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Abstract

A 2-dimensional model is developed to investigate fluid flow in a magneto-hydrodynamic (MHD) microp-
ump. The transient, laminar, incompressible, and developing flow equations are numerically solved using
the finite difference method and the SIMPLE algorithm. The micropump is driven using the Lorentz force,
which is induced as a result of interaction between an applied electric field and a perpendicular magnetic
field. The effect of Hartmann number on the transient velocity profile and the entrance region length is stud-
ied. It is found that controlling the electrical conductivity and magnetic flux density will allow controlling
the entrance region length.
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Introduction

Many studies have been performed in micro-fluidic
systems (Ngugen et al. 2002; Esashi, 1994). The
magnetohydrodynamic (MHD) micropump is one of
the important microfluidic systems that has no mov-
ing parts, generates continuous flow, and has poten-
tial applications in biomedical studies. The pump-
ing source in MHD micropumps is the Lorentz force,
which is produced as a result of an interaction be-
tween magnetic and electric fields.

Recent theoretical and experimental studies on
DC and AC MHD devices were investigated. Lemoff
et al. (1999) and Lemoff and Lee (2000) constructed
a practical AC MHD pump in which the Lorentz
force is used to propel an electrolytic solution along
with a microchannel etched in silicon.

Eijkel et al. (2003) developed and fabricated
an AC magnetohydrodynamic micropump for chro-
matographic application. Jang and Lee (2000) pre-
sented a DC micropump and obtained the perfor-
mance of a MHD micropump in single phase using

the simple model. The use of magnetohydrodynamic
to circulate fluids in conduits fabricated with ceramic
tapes was described by (Zhong et al., 2002).

To avoid gas bubbles, Homsy et al. (2005) de-
scribed the operation of a DC MHD micropump at
high current densities without introducing gas bub-
bles into the pumping channel. A new study of MHD
flow is presented by Duwairi and Abdullah (2007).
They studied theoretically the transient fully devel-
oped laminar flow and temperature distribution in
MHD micropumps. The effect of different parame-
ters on the transient velocity and temperature was
presented.

In addition to MHD pumping, the study of mix-
ing systems and microfluidic networks using MHD
pumping has been performed. Lemoff and Lee (2003)
used MHD forces to pump electrolytic solutions in
microfluidic networks. Bau et al. (2001) and Yi et
al. (2002) constructed and analyzed 2 types of mag-
netohydrodynamic stirrers experimentally and theo-
retically.

The above studies presented and analyzed differ-
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ent models of the MHD micropump flow. In this pa-
per, we studied numerically the transient developing
flow in a magnetohydrodynamic (MHD) micropump.

Analysis

The MHD micropump consists of a channel of length
L with a rectangular cross-section of width W and
height h. A conductive liquid with a densityρ , a
dynamic viscosityµ , and an electrical conductivity
σ fills the channel.

The channel is subjected to a potential difference
V imposed across the opposing electrodes that in-
duces an electric current of density J. The channel is
placed in a uniform magnetic field of flux density B
in direction z.

The interaction between the magnetic and elec-
tric fields produces a body Lorentz force

⇀

J × ⇀

B that
is perpendicular to both

⇀

J and
⇀

B. The Lorentz force
is used to pump the conducting liquids along the mi-
crochannel.
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Figure 1. An inclined view of an MHD micropump.

Governing Equations

The governing equations of the MHD micropump
that present the fluid motion are:

The Ohm’s Law:
⇀

J = σ
(

⇀

E + ⇀
u × ⇀

B
)

(1)

The continuity equation:

∇.
⇀
u = 0 (2)

The Navier-Stokes equation:

ρ
∂

⇀
u

∂t
+ ρ

(
⇀
u.∇

)
⇀
u = −∇p + µ∇2⇀

u +
⇀

J × ⇀

B (3)

In our model, the width of the channel is assumed to
be much larger than its height (w/h>>1), hence we
studied the transient incompressible 2-dimensional
developing flow. Figure 1 depicts schematically the
channel’s inclined view of the MHD micropump. A
Cartesian coordinate system x,y with it’s origin at
the inlet is used. The coordinates x,y are aligned
respectively along the channel’s axis and width.

To develop the model, different assumptions are
set as following:

1. Constant fluid properties
2. The current flow is assumed to be one dimen-

sional
3. Laminar flow.
We used h, u0 = σEBh2

/
µ, σEBhand h2

/
ν as

the length, velocity, pressure and time scales, re-
spectively. The dimensionless form of continuity
and Navier-Stokes equations for an incompressible,
2-dimensional developing flow become:

∂u∗

∂x∗ +
∂v∗

∂y∗
= 0 (4)

∂u∗

∂τ
+

(
h
L

)
Re

(
u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗

)
=

−∂p∗

∂x∗ +
∂2u∗

∂x∗2 +
∂2u∗

∂y∗2 + 1 + Ha2u∗
(5)

∂v∗

∂τ
+

(
h

L

)
Re

(
u∗ ∂v

∗

∂x∗ + v∗
∂v∗

∂y∗

)
=

−∂p∗

∂y∗
+

∂2v∗

∂x∗2 +
∂2v∗

∂y∗2

(6)

In the above equations, u∗ and v∗ are the dimen-
sionless velocity components in x and y directions, τ
is the dimensionless time, x∗ and y∗ are the dimen-
sionless coordinates, Ha = hB

√
σ
µ

is the Hartmann

number, and Re = u0L
ν

is the Reynolds number. The
boundary conditions can be specified as follows. The
velocity is zero at all boundaries except the channel
outlet:

u∗ (0, y∗) = v∗ (0, y∗) = 0
u∗ (x∗, 0) = v∗ (x∗, 0) = 0
u∗ (x∗, w/h) = v∗ (x∗, w/h) = 0

The flow is fully developed at the channel outlet:

∂u∗

∂x∗

(
L

h
, y∗

)
=

∂v∗

∂x∗

(
L

h
, y∗

)
= 0

Initially, at τ=0, u∗ (x∗, y∗) = v∗ (x∗, y∗) = 0
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Method of solution

The nonlinear terms in the left hand side of the
Navier-Stockes equations can be ignored because
h/L<<1. The finite difference method and the sim-
ple algorithm (Patankar, 1980) are applied to solve
the governing differential equations. A uniform grid
in the x and y directions is used. The grid system
has 1000 nodes in the x-direction and 200 nodes in
the y-direction. The method with a large amount of
time steps is employed until the steady state solution
is achieved.

Results and Discussion

In this section, we studied the transient velocity pro-
file, and discussed the effect of Hartmann number
on the behavior of the transient velocity and the en-
trance length. To study the effect of this parameter,
a numerical solution for the velocity profile is com-
puted for different values of Hartmann number.

Figures 2 and 3 illustrate the effect of Hartmann
number on the velocity profile and the entrance re-
gion length. It is seen that the mid-width veloc-
ity components U and V decrease as the Hartmann
number increases, which means that a slightly con-
ductive fluid is enough to propel the fluid. It is also
seen that the axial velocity U increases and the ve-
locity component V decreases until they reach the
fully developed region, which is influenced by the
Hartmann number. This means that controlling the
electrical conductivity and magnetic flux density will
allow controlling the entrance region length.
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Figure 2. Variation of the dimensionless mid-width axial
velocity U with the dimensionless X coordinate
at different Hartmann numbers.
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Figure 3. Variation of the dimensionless mid-width ve-
locity component V with the dimensionless X
coordinate at different Hartmann numbers.

Figure 4 depict the dimensionless pressure P
which decreases as the Hartmann number increases.
It is noticed that the pressure increases at the chan-
nel inlet and then decreases until reaching a constant
pressure gradient at the channel fully developed re-
gion.
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Figure 4. Variation of the dimensionless pressure P with
the dimensionless X coordinate at different
Hartmann numbers.

The variation of velocity components U and V
with the dimensionless Y coordinate is shown in Fig-
ures 5 and 6 at different Hartmann numbers. It is
seen that at low Hartmann number, the axial veloc-
ity (U) profile is parabolic, and as the Ha increases,
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the profiles flattens. From Figure 6 it is seen that
maximum velocity (V) reached at the end of the first
and third quarter of the channel width.
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Figure 5. Variation of the dimensionless mid-length axial
velocity U with the dimensionless Y coordinate
at different Hartmann numbers.
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Figure 6. Variation of the dimensionless mid-length ve-
locity component V with the dimensionless Y
coordinate at different Hartmann numbers.

The effect of Hartmann number on the transient
behavior of the mid-width dimensionless centerline
velocity components U and V is shown in Figures
7 and 8. It is seen that the effect of increasing Ha
decreases the time required to reach steady state.
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Figure 7. Transient behavior of the mid-length centerline
axial velocity U at different Hartmann num-
bers.
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Figure 8. Transient behavior of the mid-length centerline
velocity component V at different Hartmann
numbers.

Conclusion

A numerical method to predict the velocity distri-
bution in a magnetohydrodynamic (MHD) microp-
ump has been proposed. In this study, the effect of
Hartmann number on the transient velocity profiles
is investigated. It is noticed that controlling the ve-
locity profile and the entrance length can be achieved
by controlling the potential difference, the magnetic
flux, and by a good choice of the electrical conduc-
tivity.
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Nomenclature

B magnetic flux density (Tesla)
E electric field intensity (volt/m)
h height of micro-channel (m)
Ha Hartman number, Ha = hB

√
σ/µ

J electric current density (Amper/m2)
L length of micro-channel (m)
P pressure (N/m2)
p∗ dimensionless pressure
t time (s)
u,v velocity components in the x and y

directions
u∗, v∗ dimensionless velocity components in x

and y directions

V potential difference (volts)
w width of microchannel (m)
x, y, z Cartesian coordinates
x∗, y∗ dimensionless coordinates

Greek Symbols

µ dynamic viscosity (N · s/m2)
ρ density (Kg

/
m3)

υ kinematic viscosity (m2
/
s)

σ liquid’s conductivity (Siemens/m)
τ dimensionless time
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