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Abstract

Free surface tracking methods used in the numerical simulation of unsteady free surface flows may
introduce sources or sinks resulting in changes in total fluid volume in the computational domain. A com-
putational model is developed for incompressible, 2-dimensional, unsteady free surface flows to investigate
the conditions of total volume conservation. The model is based on finite volume discretization of the
Navier-Stokes equations coupling momentum and mass conservation. Free surface position is tracked using
a depth-integrated continuity equation. Possible free surface cell configurations and a solution procedure for
continuity are described. A flux-corrected transport method is applied to the free surface solution to main-
tain numerical stability and eliminate unphysical surface oscillations. The discretization scheme and the
computer code are validated in lid-driven cavity flow. Liquid sloshing in a partially filled rectangular tank
and dam-break flows are simulated. Numerical solutions preserving total volume are presented. Computed
free surface profiles are verified by experimental data.
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Introduction

Multi-dimensional free-surface flow computations in
large domains such as earthquake excited fluid-
structure interactions in dam reservoirs, tsunami
generation in deep water, water wave generations
due to land slides, and dam-break simulations are
becoming common tools for risk analysis in engi-
neering practice. In order to simulate the fluid flow
phenomena with satisfactory resolution in space and
time domains, the Navier-Stokes equations are solved
numerically using a suitable discretization technique
such as finite difference, finite volume, or finite ele-
ment methods. The finite volume method is widely
used in computational fluid dynamics (CFD) appli-
cations due to the advantages of integrated equations
to enforce conservation of physical quantities in ar-
bitrary control volumes.

Free surface simulation became a popular re-
search area with the rapid development of com-
puting power. There are several methods to track
the free surface position such as Marker-And-Cell
(MAC), Kinematic Boundary Condition (KBC),
Depth-Integrated Continuity equation (DIC), Vol-
ume of Fluid (VOF), moving grid techniques, and
level set methods.

The MAC method described by Harlow and
Welch (1965) was the first to track the free surface
on a discretized domain. This method uses massless
marker particles, which are used to indicate the fluid
configuration showing which region is occupied by
fluid and which region is empty. The marker par-
ticles are moved to new positions using local fluid
velocities. Chan and Street (1970) developed the
SUMMAC method, which is a modification of the
MAC method, using an interpolation technique for
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free surface velocity instead of solving the continuity
equation on the free surface.

VOF was first introduced by Hirt and Nichols
(1981) and it can be applied to multi-fluid problems.
It can handle complex physical flows such as break-
ing waves and splashing. In the VOF method, a
transport equation of a volume fraction parameter F
is introduced with values between zero and one to
describe the position of the free surface. Computa-
tional cells are labeled according to the F value in
the cell.

The free surface position is defined by the local
height function in the KBC method. The no-mass-
flux condition on the free surface is satisfied based on
the concept that all fluid particles on the free surface
always remain on the surface. DIC is obtained by in-
tegrating an incompressible continuity equation in a
liquid column from the bottom to the free surface.
This method also uses the height function, similar
to KBC. DIC and KBC formulations are valid if wa-
ter depth is a single valued function of horizontal
coordinates in each computational cell. Free surface
formations like bubbles, drops, and breaking waves
cannot be handled due to the single-valued depth
function. However, these methods are convenient
for large domain computations since they are easy
to implement, computationally efficient, and require
minimum memory storage.

Exact volume conservation is not guarantied in
the above methods and it can be difficult to preserve
the total fluid volume in the computational domain
for long simulation durations. Free surface tracking
methods used in the simulation of free surface flows
may produce sources or sinks during the computa-
tions, causing the total fluid volume to change over
time. Such observations have been reported byWang
et al. (2007) and Kleefsman et al. (2005).

The authors of this paper have also faced diffi-
culties in preserving total fluid volume in the com-
putational domain in an attempt to compute water
surface deformations in dam reservoirs due to earth-
quake accelerations. After some numerical tests it
was recognized that there may be 2 sources of er-
ror causing variations in total fluid volume in the
computational domain. One source of error is due
to inappropriate boundary conditions applied at the
far field of a large domain extending to infinity. The
second source of error may originate from the free
surface tracking algorithms. The motivation behind
the present study was to investigate the conditions
of satisfying exact volume conservation in a numer-

ical simulation of incompressible free surface flows
so that the total fluid volume in the computational
domain remains the same throughout the simulation
time. The research done in relation to free surface al-
gorithms is presented in this paper. The main aim of
the study is to develop a computer code for unsteady
free surface flows suitable for large spatial domains
such as dam reservoirs.

Governing Equations

Mass conservation is expressed as volume conserva-
tion for incompressible flows considered in this study.
The equations of motion for 2-dimensional incom-
pressible flows in a vertical plane are given as

ax +
∂u

∂t
+−→∇ ·

(
u
−→
V

)
= −1

ρ

∂p

∂x
+ ν∇2u (1)

az +
∂w

∂t
+−→∇ ·

(
w
−→
V

)
= −g − 1

ρ

∂p

∂z
+ ν∇2w (2)

−→∇ · −→V = 0 (3)

where x and z are coordinate axes in horizontal and
vertical directions, respectively, ax and az are ground
accelerations, u and w are velocity components, −→V
is the velocity vector, p is pressure, t is time, g is
gravitational acceleration, ν is kinematic viscosity, ρ
is fluid density, and −→∇ is the del operator. Ground
accelerations are included to represent earthquake
excitations or accelerations due to shaking of experi-
mental tanks. The computational domain is assumed
to move with the ground.

Mathematical Formulation

To obtain finite volume formulation of free surface
flow, Eqs. (1), (2), and (3) are integrated applying
Gauss divergence theorem.
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∫

cs

−→
V · −→dA = 0. (6)

The integrated equations are discretized on a stag-
gered grid arrangement shown in Figure 1.

un+1
i,j = F n

i,j +∆t{[(pn+1
i,j − pn+1

i+1,j)/ρ]/∆xi+1/2

−ax}
(7)

wn+1
i,j = Gn

i,j +∆t{[(pn+1
i,j

−pn+1
i,j+1)/ρ]/∆zj+1/2 −(g + az)}

(8)

F n
i,j = un

i,j +∆t{[ν(Difu)ni,j

−(Conu)ni,j]/(∆xi+1/2∆zj)}
(9)

Gn
i,j = wn

i,j +∆t{[ν(Difw)ni,j

−(Conw)ni,j]/(∆xi∆zj+1/2)}
(10)

(un+1
i,j − un+1

i−1,j)/∆xi + (wn+1
i,j − wn+1

i,j−1)/∆zj = 0.
(11)

where ∆t is the time step, ∆x and ∆z are mesh sizes,
and Dif and Con represent diffusive and convective
fluxes, respectively. To utilize the advantage of the
staggered grid system, convenient control volumes
are selected for each equation as shown in Figure
1. First order derivatives in diffusive fluxes are dis-
cretized using second order polynomial approxima-
tion on a variable mesh. Convective fluxes are evalu-
ated by first order upwind (FOU) and by QUICK
approximation using a 3-point upstream-weighted
quadratic interpolation for cell face values. The code
can switch between FOU and QUICK, depending on
user preferences. Detailed descriptions on temporal
and spatial discretizations can be found in Li and
Baldacchino (1995).

Pressure solution is obtained from the Poisson
equation for pressure. The discretized form of the
Poisson equation for pressure is obtained by substi-
tuting Eqs. (7) and (8) into (11).
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Figure 1. Computational grid and control volumes.
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The momentum equations (7) and (8) and the pres-
sure Poisson equation (12) are solved by sequential
iterations. A computer code in FORTRAN language
is developed by the authors to perform the compu-
tations.

Free Surface Tracking

KBC for the free surface assumes that all fluid par-
ticles on the free surface will remain on the free sur-
face, implying no mass flux across the free surface
boundary. Mathematically it is formulated as

∂h

∂t
+ us

∂h

∂x
= ws (13)

where us and ws are horizontal and vertical veloc-
ities on the free surface and h is the water depth
defined as a single-valued function at the center of
a liquid column. The KBC is simple and effective
to track the free surface position. The space cen-
tered and forward-in-time difference approximation
of Eq. (13) is unstable because of a negative trunca-
tion error. This truncation error is compensated for
by adding a positive diffusion term. The complete
finite difference form of Eq. (13) is given by Nichols
and Hirt (1973). At the beginning of this study KBC
was used to trace the free surface variations. How-
ever, it was found that the total fluid volume in the
computational domain was continuously changing as
the computations proceeded.

As an alternate approach, the integral continuity
equation is used to replace Eq. (13). Equation (3)
is integrated from the bottom (z = 0) to the free
surface (z = h) to obtain the DIC equation:

∂h

∂t
+

∂

∂x

h∫

0

udz = w0 (14)

where w0 is the velocity of the bottom boundary set
to zero throughout this study. Equation (14) can be

discretized as

hn+1
i = hn

i −∆t
[
(qn+1

i+1/2 − qn+1
i−1/2)/∆xi

] (15)

Volume fluxes on cell faces are evaluated from
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i,j ∆zj (16)
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0
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i−1/2

=
js∑

j=1

un+1
i−1,j∆zj (17)

where js is the index of the surface cell at the ith col-
umn. Fluxes on the cell faces are computed directly
by using velocities on the cell faces taking advantage
of the staggered grid arrangement.

In the numerical solution, location of the free sur-
face must be followed by an appropriate algorithm
identifying the computational cells as fluid cell (F)
when it is completely filled by fluid, empty cell (E)
when there is no fluid, surface cell (S) when the cell
is partially filled, and boundary cell (B) on the solid
boundaries (Figure 2). When applying any numeri-
cal procedure on a computational cell, 4 neighbors,
namely, east, west, north, and south contiguous cells,
must be identified. Integration and interpolation
practices depend on the type of neighboring cells.
A standard solution procedure is applicable for F
cells when the neighbors are also composed of F or
S cells. Special procedures are required to obtain
velocity and pressure when E cells appear as neigh-
bors. A common approach used to calculate the ve-
locity components at the interfaces of E and F cells
is extrapolation of the velocity components from the
closest available velocities obtained from momentum
solutions. A detailed description of the extrapolation
procedure can be found in Armenio (1997).
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Figure 2. Computational cells and labeling.
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DEMİREL, AYDIN

The pressure equation is solved in F cells, the
horizontal momentum equation is solved at F-F, F-
S, and S-S interfaces, and the vertical momentum
equation is solved at F-F and F-S interfaces. Pres-
sure on the free surface in S cells is computed from
the free surface stress conditions given by Batchelor
(1967). A non-zero pressure just on the free surface
is evaluated from

pfs = 2µ∂w/∂z (18)

where µ is the dynamic viscosity. Then, the pressure
at the centre of the surface cell is calculated by linear
interpolation

ps = ηpfs + (1 − η)pF (19)

where η = h/d. A detailed description of free sur-
face boundary conditions can be found in Chen et al.
(1995), Kleefsman (2005), Griebel (1997), and Tome
et al. (2001).

ps

pfs

pf

h

d

Figure 3. Pressure interpolation in a surface cell.

Numerical Solution

The momentum equations, pressure equation, and
free surface equation are solved by sequential itera-
tions using an explicit procedure. In order to ensure
computational stability of the numerical algorithm, a
combined stability condition is imposed on the time
step based on the convection and diffusion processes
(Chan and Street, 1970).

∆t = CFLmin
{

∆xi+1/2

|ui,j| ,
∆zj+1/2

|wi,j | , 1
2ν

∆x2
i ∆z2

j

(∆x2
i +∆z2

j )
,

2∆xi∆zj

c(∆xi+∆zj)

}
(20)

where CFL is the Courant-Friedrichs-Lewy number,
which is fixed as 0.5 throughout this study, and c is

the surface wave celerity. The pressure equation (12)
is solved by the Point Successive-Over-Relaxation
(PSOR) method.

In some cases, sharp deformations on the free sur-
face may occur and this may lead to stability prob-
lems. One of the most effective techniques to reduce
stability problems is the Flux Corrected Transport
(FCT) method, which was originally developed by
Boris and Book (1973) for the treatment of shock
waves in compressible flow. This technique dif-
fuses the solution throughout the computational do-
main and then anti-diffuses the solution using a flux-
limiter.

Surface elevations are computed from the free
surface equation (Eq. (15)) and the FCT method
is applied to surface elevations throughout the do-
main. The diffusive flux is computed as

dn+1
i+1/2 = λ(hn+1

i+1 − hn+1
i ) (21a)

dn+1
i−1/2 = λ(hn+1

i − hn+1
i−1 ) (21b)

where λ is the diffusion coefficient computed from
the equation suggested by Book et al. (1975):

λ = CFL/(1 + 2CFL)2 (21c)

and the diffused solution is obtained as

hn+1
i = hn+1

i + dn+1
i+1/2

− dn+1
i−1/2

(22)

Then the diffused solution is corrected to eliminate
excess diffusion using flux limiters defined by Yost
and Rao (1999):

hn+1
i = hn+1

i + Ln+1
i+1/2 + Ln+1

i−1/2 (23)

where
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i+1/2 = Sgn(∆hn+1
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λ
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(24a)
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and

∆hn+1
i+1/2 = hn+1

i+1 − hn+1
i (24c)

∆hn+1
i−1/2 = hn+1

i − hn+1
i−1 (24d)

The FCT correction is effective to maintain the sta-
bility of computations only when the free surface has
steep slopes as in the case of a dam break solution.
When the free surface has mild slopes FCT has no
influence on the solution. Equation (15) is solved for
each liquid column in the domain. Numerical fluxes
are evaluated at the side faces of the liquid column
and integrated from the bottom to the free surface
using Eqs. (16) and (17).

Lid-driven cavity flow

The computational algorithm is first tested in a lid-
driven square cavity problem. The purpose of the
cavity solution is to verify the momentum and pres-
sure solution procedures in an internal flow without
a free surface. The convective fluxes are computed
by QUICK and also by First Order Upwind (FOU)
to exhibit the improvement provided by QUICK.
The stream lines for Re = 400 and comparison of u-
velocity distribution along the vertical line through
x = L/2 are shown in Figure 4. Velocity distribu-
tions obtained by QUICK and FOU are given to-
gether with the results reported by Ghia et al. (1982)
for comparison. The numerical solution is obtained
on a 128 × 128 uniform grid as in the solution given
by Ghia et al. Although QUICK causes some in-
crease in CPU time, it is superior to FOU by produc-
ing more accurate solutions for the same grid resolu-
tion. The same accuracy may be achieved by FOU
using a more refined mesh system.

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

x/L

y/
L

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4
0.0 0.2 0.4 0.6 0.8 1.0

Ghia et al. (1982)
FOU

QUICK

y/L

u/
U

m

Figure 4. Cavity flow, a) stream lines at Re = 400, b)
Velocity profile along vertical at x = L/2.

Liquid sloshing in an oscillating rectangular
tank

Liquid sloshing inside a partially filled rectangular
tank is one of the well known test cases for unsteady
free surface flows. The tank (Figure 5) is oscillated
along the horizontal axis by a sinusoidal excitation.
Horizontal displacement α of the container is given
by

α = A sin(2π t/T ) (25)

where A is the amplitude of horizontal displacement
and T is the period of oscillation. Equation (25) is
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differentiated twice to obtain the horizontal accel-
eration. The parameters of oscillation selected are
the same as those in the experiments reported by
Okamoto and Kawahara (1990) (A = 0.93 cm, T =
1.183 s, b = 1 m, H = 0.5 m) to compare the free sur-
face computations with the experimental data. This
test case was defined such that the frequency of os-
cillation was equal to the natural frequency of the
tank to observe possible resonating free surface os-
cillations.

b

α

H

x

z

Figure 5. Definition of geometric parameters in an oscil-
lating tank.

Different grid distributions are used to investi-
gate the mesh size effect on the free surface com-
putations. Grid clustering in the vertical direction
is applied around the free surface to reduce possible
truncation errors due to partially filled surface cells.
Three non-uniform grid arrangements, 30 × 45, 50 ×
63, and 80 × 92, are used to obtain the free surface
profiles at t = 3.55 s. Free surface profiles obtained
by KBC and DIC compared to experimental data of
Okamoto and Kawahara (1990) are shown in Figure
6. KBC gives smoother surface profiles but volume
conservation is lost when coarser grids are used. DIC
solutions exhibit small oscillations but volume con-
servation is satisfied exactly at all time steps. DIC
solutions give much better fit to experimental data
even with coarse grid distributions.

Free surface profiles computed by DIC are com-
pared to measurements given by Okamoto and
Kawahara (1990) at different time levels of tank os-
cillation (Figure 7). The spatial and temporal agree-
ment between the computations and the experiment
clearly indicates the accuracy achieved by compu-
tational developments and the adequacy of the grid
arrangement (80 × 92) selected in the solution.

Another test for volume conservation was per-
formed by observing the diminishing of surface de-
formations when the tank oscillation is stopped. The
tank is oscillated for the first 14 s and then stopped.

Computations are continued with no excitation until
the kinetic energy of the oscillating fluid volume is
dissipated totally and the free surface becomes nearly
horizontal. Water level at the left wall is shown as a
function of simulation time in Figure 8. During the
first 15 s, the surface waves are amplified, reaching a
maximum wave height of approximately 0.4 m, and
then start to decrease when the tank oscillations are
stopped. It takes about 200 s for the surface waves
to be reduced to negligible amplitude. It is observed
that the steady-state water depth at the end of com-
putations is the same as the initial water depth, indi-
cating no leaks or sources of fluid volume after 1000
s of simulation.
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Figure 6. Free surface profiles at t = 3.55 s using KBC
and DIC.

Dam-break problem

An idealized dam-break problem is described by a
rectangular column of water confined between 2 ver-
tical walls (Figure 9). Initially the fluid is at rest.
Motion starts when the right wall is removed sud-
denly at t = 0 and water flows to the right over a
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dry bed. The depth and width of the water col-
umn are chosen as H = 0.057 m, the same as in
Martin and Moyce (1952), to compare the compu-
tational results to the experimental data provided.
The numerical solution is obtained using 30 × 20, 50
× 30, and 70 × 40 uniform grid arrangements. Di-
mensionless water levels h+ = h/H on the left wall
(x = 0 m) are plotted as a function of dimension-
less time t+ = t(g/H)1/2 and presented in Figure
10 in comparison to the experimental data given by
Martin and Moyce (1952). At the beginning of the
motion, the right boundary of the water column is
vertical and then slope starts to decrease and finally
becomes horizontal. Computation of the free surface

with very steep surface slopes is the most difficult
test case for the present algorithm. Therefore, much
error is expected at the early stages of motion.

Computational results for different grid resolu-
tions are very close to each other except for the 30
× 20 grid. There is a discrepancy of less than 3% in
depth between computations with the 30 × 20 grid
and the other grids. The solution using the 30 × 20
grid underestimates the water level by less than 3%
on the left wall while overestimating the water level
on the right wall at the same amount such that the
total fluid volume is conserved. For the grid reso-
lutions 50 × 30 and higher, all numerical solutions
become identical.
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Figure 7. Comparison of free surface profiles in an oscillating tank with experimental data.
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Figure 8. Water level at the left wall of the oscillating
tank as a function of time.

H

H

3H

x

z

Figure 9. Description of the dam-break problem.
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Figure 10. Water level on the left wall in the dam-break
problem for different grid resolutions.

The dimensions of the dam-break experimental
test case are so small that the accuracy of the numeri-
cal solution for large domains, keeping the number of
grid points constant, cannot be directly illustrated.
However, similar solutions obtained for larger do-
main dimensions can be shown on the same graph.
Dam-break solutions for H = 1, 10, 100, and 1000
m obtained using the same number of grid points

(70 × 40) in the computational domain are given
together in Figure 11. Computational parameters
∆x,∆z, and ∆tare different for each case. Variation
in dimensionless water level on the left wall over di-
mensionless time is conformal for all reservoir dimen-
sions. This indicates that the numerical solution ob-
tained with different computational parameters con-
verges to the same result. There is no difference in
the computational errors depending on the dimen-
sions of the computational domain. It should also
be noted that conformal plots of dimensionless water
levels indicate similar solutions for different reservoir
dimensions. This is simply due to the fact that the
viscous effects on water level on the left wall are neg-
ligible and therefore the numerical solution becomes
equivalent to a potential solution producing overlap-
ping water levels for different reservoir heights.

1.0

0.8

0.6

0.4

0.2

0.0

h+

t+
0 1 2 3 4 5 6 7

Martin and Moyce (1952)
H = 1 m
H = 10 m
H = 100 m
H = 1000 m

Figure 11. Water level on the left wall in the dam-break
problem for different reservoir dimensions.

The KBC method applied to the test cases con-
sidered in this study failed to satisfy total volume
conservation. Variation in total fluid volume was
small and slow. Since unsteady flow simulation dura-
tions are usually short, small changes in volume may
not be noticed if not checked. Actually, it may not
cause significant errors, depending on the physical
quantities predicted from the numerical simulation.
However, if the pressure field is to be computed and
if there is any possibility of compressibility effects on
the development of the pressure field, then the small-
est unphysical change in fluid volume would prevent
prediction of correct pressure variations.

Conclusions

A computational model for simulating 2-dimensional
unsteady free surface flows is developed. The model
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solves Navier-Stokes equations using a finite volume
technique. The free surface tracking is accomplished
by DIC and KBC methods alternately, to investi-
gate total volume conservativeness of the formula-
tions. The model has been tested in lid-driven cav-
ity, sloshing in an oscillating tank, and dam-break
flows. The following conclusions are drawn from this
study.

1. Use of the KBC method to track the free sur-
face results in variations in total fluid vol-
ume and therefore fails to satisfy overall mass
conservation. One possible reason for failure
can be the requirement of artificial diffusion
to smooth the surface oscillations. Since the
KBC method cannot enforce volume conserva-
tion directly, any erroneous water level violat-
ing volume conservation is not corrected in the
solution procedure.

2. The DIC method produces free surface profiles
satisfying mass conservation exactly. The FCT
technique removes unphysical surface oscilla-
tions in the DIC solution when a sufficient grid
resolution is provided. Numerical procedures
for KBC and DIC are similar. The additional
computation required in DIC is the integration
of net flux for each water column in the com-
putational grid.

3. Use of FOU or QUICK for convection terms
has no effect on volume conservation in the
DIC solution.

4. The algorithm developed here can deal with
steep surface slopes, such as dam-break, with-
out computational problems. Accuracy in pre-
dicting local water depths may deteriorate due
to extrapolations in the free surface computa-
tion when a coarse grid is used. However, total
volume conservation is always satisfied.

5. Total volume conserving property and compu-
tational accuracy are independent of the di-
mensions of the computational domain. This
feature of the model makes it suitable for com-
putations in large spatial domains.

Note: This paper is a part of the PhD study by
Ender Demirel in the Civil Engineering Department
of Eskişehir Osmangazi University.

Nomenclature

A amplitude of oscillation
ax, az acceleration components of ground motion
b tank width
c wave speed
d distance between instantaneous water

depth and fluid cell
F,G tentative velocity fields
g acceleration of gravity
H initial water depth in the tank
h instantaneous water depth
p fluid pressure
pfs fluid pressure at surface cell
ps interpolated fluid pressure at surface cell
q flux at cell face
T period of oscillation
t time
u, w velocity components of fluid
us, ws surface velocities
α displacement of the tank−→∇ del operator
∆t computational time step
∆x,
∆z

mesh size

λ diffusion coefficient
µ dynamic viscosity
ν kinematic viscosity
ρ fluid density
∀ volume
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