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Abstract

The analytical solution of a nonlinear strain hardening preheated tube subjected to internal pressure is
presented. A state of generalized plane strain, small deformations, and temperature gradients are assumed.
The analytical plastic model is based on the incremental theory of plasticity, Tresca’s yield criterion, its
associated flow rule, and a Swift-type nonlinear hardening law. Solutions for linearly hardening and perfectly
plastic materials are also presented.
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Introduction

Deformation analysis of tubes subjected to either in-
ternal or external pressure is an important topic in
engineering because of rigorous applications in in-
dustry as well as in daily life. For this reason, the
classical problem of a long pressurized tube has been
the topic of a variety of theoretical investigations. It
is treated in the purely elastic stress state by Tim-
oshenko (1956), Timoshenko and Goodier (1970),
Ugural and Fenster (1987), and Boresi et al. (1993);
in the fully plastic stress state by Boresi et al. (1993),
Mendelson (1986), and Nadai (1931); and in the par-
tially plastic stress state by Bland (1956), Parker
(2001), and Perry and Aboudi (2003). Recent studies
on the subject by Horgan and Chan (1999), Tutuncu
and Ozturk (2001), Jabbari et al. (2002), Ma et al.
(2003), and Eraslan and Akis (2005a, 2006) include
tubes made of functionally graded materials (FGM)
under pressure. The results of stress and deforma-
tion analyses in 2-layer concentric pressure tubes in
the elastic state by Eraslan and Akis (2005b) and
Akis and Eraslan (2005) and in the partially plas-
tic stress state by Eraslan and Akis (2004) have also

been reported.
The subject matter of this article is to derive con-

sistent analytical solutions in order to predict the
partially plastic stress responses of nonlinear strain
hardening tubes under internal pressure. A suffi-
ciently long tube of inner radius a and outer radius
b with axially unconstrained ends is taken into ac-
count. Inner and outer surfaces are kept at different
temperatures, which leads to a radial temperature
gradient within the tube described by the logarith-
mic temperature distribution

T (r) =
ln(r/b)Ta − ln(r/a)Tb

ln(a/b)
, (1)

where Ta = T (a), Tb = T (b) are the temperatures
of the inner and outer surfaces of the tube, respec-
tively. The tube is then subjected to internal pres-
sure. Since this is intended to be a pressurized tube
problem rather than a thermal stress problem, small
and negative temperature gradients of the order of 20
◦C are considered. Under these circumstances and in
the framework of generalized plane strain and small
deformation theory, an elastic as well as a plastic
region is formulated in terms of dimensionless vari-
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ables. The formulation of the plastically deformed
region is based on incremental theory, Tresca’s yield
criterion, its associated flow rule, and a Swift-type
nonlinear hardening law. Exact solutions of the re-
sulting field equations of Cauchy-Euler linear nonho-
mogeneous type for the elastic, and Abel nonlinear
type for the plastic are obtained. Elastic, partially
plastic and fully plastic stress states are investigated.
The results imply that elastic and plastic limit pres-
sures and the magnitudes of the response variables
are affected notably by the existence of a small tem-
perature gradient within the tube.

Basic Equations

The notation given by Timoshenko and Goodier
(1970) and the basic equations provided therein are
employed. Hence, in the formulation, σj and εj de-
note a normal stress and a normal strain compo-
nent, respectively, and u is the radial component
of displacement vector. Furthermore, we introduce
and use the following nondimensional and normal-
ized variables. They are radial coordinate: r = r/b,
bore radius: a = a/b, normal stress: σj = σj/σ0,
normal strain: εj = εjE/σ0, radial displacement:
u = uE/(bσ0), pressure: P = P/σ0, and the coef-
ficient of thermal expansion: α = αE/σ0, with E
being the modulus of elasticity and σ0 the uniaxial
yield limit. The equations given below are written in
terms of these variables, but to simplify the notation
overbars are dropped.

A sufficiently long tube, a state of generalized
plane strain, i.e. εz = constant, and small strains
are presumed. The strain displacement relations:
εr = u′, εθ = u/r, the equation of equilibrium in
the radial direction:

(rσr)
′ − σθ = 0, (2)

the compatibility relation:

(rεθ)′ − εr = 0, (3)

and the equations of generalized Hooke’s law of the
form (Timoshenko and Goodier, 1970; Mendelson,
1986)

εi = [σi − ν(σj + σk)] + εp
i + αT, (4)

constitute the basis for the entire analysis. In the
above, εp

i denotes the plastic counterpart of the nor-
mal strain εi, and a prime implies differentiation with
respect to nondimensional radial coordinate r.

Elastic Stresses and Onset of Yield

For purely elastic deformations εp
i = 0. Moreover, in

the state of generalized plane strain the axial stress
reads

σz = εz + ν(σr + σθ)− αT. (5)

The elastic equation may be obtained in a variety of
ways. One way is to express σθ and σz in terms of
σr by the use of Eqs. (2) and (5) and then use the
compatibility relation, Eq. (3). The result is

d2Y

dr2
+

1
r

dY

dr
− Y

r2
= − α

(1− ν)
dT

dr
, (6)

where Y = rσr. The general solution of this equation
imposing

T (r) =
Ta ln r − Tb ln(r/a)

lna
(7)

enables one to assemble

σr =
C1

r2
+ C2 +

α(Tb − Ta) ln r

2(1− ν) lna
, (8)

σθ = −C1

r2
+ C2 +

α(Tb − Ta)(1 + ln r)
2(1− ν) lna

, (9)

σz = − α

2(1− ν) lna
{(2 ln r + ν)Ta + [2 ln(a/r)

−ν(1 + 2 lna + 2 ln(a/r))]Tb}+ 2C2ν + εz,

(10)

u = (1 + ν)
[
−C1

r
+ (1− 2ν)rC2

]

+
α(1 + ν)r

2(1− ν) lna
(D1 −D2)− εzνr,

(11)

where C1 and C2 are arbitrary constants to be deter-
mined, and the dummy variables D1, D2 have been
defined as

D1 = [(1− ν)(1 + 2 lna)− ln r]Tb, (12)

D2 = (1 − ν − ln r)Ta. (13)

Furthermore, the use of the conditions
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σr(a) = −P , σr(1) = 0, and

∫
σzdA = 2π

∫ 1

a

σzrdr = 0, (14)

leads to

C1 =
a2P

a2 − 1
+

a2α(Tb − Ta)
2(a2 − 1)(1− ν)

, (15)

C2 = − a2P

a2 − 1
− a2α(Tb − Ta)

2(a2 − 1)(1− ν)
, (16)

εz =
2a2νP

a2 − 1
− α

2(a2 − 1) lna

[
(1− a2 + 2 lna)Tb

−(1− a2 + 2a2 ln a)Ta

]
.

(17)

The inner surface of the tube is critical; consequently,
the pressure tube fails with respect to plastic flow at
this location as soon as the internal pressure reaches
a limiting value PE, called the elastic limit pressure.
According to Tresca’s yield criterion under the inter-
nal pressure P = PE ; σθ(a) − σr(a) = 1, and hence
after some algebraic manipulations

PE =
1− a2

2
− α(1− a2 + 2 lna)∆T

4(1− ν) lna
(18)

is derived. Here, ∆T = Tb − Ta is a measure of
the radial temperature gradient. For an isothermal
pressure tube, ∆T = 0, the elastic limit simplifies to
PE = (1 − a2)/2. In the case of negative temper-
ature gradients, i.e. Ta > Tb, PE increases linearly
with increasing magnitudes of ∆T and vice versa for
positive values of ∆T .

Finally, we calculate a force integral FE to ac-
company further elastoplastic calculations using

FE(β, γ) =
∫ γ

β

σzrdr. (19)

The result is

FE(β, γ) = −D3

(
β2 lnβ − γ2 ln γ

)
2(1− ν2)

+
(
β2 − γ2

) [
D3

4 (1 + ν)
+

αTb

2
− εz

2
− νC2

]
,

(20)

in which

D3 =
α(1 + ν)(Tb − Ta)

lna
. (21)

Plastic Formulation and Solution

In the case ∆T < 0, the stress state satisfies σθ >
σz > σr throughout. Therefore, Tresca’s yield crite-
rion takes the form

σY = σθ − σr . (22)

The associated flow rule states εp
θ = −εp

r and εp
z = 0

(Mendelson, 1986). Furthermore, with εEQ being the
equivalent plastic strain, we deduce from the incre-
ment of plastic work that εp

θ = εEQ. On the other
hand, a Swift-type nonlinear strain hardening law
relates the yield stress σY and the equivalent plastic
strain εEQ as

σY = (1 + HεEQ)1/2, (23)

where H is the nondimensional hardening parame-
ter. The inverse relation is

εEQ = (σ2
Y − 1)/H. (24)

The stress-strain curve anticipated by relation (23)
can be examined in Figure 1 in comparison to linear
strain hardening and perfectly plastic models. It is
noted that closed form solutions of the present prob-
lem for perfectly plastic and linear strain hardening
materials are also obtained. These solutions are pre-
sented in the Appendix.

strain

st
re

ss

2/1)1( EQY H

EQY H1

1Y

Figure 1. Graphical representation of perfectly plastic,
linear strain hardening, and nonlinear strain
hardening plastic models.
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Making use of the flow rule and the relation
εp
θ = εEQ the total strains can be expressed as

εr = σr − ν (σθ + σz) −
(
σ2

Y − 1
)
/H + αT, (25)

εθ = σθ − ν (σr + σz) +
(
σ2

Y − 1
)
/H + αT. (26)

Like in the elastic treatment, the stresses here may
be expressed in terms of σr. Knowing that σY =

σθ − σr, we find from the equation of equilibrium
σY = r σ′

r and σθ = (r σr)′. Moreover, since εp
z = 0,

the axial stress σz is no more than the one given in
Eq. (5). If the total strains all expressed in terms of
σr are substituted in the compatibility relation (3)
we end up with the governing equation for the plastic
region. The result turns out to be

−2 −HD3 + 3Hr
(
1− ν2

) dσr

dr
+ 4r2

(
dσr

dr

)2

+ r2

[
H

(
1− ν2

)
+ 2r

dσr

dr

]
d2σr

dr2
= 0. (27)

For the solution, we introduce a new variable V as V = σ′
r, so that Eq. (27) becomes

−2− HD3 + 3Hr
(
1− ν2

)
V + 4r2V 2 + r2

[
H

(
1− ν2

)
+ 2rV

] dV

dr
= 0. (28)

This is Abel’s B class nonlinear differential equation (see for example, ode advisor in Maple (Garvan, 2002)),
which assumes 1 of the 2 exact solutions:

V (r) = −H(1− ν2)
2r

±
√

r2D4 + 2HC3

2r2
, (29)

in which C3 is an arbitrary integration constant and

D4 = 4 + 2HD3 +
[
H(1− ν2)

]2
. (30)

Among the 2 solutions, the one that satisfies

lim
H→0

σY = lim
H→0

(rσ′
r) = lim

H→0
(rV ) = 1 (31)

is

V (r) = −H(1− ν2)
2r

+
√

r2D4 + 2HC3

2r2
. (32)

Since σr =
∫

V dr we finally obtain

σr =
√

D4

2
ln

(
2r

√
D4 + 2

√
2HC3 + r2D4

)
−

√
2HC3 + r2D4

2r
+C4 − H(1− ν2) ln r

2
, (33)

and hence

σθ =
√

D4

2
ln

(
2r

√
D4 + 2

√
2HC3 + r2D4

)
+ C4 − H(1− ν2)

2
(1 + ln r) , (34)

σz = εz + 2νC4 + ν
√

D4 ln
(
2r

√
D4 + 2

√
2HC3 + r2D4

)
− Hν(1− ν2)

2
(1 + 2 ln r)

−ν
√
2HC3 + r2D4

2r
− αTb +

D3 ln r

1 + ν
, (35)

u =
C3

2r
− r [1−HD5C4]

H
− Hr (1 + ν) (1− ν2)

2
[1− ν + (1− 2ν) ln r] +

Hr(1− ν2)2

4

+
r
√

D4

2
D5 ln

(
2r

√
D4 + 2

√
2HC3 + r2D4

)
+

rD4

4H
+ rα (1 + ν)Tb − rνεz

−1
2
D5

√
2HC3 + r2D4 − rD3 ln r, (36)
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εp
θ = −εp

r =
C3 − r(1− ν2)

√
2HC3 + r2D4

2r2
+

1
H

(
D4

4
− 1

)
+

H(1− ν2)2

4
, (37)

where

D5 = (1 + ν) (1− 2ν) . (38)

Having found the analytical expression for σz we evaluate the force integral as

FP (β, γ) =
∫ γ

β

σzrdr = − (
β2 − γ2

) [
εz

2
− α (Tb − Ta)

4 lna
+ νC4

]

+
ν

2
β2

[
H(1− ν2) lnβ −

√
D4 ln

(
2β

√
D4 + 2

√
2HC3 + β2D4

)]

+
ν

2
γ2

[
−H(1 − ν2) ln γ +

√
D4 ln

(
2γ

√
D4 + 2

√
2HC3 + γ2D4

)]

+β
√

2HC3 + β2D4 − γ
√

2HC3 + γ2D4 +
α

(
β2 lnβ − γ2 lnγ

)
Ta

2 lna

+
α

(
γ2 ln γ/a − β2 lnβ/a

)
Tb

2 lna
. (39)

Numerical Results

In the following calculations the material properties
of steel are used. Hence, ν = 0.3 and α = αE/σ0 =
11.7× 10−6 × 200× 109/250× 106 = 9.36× 10−3 1/
◦C. First, the elastic response of a tube of a = 0.7
is studied. Assigning Ta = 15 ◦C and Tb = 5 ◦C
(∆T = −10 ◦C) and using Eq. (18) we calcu-
late PE = 0.274059. Moreover, from Eqs. (15)-
(17) we obtain C1 = −0.199076, C2 = 0.199076,
εz = −0.699042 × 10−3. The consequent distribu-
tions of the stresses are plotted in Figure 2. As seen
in this figure, the plastic flow has just begun at r = a
since σθ(a)−σr(a) = 1, and also the stress state sat-
isfies σθ > σz > σr throughout. The effect of ∆T
on the maximum elastic stresses can be examined in
Figure 3(a), (b), and (c). The stresses corresponding
to ∆T = −10 ◦C come from the above calculation,
the others are drawn at their elastic limits keeping
Tb at 5 ◦C and changing Ta accordingly.

A tube of inner radius a = 0.7 having the sur-
face temperatures held at Ta = 30 ◦C and Tb = 5
◦C undergoes plastic deformation when P = PE =
0.302646. For pressures P > PE the tube behaves as
a partially plastic material. The plastic region initi-
ated at r = a propagates into the tube with increas-
ing pressures. The solution of this elastoplastic prob-
lem requires the evaluation of 6 unknowns, namely
C3, C4 (plastic constants), rEP (plastic-elastic bor-
der radius), C1, C2 (elastic constants), and εz. There
exist 6 nonredundant conditions for the evaluation.
Five of them are: σp

r (a) = −P , up(rEP ) = ue(rEP ),

σp
r(rEP ) = σe

r(rEP ), σe
θ(rEP )−σe

r(rEP ) = 1, σe
r(1) =

0, with the superscripts p end e implying the plas-
tic and elastic regions, respectively. The remaining
condition is
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Figure 2. Elastic response of a tube of inner radius a =
0.7 subjected to an internal pressure of P =
0.274059 and ∆T = −10 ◦C.
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Figure 3. Effect of ∆T on the maximum elastic stresses.
Variation of (a) radial stress component, (b)
circumferential stress component, (c) axial
stress component with ∆T .
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Figure 3. Contunied.

∫
σzdA = 2π

∫ rEP

a

σp
zrdr + 2π

∫ 1

rEP

σe
zrdr = 0

(40)

Since the force integrals have already been evaluated
in the preceding sections, this last condition takes
simply the form FP (a, rEP ) + FE(rEP , 1) = 0. The
imposition of these conditions leads to a 6×6 highly
nonlinear system of equations, the simultaneous solu-
tion of which is achieved by Newton iterations. The
spread of the plastic zone into the tube from a to rEP

with increasing pressures is calculated for different
values of the hardening parameter H and the results
are plotted in Figure 4(a). The curve for H = 0
is obtained using the perfectly plastic solution pre-
sented in Appendix A. For all PE = 0.302646, but
the fully plastic limits PFP differ notably. The cal-
culated plastic limits are PFP = 0.356675, 0.363838,
0.369783, and 0.374821 for H = 0, 0.2, 0.4, and 0.6,
respectively. The effect of ∆T on the rate of propa-
gation of the plastic region for H = 0.25 can be ex-
amined in Figure 4(b). As stated earlier, for ∆T < 0
the increase in the magnitude of ∆T increases the
elastic limit pressure PE . In contrast, the fully plas-
tic limits decrease with increasing |∆T |. However,
the effect of ∆T on PE is highly pronounced in com-
parison to that on PFP , as seen in Figure 4(b).
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Figure 4. Propagation of elastic-plastic border with in-
creasing pressures for a = 0.7 (a) ∆T = −25
◦C using H as a parameter, (b) H = 0.25 using
∆T as a parameter.
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Figure 5. Partially plastic response of a tube of inner ra-
dius a = 0.7 subjected to an internal pressure
of P = 0.355 and ∆T = −25 ◦C for H = 0.25.

For the pressure tube with parameters a = 0.7,
Ta = 30 ◦C, and Tb = 5 ◦C we have determined
PE = 0.302646 above. Assigning P = 0.355 > PE

and taking H = 0.25 an elastoplastic calculation is
carried out. We find C3 = 0.780949, C4 = −1.17398,
rEP = 0.898609, C1 = −0.214546, C2 = 0.214546,
and εz = −0.546408 × 10−3. The corresponding
distributions of the response variables are shown
in Figure 5. The tube becomes fully plastic when
the internal pressure reaches P = PFP = 0.365424
for H = 0.25. Under P = 0.365424 we evaluate
C3 = 0.967123, C4 = −1.17369, rEP = 1.0, and
εz = −0.606502×10−3. The consequent fully plastic
state of stress is depicted in Figure 6.

Conclusion

It is apparent that closed form solutions to simplified
versions of real engineering problems are important
as they not only facilitate the analysis of limiting
cases but also provide benchmark results for the so-
phisticated FEM computer programs. In this short
article, the closed form solution to a nonlinear elasto-
plastic problem has been presented. A sufficiently
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Figure 6. Fully plastic response of a tube of inner radius
a = 0.7 subjected to an internal pressure of
P = 0.365424 and ∆T = −25 ◦C for H = 0.25.

long, thick-walled pressure tube subjected to a small
negative temperature gradient has been considered.
It has been shown under these conditions that the
stress state in the tube satisfies σθ > σz > σr

throughout and the analytical solution to a nonlinear
hardening law could be found by using incremental
theory of plasticity, Tresca’s yield criterion and the
associated flow rule. With this solution, the elastic,
partially plastic, and fully plastic stress states have
been computed and presented graphically.

Nomenclature

a, b inner and outer radii of the tube
Ci integration constant
E modulus of elasticity
F axial force
H nondimensional hardening parameter
P pressure
r, θ, z cylindrical coordinates
T temperature
u radial displacement
α coefficient of thermal expansion
ν Poisson’s ratio
εEQ equivalent plastic strain
εi normal strain component in i-direction
σi normal stress component in i-direction
σY yield stress
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APPENDIX A
Solution for a Perfectly Plastic Material

In the expressions below, the boundary condition σr(a) = −P has already been used to eliminate one of the
integration constants and D3 = α(1 + ν)(Tb − Ta)/ ln a.

σr = −P + ln(r/a), (41)

σθ = 1− P + ln(r/a), (42)

σz = εz + ν {1 + 2 [−P + ln(r/a)]}+ D3 ln r

1 + ν
− αTb, (43)

u =
C3

r
+ rD5[−P + ln(r/a)] +

D3r

2
(1− 2 ln r) + rTbα (1 + ν)− rνεz, (44)

εp
θ =

C3

r2
− 1 + ν2 +

D3

2
, (45)

FP (β, γ) = −ν
(
β2 lnβ − γ2 ln γ

)
+

(
β2 − γ2

)[
ν (P + lna) +

αTb − εz

2

]

+
D3

[
β2 (1− 2 lnβ) − γ2 (1− 2 lnγ)

]
4 (1 + ν)

. (46)
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APPENDIX B
Solution for a Linear Strain Hardening Material

In the expressions below D3 = α(1 + ν)(Tb − Ta)/ lna and D5 = (1 + ν) (1− 2ν) as in the text.

σr = − C3

2r2
+ C4 +

ln r

1 +H(1− ν2)
+

HD3 ln r

2[1 +H(1− ν2)]
, (47)

σθ =
C3

2r2
+ 2C4 +

1 + ln r

1 + H(1− ν2)
+

HD3(1 + ln r)
2[1 + H(1− ν2)]

, (48)

σz = 2νC4 + εz +
ν (1 + 2 ln r) (1 +HD3/2)

1 + H(1− ν2)
− αT (r), (49)

u =
[2 +H(1 + ν)]C3

2Hr
+ rD5C4 − rνεz +

rD5 ln r(2 +HD3)
2[1 + H(1− ν2)]

+
rD3(1− 2 ln r)

2
(50)

+Tbrα(1 + ν), (51)

εp
θ = −εp

r =
C3

Hr2
− 1

H
+

1
H [1 +H(1− ν2)]

+
D3

2[1 + H(1− ν2)]
, (52)

FP (β, γ) = −β2 − γ2

2

[
2νC4 + εz − αTb − D3

2 (1 + ν)

]
−

(
β2 lnβ − γ2 ln γ

)
D3

2 (1 + ν)

−ν
(
β2 lnβ − γ2 lnγ

)
(2 + HD3)

2[1 + H(1− ν2)]
. (53)
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