
Turkish J. Eng. Env. Sci.
31 (2007) , 305 – 310.
c© TÜBİTAK
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Abstract

The paper studies vibration and buckling of in-plane loaded double-walled carbon nanotubes. Tim-
oshenko beam theory was used to investigate the vibration and buckling behavior of double-walled and
simply supported carbon nanotubes. The influence of in-plane loads on the natural frequencies was deter-
mined. The results show that while the natural frequencies decrease with increasing compressive in-plane
loads an increase in frequencies is observed for tension type of in-plane loads. The effects of in-plane loads
are more pronounced for lower modes and some mode changes are observed at critical in-plane loads.
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Introduction

After the invention of carbon nanotubes (CNTs) by
Iijima (1991), several studies (Dai et al., 1996; Bach-
told et al., 2001; Dharap, 2004) showed that they
have good electrical properties and high mechani-
cal strength so they can be used for nanoelectron-
ics, nanodevices, and nanocomposites. Since molec-
ular dynamic simulations are difficult for large scale
systems, continuum mechanics models were used
to study the elastic behavior of CNTs (Ru, 2000a,
2000b; Yoon et al., 2002, 2003a, 2003b, 2004, 2005;
Wang and Varadan, 2005). The classical beam the-
ory of Euler has been used to study the dynamic and
static behavior of multi-walled nanotubes (MWNTs)
to show that the classical theory is adequate for large
aspect (length-to-diameter) ratios.
Non-coaxial interlayer radial displacements in

transverse vibration in MWNTs using multiple Eu-
ler beam model were studied by Yoon et al. (2002,
2003a). Since the characteristic wavelength of trans-
verse waves in MWNTs would be just a few times
larger than the outermost diameter of MWNTs
(Yoon et al., 2002), Timoshenko-beam theory was
used to study vibration and wave propagation in

CNTs (Yoon et al., 2004, 2005), and it was concluded
that both the Timoshenko-beam and the double-
beam effects are significant when the wavelength of
transverse waves of DWNTs is just a few times larger
than the outer diameter of DWNTs. It is the case en-
countered when the higher-order frequencies (within
the terahertz range) of short DWNT (of smaller as-
pect ratio around or below 20) are considered.
Extensive research has been devoted to the appli-

cation of CNTs as chemical and mechanical sensors
(Kong, 2000; Dhrap, 2004). As stated by Zhang et
al. (2005), the basic principle of sensing is based on
the natural (resonant) frequency shift of CNT res-
onator when it is subjected to an axial strain due
to an external load. Zhang et al. (2005) applied a
double elastic beam model to study transverse vi-
brations of double-walled carbon nanotubes under
compressive axial load.
In the present study, a double elastic Timoshenko

model was used to study transverse vibration and
buckling of in-plane loaded DWCNs by taking into
account the non-coaxial displacements. DWCNs
were assumed as simply supported at both ends. The
object of the study is to examine the effect of exter-
nal load on vibration and to determine the variations
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of the natural frequencies with the external load and
the wave number.

Double Timoshenko-Beam Theory

The present paper studies transverse vibration of in-
plane loaded DWNTs, as shown in Figure 1, based
on Timoshenko-beam model. The inner and outer
walls of the tube have diameters of d1 and d2, re-
spectively, and the tube length is L. As stated by
Yoon et al. (2002), unlike the single-beam model
which assumes that all originally concentric tubes
of a MWNT remain coaxial during vibration in the
MWNT, a multi-beam model considers interlayer ra-
dial displacements and individual deflection curves
of nested tubes within the MWNT. Thus each of the
inner and outer tubes of DWNTs is modeled as a
Timoshenko-elastic beam. The transverse deflection
w(x,t) and the slope ϕ(x,t) of a Timoshenko-beam
due to bending deformation alone are determined
by the following 2 coupled equations (Timoshenko,
1974):

 

             The van der Waals forces 

                                 

d1 

The van der Waals forces 

L

 
 

d2 

Figure 1. Geometry of double-wall carbon nanotubes.
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where x is the axial coordinate, t is time, I and A are
the moment of inertia and the cross-section area of
the beam, respectively, σx is the distributed pressure

per unit axial length, E and G are the Young mod-
ulus and shear modulus, respectively, ρ is the mass
density per unit volume, and k is the shear correc-
tor coefficient, which is about 0.6-0.7 for thin walled
circular cross sections and 0.9 for solid circular cross
sections (Timoshenko, 1974).
Application of Eq. (1) to each of the inner and

outer tubes of DWNT gives the following equations
for transverse vibration of a DWNT:
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where σxis the axial external load, p is the van der
Waals interaction pressure between the 2 tubes per
unit axial length and the subscripts 1 and 2 are
used to denote the quantities of the inner and outer
tubes, respectively. Each tube is assumed to have
the same Young’s modulus of 1 TPa, shear modulus
of 0.4 TPa, Poisson ratio of 0.25, shear coefficient of
0.8, and mass density of 2.3 g/cm3 with the effective
thickness of 0.35 nm (Wang and Varadan, 2005).
The deflections of the 2 tubes are coupled

through the van der Waals intertube interaction
pressure. Since the inner and outer tubes of a DWNT
are originally concentric and the van der Waals in-
teraction is determined by the interlayer spacing,
the net van der Waals interaction pressure remains
zero for each tube provided they deform coaxially.
Therefore, for small-amplitude linear transverse vi-
brations, the interaction pressure at any point be-
tween these 2 tubes depends linearly on the differ-
ence of their deflection curves at that point.

p = c (w2 − w1) (3)

Here, the van der Waals interaction coefficient c for
interaction pressure per unit axial length can be es-
timated in erg/cm2 as (Yoon et al., 2003):

c =
400 r1

0.16D2
, (4)

where r1 is the inner radius of DWNTs and D =
0.142 nm. Substitution of Eq. (3) into Eq. (2) leads
to 4 coupled equations for 4 unknowns wi (x,t) and
ϕi (x,t) (i = 1, 2).
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AYDOĞDU, ECE

Transverse vibration of DWNTs

Since finding an analytical solution is possible
for simply supported boundary conditions for the
present problem, the inner and outer tubes of the
DWNT are assumed simply supported. As a result,
the boundary conditions have the following form:

wi (0, t) = wi (L, t) = 0

∂ϕi(0,t)
∂x = ∂ϕi(L,t)

∂x = 0




, i = 1, 2, (5)

To satisfy boundary conditions given by Eq. (5),
the displacement field for DWNT is written in the
following form:

wi =Wi sin nπx
L sinωt

ϕi = Φi cos nπx
L sinωt


 , i = 1, 2, (6)

where W1 and W2 represent the modal amplitudes
of deflections of the inner and the outer tubes, and
Φ1 and Φ2 represent, respectively, the modal ampli-
tudes of the slopes of the inner and the outer tubes
due to bending deformation alone. Integer n is the
half wave number and ω is the circular frequency.
Substitution of Eqs. (6) and (3) into Eq. (2) yields
the following non-dimensional eigen-value equation:
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The non-dimensional variables in Eq. (5) are defined
as follows:
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As stated by Yoon et al. (2005), this eigen-value
equation gives 4 n-order frequencies, Ωn1, Ωn2, Ωn3,
and Ωn4. For given n, nanotubes vibrate in simi-
lar mode shapes with different amplitudes. These
frequencies and mode shapes are important for the
design process to understand the dynamic behavior
of nanotubes. The transverse vibration equation ob-
tained for the nth mode by substituting σx= 0 is con-
sistent with that given by Yoon et al. (2005). The
non-dimensional critical buckling loads of DWNT
can be determined by setting Ω = 0 in Eq. (7) and
solving it for Nx.
Determination of the eigen-values of Eq. (7) re-

quires the dimensions of the nanotube to be speci-
fied. Diameters of the inner and the outer walls of
the tube were taken as d1= 0.7 nm and d2= 1.4 nm,
respectively. The effective thickness of single-walled
carbon nanotubes was taken to be 0.35 nm. The
length of the tube was selected such that L/d2 = 10,
20, and 50. The eigen-value equation given in Eq.
(7) was solved by the Newton-Rapson method and
the iterations were stopped when the absolute value
of the difference between the frequencies calculated
at 2 successive iterations was less than 10−6.
Free vibration frequencies predicted by the

present model were compared with the results re-
ported by He et al. (2006) in Table 1. They used the
Donell shell model to study the vibration of CNT.
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The difference between these 2 results is within the
acceptable range for engineering applications. They
also compared their results with the experimental re-
sults. This shows the validity of the present beam
model.

Table 1. Comparison of frequency (Hz) of DWCTs with
shell model of He et al.

Theory Ri= 0.5 nm Ri= 1 nm
Present 4.7404 3.0308
Ref. 4.4590 2.8960

%difference 6.31 4,65

Variations in non-dimensional frequencies are
given in Figures 2-4. In these figures, taking in-plane
load value as zero (Nx= 0) leads to non-dimensional
free vibration frequencies.

Figure 2. Variation of dimensionless frequency parame-
ter with in-plane load for L/d2= 10.

Positive Nx corresponds to tension type in-plane
loads, whereas negative Nx stands for compression
type loading. Increasing in-plane compression loads
decreases non-dimensional frequencies to zero (the
lowest of these loads is called critical buckling load).
On the other hand, positive tension type loading
causes an increase in frequencies. Non-dimensional
frequency results were given for the first 3 modes (n
= 1, 2, and 3). As stated before, there are 4 fre-
quencies (Ωn1, Ωn2, Ωn3, and Ωn4) for each mode
for Timoshenko beam theory. As can be seen from
the figures, the effect of in-plane loads is more pro-
nounced for lower modes for all L/d2 ratios. It is

also possible to find buckling loads for higher modes.
However, for the present range of external compres-
sive loads, higher buckling loads were not observed
because they are not important for physical applica-
tions since any value over the critical value load will
buckle the nanotube. It is interesting to note that
some mode changes were observed due to in-plane
loads (crossing of frequency curves for some values
of in-plane loads e.g., Nx = -140 for L/d2 = 10).

Figure 3. Variation of dimensionless frequency parame-
ter with in-plane load for L/d2= 20.

Figure 4. Variation of dimensionless frequency parame-
ter with in-plane load for L/d2= 50.

Dimensionless critical load parameters are given
in Table 2. Dimensionless critical buckling loads in-
crease with both increasing L/d2 ratios and n mode
numbers, and dimensionless critical buckling loads
are more affected by smaller L/d2 ratios.
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Table 2. Dimensionless buckling load parameter for
DWNT for different modes and for different
L/d2 ratios.

L/d n Nx

10
1 28.567368
2 102.227914
3 189.705035

20
1 29.347445
2 114.269471
3 245.592806

50
1 29.566963
2 117.765922
3 263.093526

Conclusions

Based on Timoshenko beam theory, a double-elastic
beam model was presented for transverse vibrations
of double-walled carbon nanotubes under axial loads.
The interaction of van der Waals pressure between
the inner and outer tubes and the effect of compres-
sive and tension type axial loads were incorporated
in the formulation. The vibration behavior of simply
supported double-walled carbon nanotubes was stud-
ied. It is concluded that the effects of axial load on

the natural frequencies of double-walled carbon nan-
otubes were sensitive to the vibration modes. Fre-
quencies were found to decrease with increasing com-
pressive in-plane loads where an increase in natural
frequencies was observed for increasing tension type
in-plane loads. Critical axial buckling loads were
also given in the study. The present study can be
extended to other classic boundary conditions.

Nomenclature

E elastic modulus for a nanotube
G shear modulus for nanotube
ν Poisson’s ratio
r radius of tube
σx in-plane stress
w displacements in z-direction
ϕ slope due to bending
A cross sectional area of nanotube
I moment of inertia
t time
ρ density of carbon nanotube
Ω non-dimensional frequency parameter
p van der Waals interaction pressure
c interaction coefficient
n half wave number
ω radial frequency
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