should
vanish, and this condition allows one to determine the constant axial strain εz. Assuming that the elastic region
is confined in α ≤ r ≤ β, with the help of Eq. (12) the axial force is determined as

Fze(α, β) =
∫ β

α

rσzdr =
B1

4
(
β4 − α4

)
+
2B2

[
β(2−K+n)/2 − α(2−K+n)/2

]
2−K + n

+
2B3

[
β(2+K+n)/2 − α(2+K+n)/2

]
2 +K + n

+

(
β2+n − α2+n

)
E0εz

(2 + n) bn
, (17)

where

B1 = − (4− n) νρω2

8 (1− ν)− n (3− 4ν)
, (18)

B2 =
C1 (2−K − n) νE0

2 (1 + ν) (1− 2ν) bn
, (19)

B3 =
C2 (2 +K − n) νE0

2 (1 + ν) (1− 2ν) bn
. (20)

Plastic Region I

In this region the stress state satisfies σθ > σz > σr.
Accordingly, Tresca’s yield criterion reads

σθ − σr = σ0, (21)

with σ0 being the uniaxial elastic limit of the ma-
terial. The flow rule associated with this yielding is
εp
θ = −εp

r , and εp
z = 0. Making use of εp

z = 0 and
expressing the stresses in terms of the radial stress
σr one arrives at σθ = σ0 + σr , and

σz = E(r)εz + ν (σ0 + 2σr) . (22)

Using the equation of equilibrium, Eq. (3), and the
condition σr(a) = 0 we obtain the expressions for
the stress components as

σr = −
(
r2 − a2

)
2

ρω2 + σ0 ln (r/a) , (23)

σθ = −
(
r2 − a2

)
2

ρω2 + σ0 [1 + ln (r/a)] , (24)

σz = −(r2 − a2)νρω2 +
(r

b

)n

E0εz

+ν [1 + 2 ln (r/a)] σ0. (25)

The stress expressions together with strain-
displacement relations and the associated flow rule
show the way for the nonhomogeneous differential
equation

du

dr
+

u

r
= −2νεz +

1
E0

(r

b

)−n

(1 + ν) (1− 2ν)
{(

a2 − r2
)
ρω2 + [1 + 2 ln (r/a)] σ0

}
. (26)

The solution is

u =
C3

r
− rνεz − (1 + ν)(1− 2ν)bn

(2− n)E0
r1−n

{
[(2− n)r2 − a2(4− n)]ρω2

4− n

+
[n − 2(2− n) ln (r/a)]σ0

2− n

}
. (27)
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Finally, the plastic strains and the force integral are obtained, respectively, as

εp
θ = −εp

r =
C3

r2
+

[
(2− n)2 r2 + a2n (4− n)

]
(1 + ν) (1− 2ν) bnρω2

2 (4− n) (2− n) rnE0

− (1 + ν) bnσ0

(2− n)2 rnE0

{4 (1− ν)− n [3− n (1− ν)− 2ν ] −n (2− n) (1− 2ν) ln (r/a)} , (28)

FzI(α, β) = −1
4

(
β2 − α2

) (
α2 + β2 − 2a2

)
νρω2 +

(
β2+n − α2+n

)
E0εz

(2 + n) bn

−ν

[
α2 ln

(α

a

)
− β2 ln

(
β

a

)]
σ0. (29)

Plastic Region II

This is a corner regime, where the stresses satisfy σθ > σz = σr. Tresca’s yield condition becomes

σθ − σr = σθ − σz = σ0. (30)

The associated flow rule is εp
θ = − (εp

r + εp
z). Hence, by the use of the equation of equilibrium

σr = σz = −r2ρω2

2
+ (C4 + ln r)σ0, (31)

σθ = −r2ρω2

2
+ (1 +C4 + ln r)σ0. (32)

On the other hand, the plastic strain in the axial direction is determined as

εp
z = εz +

bn
{
(1− 2ν) r2ρω2 + 2 [ν − (1− 2ν) (C4 + ln r)] σ0

}
2rnE0

. (33)

Making use of the strain-displacement relations, the stress expressions, i.e. Eqs. (31) and (32), and the
associated flow rule, i.e. εp

r + εp
θ = −εp

z, we arrive at

du

dr
+

u

r
= −εz −

bn (1− 2ν)
[
3r2ρω2 − 2 (1 + 3C4 + 3 ln r)σ0

]
2rnE0

. (34)

The general solution of this equation is

u =
C5

r
− rεz

2
− (1− 2ν)bnr1−n

2(4− n)(2− n)2E0

{
3 (2− n)2 r2ρω2

+2 (4− n) [1− 3C4 (2− n) + n − 3 (2− n) ln r]σ0} . (35)

The axial plastic strain has already been given by Eq. (33). Subtracting elastic strain from the total the plastic
strain in the circumferential direction is obtained. The result is

εp
θ =

C5

r2
+
(1− 2ν) (1− n) bnr2−nρω2

2 (4− n)E0
− εz

2

− bnσ0

(2− n) rnE0

[
5 + n2 − 2ν − n (3 + 2ν)

2− n
− (1− 2ν) (1 + n) (C4 + ln r)

]
. (36)

From the associated flow rule

εp
r =

bn (1− 2ν)
2E0rn

[
2C4 (1− 2n)σ0

2− n
− (5− 2n) ρω2r2

4− n

]
− C5

r2
− ε0
2

+
bnσ0

(2− n)2 E0rn
{5− n [3− n (1− ν)− 2ν ]− 6ν + (2− n) (1− 2n) (1− 2ν) ln r}. (37)
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Finally, the force integral for this region is evaluated as

FzII(α, β) =
1
8

{− (
β4 − α4

)
ρω2 − 2

[
(1− 2C4)

(
β2 − α2

)
+ 2α2 lnα − 2β2 lnβ

]
σ0

}
. (38)

Plastic Region III

In this plastic region the stress state satisfies the inequality σθ > σr > σz. Tresca’s yield condition takes the
form

σθ − σz = σ0. (39)

The flow rule associated with this yield condition is εp
θ = −εp

z, and εp
r = 0. Making use of the flow rule, a

straightforward manipulation of the equations of Hooke’s law yields the following stress-displacement relations

σr =
E0

(1 + ν) (1− 2ν) bn

[
r−1+nν (rεz + u) + rn (1− ν)u′] , (40)

σθ =
σ0

2
+

E0

2 (1 + ν) (1− 2ν) bn
r−1+n[rεz + u+ 2rνu′]. (41)

Inserting Eqs. (40) and (41) into the equation of equilibrium gives the governing equation for this region

r2 d2u

dr2
+ (1 + n)r

du

dr
− 1− 2nν

2 (1− ν)
u =

r [1− 2 (1 + n) ν ] εz

2 (1− ν)

−bnr1−n (1 + ν) (1− 2ν)
(
2r2ρω2 − σ0

)
2 (1− ν)E0

. (42)

The general solution is simplified to

u = C6r
−(n+L)/2 + C7r

−(n−L)/2 +
2r [1− 2 (1 + n) ν ] εz

(2− L+ n) (2 + L + n) (1− ν)

−2 (1 + ν) (1− 2ν) bnr1−n

(1− ν)E0

[
2r2ρω2

(6 + L− n) (6− L − n)
− σ0

(2 + L− n) (2− L − n)

]
, (43)

where

L =

√
n (4 + n) +

2(1− 2n)
1− ν

. (44)

The stresses are shown by

σr = −2 [3− n (1− ν)− 2ν ]r2ρω2

17− 18ν − 2n (3− 4ν)
+

rnE0εz

[1 + 2 (n − ν)] bn
+
[1− n (1− ν)]σ0

(1− 2n) (1− 2ν)

− E0

2 (1 + ν) (1− 2ν) bn
r(−2−L+n)/2 {C6 [(L+ n) (1− ν)− 2ν ]

+C7r
L [(n − L) (1− ν)− 2ν ]

}
, (45)

σθ = − [1 + 2 (3− n) ν ]r2ρω2

17− 18ν − 2n (3− 4ν)
+

(1 + n) rnE0εz

[1 + 2 (n − ν)] bn
+
[1− n (1− ν)]σ0

(1− 2n) (1− 2ν)

+
E0

2 (1 + ν) (1− 2ν) bn
r(−2−L+n)/2

{
C6 [1− (L + n) ν ] +C7r

L [1 + (L− n) ν ]
}

, (46)
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σz = − [1 + 2 (3− n) ν ] r2ρω2

17− 18ν − 2n (3− 4ν)
+

(1 + n) rnE0εz

[1 + 2 (n − ν)] bn
+
[n+ ν (2− 3n)] σ0

(1− 2n) (1− 2ν)

+
E0

2 (1 + ν) (1− 2ν) bn
r(−2−L+n)/2

{
C6 [1− (L + n) ν ] + C7r

L [1 + (L− n) ν ]
}

. (47)

The plastic strain and the force integral expressions are then determined. The results are

εp
θ = −εp

z =
1
2
r(−2−L−n)/2

(
C6 +C7r

L
) − (1 + ν) (1− 2ν) bnr2−nρω2

[17− 18ν − 2n (3− 4ν)]E0

− (1 + ν)nεz

1 + 2 (n − ν)
+
(1 + ν)nbnσ0

(1− 2n) rnE0
, (48)

FzIII(α, β) =
D1

4
(
β4 − α4

)
+
2D2

[
β(2+L+n)/2 − α(2+L+n)/2

]
2 + L+ n

+
2D3

[
β(2−L+n)/2 − α(2−L+n)/2

]
2− L+ n

+
D4

2
(
β2 − α2

)
+
(1 + n)

(
β2+n − α2+n

)
E0εz

(2 + n) [1 + 2 (n − ν)] bn
, (49)

in which

D1 = − [1 + 2 (3− n) ν ]ρω2

17− 18ν − 2n (3− 4ν)
, (50)

D2 =
C7 [1 + ν (L − n)]E0

2 (1 + ν) (1− 2ν) bn
, (51)

D3 =
C6 [1− ν (L + n)]E0

2 (1 + ν) (1− 2ν) bn
, (52)

D4 =
[n+ ν (2− 3n)] σ0

(1− 2n) (1− 2ν)
. (53)

Elastic and Elastic-plastic Deformations

Elastic deformation

Using traction free boundary conditions, σr(a) = σr(b) = 0, the integration constants are evaluated as

C1 =
2

[
aKb(6+K+n)/2 − a(6+K−n)/2bK+n

]
[3− n (1− ν)− 2ν ] (1 + ν) (1− 2ν)ρω2

(bK − aK) [(K + n) (1− ν)− 2ν ] [8 (1− ν)− n (3− 4ν)]E0
, (54)

C2 = −2
[
a(6+K−n)/2bn − b(6+K+n)/2

]
[3− n (1− ν)− 2ν ] (1 + ν) (1− 2ν)ρω2

(bK − aK) [(K − n) (1− ν) + 2ν ] [8 (1− ν)− n (3− 4ν)]E0
. (55)

The expression for the axial force, Eq. (17), is used to find εz. Setting Fze(a, b) = 0, the result is

εz = −bn(b4 − a4)(2 + n)νρω2

4(b2+n − a2+n)E0
. (56)
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Note that for n = 0 this expression reduces to the familiar one (Eraslan, 2004):

εz = −(a
2 + b2)νρω2

2E0
. (57)

Yielding commences at the inner surface as soon as σθ(a) = σ0. After some algebraic manipulations, the elastic
limit angular speed is determined as

Ωe =

√
ab(4+n)/2(bK − aK)[8− 3n− 4(2− n)ν ]S1S2

(1− 2ν)
{
4a(n+K)/2b(6+K)/2S3 + a3bn/2[bK(n −K − 6)S1 − aK(6− K − n)S2]

} , (58)

in which Ω is the nondimensional angular speed de-
fined by Ω = ωb(ρ/σ0)1/2 and

S1 = K − n(1 − ν) + (2− K)ν, (59)

S2 = K + n − (2 +K + n)ν, (60)

S3 = K[3− n(1− ν)− 2ν ]. (61)

A validation of Eq. (58) is performed by the substi-
tution of n = 0. The result is

Ωe =

√
4(1− ν)

a2(1− 2ν) + 3− 2ν
(62)

where a = a/b denotes nondimensional bore radius
(Mack, 1991a; Eraslan, 2004).

First stage of elastic-plastic deformation

In the first stage, the shaft consists of an inner plastic
region (region I) in a ≤ r ≤ r1, and an outer elastic
region in r1 ≤ r ≤ b, with r1 being the border radius
separating plastic and elastic regions. The solution
of this problem necessitates the evaluation of 5 un-
knowns: integration constants C3 (plastic I), C1, C2

(elastic), border radius r1, and axial strain εz. The
following 4 conditions are valid: 1. σpI

r (r1) = σe
r(r1);

2. upI
r (r1) = ue

r(r1); 3. σe
θ(r1) − σe

r(r1) = σ0; 4.
σe

r(b) = 0, where the superscripts pI and e stand for
plastic I and elastic regions, respectively. Another
condition concerning the evaluation of εz is obtained
by the help of force integrals. Using Eqs. (17) and
(29) we set FzI(a, r1) + Fze(r1, b) = 0 to get

εz = R1 =
(2 + n) bn

(b2+n − a2+n)E0

−
2B2

[
b(2−K+n)/2 − r

(2−K+n)/2
1

]
2− K + n

−
2B3

[
b(2+K+n)/2 − r

(2+K+n)/2
1

]
2 +K + n

+
1
4

[(
r2
1 − a2

)2
νρω2 −B1

(
b4 − r4

1

)]
− ln

(r1

a

)
νr2

1σ0

 , (63)

in which the symbols K, B1, B2, and B3 have al-
ready been defined in the Elastic Solution Section
by Eqs. (9) and (18)-(20). The fifth condition is
therefore: 5. εz − R1 = 0. The expressions obtained
upon application of these conditions result in a 5×5
system, which is nonlinear in r1 and linear in the
other unknowns. The simultaneous solution of this
system is achieved by Newton iterations.

Second stage of elastic-plastic deformation

The shaft is composed of 3 adjacent plastic zones:
plastic I in a ≤ r ≤ r1, plastic II in r1 ≤ r ≤ r2,
plastic III in r2 ≤ r ≤ r3, and an outer elastic
region in r3 ≤ r ≤ b. The solution of this de-
formation stage requires the calculation of 11 un-
knowns. These are C3 (plastic I), C4, C5 (plastic
II), C6, C7 (plastic III), C1, C2 (elastic), r1, r2, r3,
and εz. Boundary condition 4 in the first stage is
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still valid, and we add the following continuity con-
ditions: 1. σpI

r (r1) = σpII
r (r1); 2. upI

r (r1) = upII
r (r1);

3. σpI
θ (r1)−σpI

z (r1) = σ0; 5. σpII
r (r2) = σpIII

r (r2); 6.
upII

r (r2) = upIII
r (r2); 7. σpIII

θ (r2) − σpIII
r (r2) = σ0;

8. σpIII
r (r3) = σe

r(r3); 9. upIII
r (r3) = ue

r(r3); 10.

σe
θ(r3)−σe

z(r3) = σ0; and 11. εz −R2 = 0. Here, the
superscripts pII and pIII stand for regions plastic
II and plastic III, respectively. Furthermore, R2 is
the outcome of stating

FzI(a, r1) + FzII(r1, r2) + FzIII(r2, r3) + Fze(r3, b) = 0, (64)

given by

R2 =
(2 + n) bn[

b2+n − r2+n
3 + r2+n

1 − a2+n +
(1+n)(r2+n

3 −r2+n
2 )

1+2(n−ν)

]
E0

{
1
8

[
r4
2 − r4

1 + 2ν
(
a2 − r2

1

)2
]
ρω2

−B1

4
(
b4 − r4

3

) − 2B2

[
b(2−K+n)/2 − r

(2−K+n)/2
3

]
2− K + n

−
2B3

[
b(2+K+n)/2 − r

(2+K+n)/2
3

]
2 +K + n

−D1

4
(
r4
3 − r4

2

) − 2D2

[
r
(2+L+n)/2
3 − r

(2+L+n)/2
2

]
2 + L+ n

−
2D3

[
r
(2−L+n)/2
3 − r

(2−L+n)/2
2

]
2− L + n

−D4

2
(
r2
3 − r2

2

)
+

C4

2
(
r2
1 − r2

2

)
σ0 − 1

4

[(
1− 2 ln r1 + 4ν ln

(r1

a

))
r2
1

− (1− 2 ln r2) r2
2

]
σ0

}
, (65)

where the symbols L, D1, D2, D3, and D4 have been
defined by Eqs. (44) and (50)-(53).

Third stage of elastic-plastic deformation

In this last stage of elastic-plastic deformation the
shaft consists of 2 adjacent plastic regions: plastic II

in a ≤ r ≤ r2, plastic III in r2 ≤ r ≤ r3, and an
elastic region in r3 ≤ r ≤ b. The unknowns to be
determined for the solution are C4, C5 (plastic II),
C6, C7 (plastic III), C1, C2 (elastic), r2, r3, and εz.
Condition 4 in the first stage and conditions 5-10 in
the second stage are still applicable. In addition, we
have σpII

r (a) = 0, and εz −R3 = 0, where

R3 =
bn (2 + n) [1 + 2 (n − ν)]{

b2+n [1 + 2 (n − ν)]− (1 + n) r2+n
2 − (n − 2ν) r2+n

3

}
E0

{(
r4
2 − a4

)
8

ρω2

+
[
r2
2 (1− 2C4 − 2 ln r2) − a2 (1− 2C4 − 2 lna)

] σ0

4
− D1

4
(
r4
3 − r4

2

)
−
2D2

[
r
(2+L+n)/2
3 − r

(2+L+n)/2
2

]
2 + L + n

−
2D3

[
r
(2−L+n)/2
3 − r

(2−L+n)/2
2

]
2− L + n

− D4

2
(
r2
3 − r2

2

)
−B1

4
(
b4 − r4

3

) − 2B2

[
b(2−K+n)/2 − r

(2−K+n)/2
3

]
2− K + n

−
2B3

[
b(2+K+n)/2 − r

(2+K+n)/2
3

]
2 +K + n

 , (66)

which is obtained from FzII(a, r2) + FzIII(r2, r3) +
Fze(r3, b) = 0.

Results and Discussion

The Poisson’s ratio is taken as ν = 0.3 in the subse-
quent calculations. What’s more, formal nondimen-
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sional and normalized variables given by radial co-
ordinate r = r/b, stress σj = σj/σ0, radial displace-
ment u = uE0/(σ0b), and strain εj = εjE0/σ0 are
used for the presentation of results. For consistency
the integration constants are reported in dimension-
less forms as well. They are C1 = C1/b

1+(n+K)/2,
C2 = C2/b

1+(n−K)/2, C3 = C3/b
2, C4 = C4,

C5 = C5/b
2, C6 = C6/b

1+(n+L)/2, and C7 =
C7/b

1+(n−L)/2.
First, the verification of the complete solution

will be performed in comparison to Mack’s (1991a).
This can be accomplished by taking n = 0. However
unfortunately, because of the appearance of terms
2−K+n in the denominators of Eqs. (63) and (65)-
(66) this cannot be done exactly. It is obvious that,
for n = 0, K = 2, and hence 2 − K + n = 0! How-
ever, a numerical limit may be taken considering a
sufficiently small value of the material parameter n.
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Figure 1. Evolution of plastic regions with increasing Ω
for n = 10−5. Solid lines show present cal-
culation (n = 10−5) and dots belong to the
analytical solution of Mack (1991a) for a ho-
mogeneous shaft (n = 0).

Considering a hollow shaft of inner radius a/b =
0.5 and setting n as low as 10−5 all 3 stages of elasto-
plastic deformations are solved to obtain the evolu-
tion of plastic regions as well as critical values of the

parameters during transitions from one stage to an-
other. The results are shown in Figure 1. In this
figure, the solid lines represent the present calcula-
tion and the dots are from Mack (1991b). It is noted
that, in Figure 3 of Mack’s article, the ordinate shows
Ω2 values, rather than Ω. Both solutions do agree
well. In fact, most of the critical numbers indicated
in this figure agree with those of Mack in all the dig-
its displayed. The formation of each of the plastic
regions, and their expansion over each other and to-
ward the edge can clearly be evaluated by a careful
examination of Figure 1.

Similar comprehensive calculations are also per-
formed for FGM shafts of a/b = 0.5 using the ma-
terial parameter values n = 0.4 and n = −0.4. The
results of these calculations are shown in Figure 2 to-
gether with the results of a homogeneous one (dashed
lines). In addition, the critical values of the param-
eters obtained during these calculations are summa-
rized in Table 1.
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Figure 2. Evolution of plastic regions in FGM shafts with
increasing Ω for n = −0.4, and n = 0.4 in com-
parison to that in a homogeneous one (dashed
lines).

It is interesting to note that, although the in-
termediate limits Ωe, Ω2, and Ω3 differ notably, as
shown in Table 1, the fully plastic limits, Ω4 values,
are just about the same. Hence, it can be stated that
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the fully plastic limit of a rotating FGM hollow shaft
with free ends is almost independent of the variation
in the modulus of elasticity in the shaft material.

Table 1. Limit angular speeds for FGM and homoge-
neous shafts.

Limits n = −0.4 n = 0 n = 0.4
Ωe 0.9965 1.0583 1.1273
Ω2 1.1262 1.1861 1.2434
r1 (at Ω2) 0.5699 0.5832 0.5973
Ω3 1.1599 1.2492 1.3145
Ω4 1.3194 1.3189 1.3182
r2 (at Ω4) 0.7493 0.7255 0.6927

Using Eq. (58), the elastic limit angular speeds
for FGM shafts of different inner radius are calcu-
lated as a function of the material parameter n, and
plotted in Figure 3. For all a, the elastic limits in-
crease with increasing values of n, and for n > 0
the elastic limits are greater than the corresponding
homogeneous ones. Hence, the strength of the shaft
to elastically resist the centrifugal force increases if
E(r) increases in the radial direction from a to b.
Calculations are performed in the elastic stress state
to display the stresses. A hollow shaft of a/b = 0.6
is considered for this purpose. For n = 0, from Eqs.
(58) and (54)-(56), in turn, we evaluate Ωe = 1.0491.
The results of the calculations for n = 0 and 0.5 are
summarized in Table 2.

Table 2. Calculated constants for a/b = 0.6 at Ω =
1.0491.

Constants n = 0 n = 0.5
C1 × 104 4.41509 3.73334
C2 × 104 6.67170 9.00729
εz × 104 −4.49057 −4.98159

The corresponding distributions of stress and ra-
dial displacement in these 2 different shafts are pre-
sented in Figure 4 for comparison. Solid lines belong
to the FGM shaft (n = 0.5) and dashed lines belong
to the homogeneous one.

The two FGM shafts with n = −0.4 and n = 0.4,
considered in Figure 2, are both partially plastic at
the speed of rotation Ω = 1.3. However, the one with
n = −0.4 is in the third stage of elastic-plastic defor-
mation, while the other for n = 0.4 is in the second
stage, as seen in Figure 2. Elastoplastic calculations
are performed for these FGM shafts at Ω = 1.3. The
results of these calculations are summarized in Table
3.
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Figure 3. Variation of elastic limit angular speed Ωe with
material parameter n for FGM shafts of differ-
ent inner radius.

Table 3. Calculated constants for a/b = 0.5 at Ω = 1.3.

Constants n = −0.4 n = 0.4
C3 × 104 − 9.05819
r1 − 0.535893
C4 0.904397 0.904397
C5 × 104 7.92290 9.52451
r2 0.714673 0.659809
C6 × 104 7.88932 6.43488
C7 × 102 −0.166626 −1.16095
r3 0.851010 0.777955
C1 × 104 6.91281 4.92267
C2 × 103 0.804448 1.23825
εz × 104 −7.08178 −7.31130

The matching stresses and displacements are de-
picted in Figure 5(a). The distribution of the plas-
tic strains can be seen in Figure 5(b). The resid-
ual stresses σ0

j upon complete unloading of the load
Ω = 1.3 (Figure 5(a)) are also calculated. Figure 5(c)
shows the distributions of the maximum (σ0

θ) and
minimum (σ0

r) residual stress components at stand-
still. The residual plastic strains are not altered and
are as given in Figure 5(b).
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Figure 4. Stresses and displacement in the elastic stress
state in an FGM shaft for n = 0.5 (solid lines)
in comparison to those in a homogeneous one
(dashed lines) at Ω = 1.0491.

It has to be noted that the elastoplastic response
of a rotating hollow shaft with axially constrained
ends, i.e. εz = 0, constitutes a different problem as
the stress state in such a shaft satisfies σθ > σz > σr

throughout (Gamer and Lance, 1983). Plastic defor-
mation commences at the inner surface of the shaft
according to Tresca’s yield criterion σθ − σr = σ0

(plastic I) and this plastic region expands with in-
creasing rotation speeds until the shaft becomes fully
plastic. The succeeding corner regime (plastic II)
and its accompanying side regime (plastic III) never
appear. The stress and deformation expressions for
the solution of this problem are readily obtained from
those given in elastic and plastic I solutions by the
substitution of εz = 0. A shaft of a/b = 0.5 is taken
into consideration. For n = 0.6 the elastic limit an-
gular speed is calculated from Eq. (58) as Ωe =
1.1648. In addition, from Eqs. (54) and (55) we ob-
tain C1 = 3.38095× 10−4 and C2 = 1.16630× 10−3.
Conversely, at the speed Ωe = 1.1648 a homogeneous
shaft is partially plastic. Hence, elastoplastic cal-
culations are to be performed to find the stresses
in a homogeneous shaft at Ω = 1.1648. Since, Eq.
(63) is not used in this calculation, the exact limit
n = 0 is possible. Accordingly, for n = 0 we eval-

uate C3 = 5.88266 × 10−4, r1 = 0.566210, C1 =
4.20190× 10−4, and C2 = 8.18171× 10−4. The cor-
responding stresses are shown in Figure 6. The FGM
shaft of a/b = 0.5 for n = 0.6 becomes partially plas-
tic at speeds Ω > Ωe = 1.1648. Assigning Ω = 1.25
elastoplastic calculations are carried out. Two solu-
tion sets result: C3 = 7.41858×10−4, r1 = 0.646698,
C1 = 5.29899×10−4, C2 = 9.60620×10−4 and C3 =
9.35256× 10−4, r1 = 0.57794, C1 = 4.00893× 10−4,
C2 = 1.35182× 10−3 for n = 0, and n = 0.6, respec-
tively. Figure 7 shows the corresponding stresses and
displacement. The expansion of the plastic region I
in the FGM shafts as Ω increases is calculated as
well. The results of these calculations are displayed
in Figure 8. The advantage of using n > 0 is appar-
ent. The fully plastic limit is exactly Ω = 1.35956,
and it turns out to be independent of the material
parameter n.
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Figure 5. (a) Stresses and displacement, (b) plastic
strains, (c) radial and circumferential residual
stress components upon complete unloading in
the partially plastic stress state in FGM shafts
for n = 0.4 (solid lines), and n = −0.4 (dashed
lines) at the rotation speed Ω = 1.3.
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Figure 5. Contunied.

In the preceeding calculations the Poisson’s ra-
tio, which is an important parameter of elasticity, is
kept constant at ν = 0.3. We finally perform calcu-
lations to assess the effect of this parameter on the

critical Ω values and on the distributions of the re-
sponse variables. For this purpose we consider an
FGM shaft with parameters a/b = 0.5 and n = 0.4.
Note that calculations have already been performed
for this shaft when ν = 0.3. Here we study ν = 0.25
and ν = 0.35. The critical values of Ω obtained for
different values of ν are given in Table 4.

As seen in Table 4, the elastic limits are affected
notably by the change in the Poisson’s ratio while the
intermediate limits remain almost unaffected. Un-
der Ω = 1.3 we obtain the results given in Table
5. The corresponding distributions of the stress and
displacement are plotted in Figure 9. The effect of ν
can be visualized with the help of this figure.

Table 4. Limit angular speeds for different ν values.

Limits ν = 0.25 ν = 0.3 ν = 0.35
Ωe 1.1403 1.1273 1.1128
Ω2 1.2326 1.2434 1.2545
r1 (at Ω2) 0.5741 0.5973 0.6238
Ω3 1.3111 1.3145 1.3170
Ω4 1.3176 1.3182 1.3187
r2 (at Ω4) 0.6731 0.6927 0.7132
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Figure 6. Stresses and displacement in the elastic stress
state in an FGM shaft with fixed ends (εz = 0)
for n = 0.6 (solid lines) in comparison to those
in a partially plastic homogeneous one (dashed
lines) at Ω = 1.16481.
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Figure 7. Stresses and displacement in the partially plas-
tic stress state in an FGM shaft with fixed ends
(εz = 0) for n = 0.6 (solid lines) in comparison
to those in a homogeneous one (dashed lines)
at Ω = 1.25.

Table 5. Calculated constants for a/b = 0.5 and n = 0.4
at Ω = 1.3 .

constants ν = 0.25 ν = 0.35
C3 × 104 8.98505 9.12899
r1 0.520884 0.556074
C4 0.904397 0.904397
C5 × 104 9.63777 9.43778
r2 0.642234 0.678548
C6 × 104 5.94244 7.00015
C7 × 102 -1.09501 -1.23245
r3 0.782139 0.774996
C1 × 104 4.36851 5.61716
C2 × 103 1.42732 1.012497
εz × 104 -6.19312 -8.42524

Concluding Remarks

Functionally graded materials (FGMs) have been
widely used for the last 2 decades, particularly in
high temperature and industrial (e.g., high speed
cutting tools) applications, in microelectronics, and
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Figure 8. Expansion of plastically deformed region in
FGM shafts with fixed ends (εz = 0) for dif-
ferent n as Ω increases.
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Figure 9. Stresses and displacement in the partially plas-
tic stress state in an FGM shaft (n = 0.4) with
free ends for ν = 0.25 (solid lines) in compar-
ison to those for ν = 0.35 (dashed lines) at
Ω = 1.3.
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in power transmission equipment. Among the vari-
ous advantages of using FGMs, increasing strength,
toughness, endurance limit, and resistance to corro-
sion, and retardation of the development of surface
cracks are well known. In spite of these advantages,
the stresses in rotating FGM shafts have not been
well studied theoretically. There appears to be only
one work in the literature (Eraslan and Akis, 2006)
investigating the stresses and deformations in rotat-
ing FGM solid shafts. The modulus of elasticity of
the shaft material was assumed to vary radially ac-
cording to different nonlinear forms. Closed form
solutions for rotating FGM solid shafts as well as
solid disks both in the elastic stress state were de-
rived. Another attempt is made here to proceed with
studying the partially plastic stress state in rotat-
ing shafts. Calculations extending into the plastic
range are important in engineering since the results
allow one to have an idea about the level of residual
stresses, which are generally used with advantage.

In the present work, specifically, generalized
plane strain, εz = constant, and plane strain, εz =
0, analytical solutions for rotating partially plastic
FGM hollow shafts are derived by considering vari-
able modulus of elasticity. The plastic analysis is
simply based on Tresca’s yield criterion, its associ-
ated flow rule, and ideally plastic behavior. It is
known that Tresca’s flow rule can give plastic strains
that do not agree well with experimental observa-
tions, leading to conservative results in elastic-plastic
design problems. However, a previous work (Eraslan,
2004) indicates that the results of Tresca’s and von
Mises’ criteria agree perfectly in the predictions of
the stress and displacement fields for rotating shafts.
On the other hand, the use of Tresca’s yield condi-
tion and its associated flow rule for the analysis of
rotating shafts and in many other problems results
in linear differential equations, permitting analyti-
cal treatment of the problem. Such analytical solu-
tions facilitate analysis of limiting cases and provide
benchmark results for sophisticated FEM codes.

The stress response of a rotating partially plas-
tic FGM hollow shaft when its modulus of elasticity
varies continuously can be evaluated in the results
of this work. Improvements in both elastic and par-
tially plastic performances are possible if the shaft is
designed so that the modulus of elasticity increases
in the radial direction. Elastic limit rotation speeds
increase and the expansion of the plastic core into
the shaft is retarded. Nevertheless, the fully plastic
rotation speed seems to be unaffected by the material
nonhomogeneity caused by the variation in modulus
of elasticity within the shaft.

As a final remark it is noted that the construc-
tion of governing differential equations, for the elas-
tic and plastic regions, their particular solutions and
all of the algebraic simplifications in this work were
obtained by the inclusive use of Mathematica V4.1.
Without such a powerful symbolic engine, the com-
pletion of this work might have taken several more
years.

Nomenclature

a, b inner and outer radii of the shaft (di-
mensionless inner radius a = a/b)

Ci integration constant
E variable modulus of elasticity (reference

value E0)
Fz axial force
n material parameter (Eq. (1))
r, θ, z cylindrical polar coordinates (dimen-

sionless radial coordinate r = r/b)
u radial displacement (dimensionless

form u = uE0/(bσ0))
ν Poisson’s ratio
ρ mass density
ω angular velocity (dimensionless form

Ω = ωb
√

ρ/σ0)
εi normal strain component in i−direction

(normalized form εi = εiE0/σ0)
σ0 uniaxial yield limit of the material
σi normal stress component in i−direction

(dimensionless form σi = σi/σ0)
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