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Abstract

The effect of slip velocity on peristaltic flow of a couple stress fluid in uniform and nonuniform symmetric
channels is studied. This problem has numerous applications. It serves as a model for the blood flow in
living creatures. Using long wavelength approximation and neglecting inertial forces, a closed form solution
for the axial velocity and the pressure gradient was obtained. Numerical computations were carried out
to investigate the effect of couple stress parameter α and Knudsen number Kn on pressure rise, maximum
pressure rise, and friction force for uniform and nonuniform channels. It is noted that the pressure rise
decreases with increasing α and increasing Kn. The friction force has an opposite behavior compared with
pressure rise.
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Introduction

The study of fluid transport by means of peristaltic
waves in both mechanical and physiological situa-
tions has been a subject of scientific research since
the first investigation by Latham (1966). By peri-
staltic pumping, we mean a device for pumping flu-
ids, generally from a region of lower pressure to one
of higher pressure, by means of a contraction wave
traveling along the tube. This mechanism is found
in many physiological situations like urine transport
from the kidney to the bladder through the ureter,
movement of chyme in the gastrointestinal tract, the
movements of spermatozoa in the ductus efferentes
in the male reproductive tract, and ova in the female
fallopian tube. Moreover, a peristaltic mechanism is
involved in transporting the lump in lymphatic ves-
sels, movement of bile in the bile duct, and the circu-
lation of blood in small blood vessels such as arteri-
oles, venules, and capillaries. In addition, peristaltic
pumping occurs in many practical applications in-
volving biomechanical systems. Furthermore, finger
and roller pumps are frequently used for pumping
corrosive or very pure materials so as to prevent di-

rect contact of the fluid with the pump’s internal
surfaces.

The initial mathematical models of peristalsis
obtained by a train of sinusoidal waves in an in-
finitely long symmetric channel or tube were intro-
duced by Fung and Yih (1968), and Shapiro et al.
(1969). After these studies, several analytical, nu-
merical, and experimental attempts have been made
to understand peristaltic action in different situa-
tions for Newtonian and non-Newtonian fluids. Some
of these studies have been done by Brown and Hung
(1977), Takabatake and Ayukawa (1982, 1988), Sri-
vastava and Srivastava (1983, 1984, 1988), Siddiqui
and Schwarz (1994), Ramachandra and Usha (1995),
Elshehawey et al. (2000), Elshehawey and Sobh
(2001), Sobh (2003), Abd El Naby et al. (2004),
Hayat et al. (2006, 2007), and Sobh and Mady
(2008).

The study of a couple stress fluid is very use-
ful in understanding various physical problems be-
cause it possesses the mechanism to describe rhe-
ological complex fluids such as liquid crystals and
human blood. By couple stress fluid, we mean a
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fluid whose particles sizes are taken into account, a
special case of non-Newtonian fluids. Some of the re-
cent studies on peristaltic transport of couple stress
fluid have been done by Srivastava (1986), Elshe-
hawey and Mekheimer (1994), Elsoud et al. (1998),
Mekheimer (2002, 2004), Elshehawey and El-Sebaei
(2001), and Ali et al. (2007).

Some of the studies on couple stress fluid just
mentioned considered the blood as a couple stress
fluid and they were carried out using no slip con-
ditions, although in real systems there is always a
certain amount of slip. There are 2 extremely dif-
ferent types of fluids that appear to slip. One class
contains the rarefied gases (Kwang and Fang, 2000),
while the other fluids have a much more elastic char-
acter. In such fluids, some slippage occurs under a
large tangential traction. It has been claimed that
slippage can occur in non-Newtonian fluids, concen-
trated polymer solution, and molten polymer. Fur-
thermore, in the flow of dilute suspensions of par-
ticles, a clear layer is sometimes observed next to
the wall. Poiseuille, in a work that won a prize in
experimental physiology, observed such a layer with
a microscope in the flow of blood through capillary
vessels (Coleman et al., 1966).

With the above discussion in mind, it is conve-
nient to study the interaction of slip conditions with
peristaltic flow of couple stress fluid, where the fluid
particles’ size is taken into account. This mathemat-
ical model can be considered a good application for
blood transport in blood small vessels.

Because of the complexity of the governing equa-
tions, we shall study the problem under long wave-
length (the ratio between channel width and wave
length is very small) and zero Reynolds number as-
sumptions. The resulting system is solved analyti-
cally and the velocity field and pressure gradient are
obtained in explicit forms for uniform and nonuni-
form cases. Furthermore, the pressure rise, the av-
erage pressure rise, the maximum average pressure
rise, and the friction force per unit wavelength are
computed numerically and are plotted and discussed
with different parameters of the problem.

Formulation and Analytic Solution

Consider the flow of a couple stress fluid through a
2-dimensional channel of nonuniform thickness with
a sinusoidal wave traveling down its wall. Taking
(x, y)as rectangular coordinates, the equation of the
wall surface is

λ

b
cy

a (x) H (x, t)

x

Figure 1. Geometry of the problem.

H(x, t) = a(x) + b sin
2π

λ
(x − ct), (1)

with
a(x) = a0 + a1x. (2)

Here a(x)is the half-width of the channel at any axial
distance x from the inlet, a0 is the half-width at the
inlet, (a1 <<1) is a constant whose magnitude de-
pends on the length of the channel and exit and inlet
dimensions,b is the wave amplitude, λ is the wave-
length, c is the propagation velocity of the wave, and
t is the time.

The constitutive equations and equations of mo-
tion for a couple stress fluid are (Stocks, 1966)

Tji,j + ρfi = ρ
dvi

dt
, (3)

eijk TA
jk + Mji,j + ρCi = 0, (4)

τij = −p δij + 2μ dij, (5)

μij = 4η wj,i + 4η′ wi,j, (6)

where fi is the body force vector per unit mass,Ci

is the body moment per unit mass, vi is the velocity
vector, τijand TA

jk are the symmetric and antisym-
metric parts of the stress tensor Tji, respectively, Mij

is the couple stress tensor, μijis the deviatoric part of
Mij , wi is the vorticity vector, dij is the symmetric
part of the velocity gradient, μ is the viscosity of the
fluid, η and η′ are constants associated with the cou-
ple stress, p is the pressure, and δijis the Kroneker
delta.

Neglecting the body force and the body couples,
the continuity equations and equations of motion are
(Mekheimer, 2002)

∂u

∂x
+

∂v

∂y
= 0, (7)
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ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+μ∇2u−η∇4u, (8)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+μ∇2v−η∇4v, (9)

where

∇2 =
∂2

∂x2 +
∂2

∂y2 , ∇4 = ∇2∇2 (10)

Following Valanis and Sun (1969), the couple stress
tensor at the channel wall vanishes; then using the
slip condition used by Kwang and Fang (2000), the
boundary conditions of the problem take the form

∂u

∂y
= 0,

∂3u

∂y3 = 0 at y = 0, (11a)

u = −Kn
∂u

∂y
, v = c

∂H

∂x
at y = H(x, t). (11b)

−
(

∂2v

∂x2 − ∂2u

∂y∂x

)
∂H

∂x
+

∂2v

∂x∂y
− ∂2u

∂y2 = 0, at y = H(x, t) (11c)

Using the following nondimensional parameters

x =
x

λ
, y =

y

a0
, t =

ct

λ
, p =

a2
0p

cλμ
, u =

u

c
, v =

λv

a0c
, Re =

ρca0

μ
, δ =

a0

λ
, ϕ =

b

a0
,

α2 =
η a2

0

μ
, Kn =

Kn

a0
, H =

H

a0
= 1 +

λa1

a0
x + ϕ sin 2π(x − t), (12)

where δ is the wave number, Re is the Reynolds number, ϕ < 1 is the amplitude ratio, and α is the couple
stress parameter, the nondimensional equations of motion and the boundary conditions become

∂u

∂x
+

∂v

∂y
= 0, (13)

Re δ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

(
δ2 ∂2u

∂x2
+

∂2u

∂y2

)

− 1
α2

(
δ2 ∂2

∂x2
+

∂2

∂y2

)(
δ2 ∂2u

∂x2
+

∂2u

∂y2

)
, (14)

Re δ3

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ δ2

(
δ2 ∂2v

∂x2
+

∂2v

∂y2

)

− δ2

α2

(
δ2 ∂2

∂x2
+

∂2

∂y2

)(
δ2 ∂2u

∂x2
+

∂2u

∂y2

)
, (15)

∂u

∂y
= 0,

∂3u

∂y3
= 0 at y = 0, (16a)

u = −Kn
∂u

∂y
, v =

∂H

∂x
at y = H(x, t). (16b)

−
(

δ4 ∂2v

∂x2
− δ2 ∂2u

∂y∂x

)
∂H

∂x
+ δ

∂2v

∂x∂y
− ∂2u

∂y2
= 0, at y = H(x, t) (16c)

Using long wavelength approximation and neglecting the inertial force, equations of motion (13-15) tend to the
following system

∂u

∂x
+

∂v

∂y
= 0, (17)
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0 = −∂p

∂x
+

∂2u

∂y2
− 1

α2

∂4u

∂y4
, (18)

∂p

∂y
= 0, (19)

with the boundary conditions
∂u

∂y
= 0,

∂3u

∂y3
= 0 at y = 0, (20a)

u = −Kn
∂u

∂y
, v =

∂H

∂x
at y = H(x, t). (20b)

∂2u

∂y2
= 0, at y = H(x, t) (20c)

The solution of Eqs. (17-19), subject to the boundary conditions (20), is

u(x, y, t) =
1
2

(
dp

dx

)[
y2 − H2 +

2
α2

(
1− cosh αy

cosh αH

)
− 2Kn

(
H − TanhαH

α

)]
. (21)

The instantaneous volume flow rate Q(x, t) is given by

Q(x, t) =
∫ H

0

u dy =
(

dp

dx

)[
−H3

3
+

(
1
α2

− KnH

) (
H − 1

α
TanhαH

)]
, (22)

which implies that
dp

dx
=

−3Q(x, t)[
H3 − 3

(
1

α2 − KnH
) (

H − 1
αTanhαH

)] . (23)

The nondimensional pressure rise and nondimensional friction force per wavelength are defined, respectively, as

Δp(t) =
∫ 1

0

dp

dx
dx, (24)

F (t) =
∫ 1

0

H(x, t)
(
−dp

dx

)
dx. (25)

Numerical Results and Discussion

We obtained the solution of the problem theoreti-
cally for nonuniform and uniform channels (when a1

= 0). It is clear that as α → ∞and Kn → 0 we
obtain the same results as Shapiro et al. (1969) and
Sirvastava and Srivastava (1988) when the power-law
index n = 1. Moreover, when Kn → 0 our results
are in agreement with those obtained by Mekhiemer
(2002).

To discuss the results obtained above quantita-
tively, we use the form of the instantaneous volume
flow rate Q(x,t) obtained by Srivastava et al. (1983)
as

Q(x, t) = Q + ϕ sin 2π(x − t), (26)

where Q is the dimensionless time–mean flow rate,
and then evaluate the integrals appearing in Eqs.

(24) and (25) numerically using the MATHEMAT-
ICA package. Following Srivastava and Srivastava
(1984), we take a0 = 0.01 cm, L = λ = 10 cm,
a1 = a0

2L , and then plot Eqs. (24) and (25) for various
values of parameters.

It is important to note that the theory of long
wavelength in the present investigation remains ap-
plicable here as the radius of the channel at the inlet
a0 = 0.01 cm is small compared to the wavelength λ
= 10 cm. This means thatδ = a0

λ << 1.

Figure 2 represents the variation in the pressure
rise versus the time at Q = 0, ϕ = 0.7, Kn = 0, and
(α = 1.5, 2, 3). It is noted that the pressure rise
decreases as the couple stress fluid parameter α in-
creases. In other words, the pressure rise decreases
as the size of the suspended particles decreases. The
effect of the slip boundary conditions on the pressure
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rise appears in Figure 3 for the nonuniform channel
at Q = 0.2, ϕ = 0.7, α = 1.5,and (Kn = 0, 0.05, 0.1).
As shown, the pressure rise decreases with increasing
Knudsen number Kn. Furthermore, we observe from
Figures 2 and 3 that the pressure rise decreases as
the flow rate increase.

�

��

��

��

��

��

��

	�


�

���� ���� ���� ���
 ���� ��
� ����



�
��

�

�

�������

�����

�����

Figure 2. Pressure rise versus time for Q = 0, ϕ = 0.7,
and Kn = 0.
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Figure 3. Pressure rise versus time for Q = 0.2, ϕ = 0.7,
and α = 1.5.

The average pressure rise Δp versus flow rate
Qis plotted in Figures 4 and 5 for uniform and
nonuniform channels atϕ = 0.7, Kn = 0.05, (α =
2, 3, 4)and ϕ = 0.7, α = 2, (Kn = 0, 0.05, 0.1), re-
spectively. As expected, the average pressure rise
decreases as the flow rate increases and it achieves
its maximum value at zero flow rate. Furthermore,
the average pressure rise decreases as the couple
stress fluid parameter increases. This means that
the peristaltic pumping for the couple stress fluid is
greater than for Newtonian fluid. Furthermore, it is
clear from Figure 5 that the average pressure rise de-
creases as the slip parameter (Knudsen number Kn)

increases. Moreover, the results reveal that the val-
ues of the average pressure rise for a uniform channel
are greater than those for a nonuniform channel at
the same values of physical parameters.
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Figure 4. Average pressure rise versus flow rate for ϕ =
0.7 and Kn = 0.05.
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Figure 5. Average pressure rise versus flow rate for ϕ =
0.7 and α = 0.2.
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Figure 6. Maximum pressure rise versus amplitude ratio
ϕ for Kn = 0.

In Figures 6 and 7, the maximum pressure rise
(Δp)max, which is obtained by putting Q = 0, is
plotted versus the amplitude ratio ϕ for uniform and
nonuniform cases for Kn = 0, (α = 1.5, 2, 3) and
α = 2, (Kn = 0, 0.05, 0.1), respectively. It is shown
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that the maximum pressure rise increases as the am-
plitude ratio increases. Moreover, it is seen that the
behavior of the maximum pressure rise with variation
in the couple stress fluid parameter and the Knud-
sen number is similar to the behavior of the average
pressure rise.

Finally, the friction force is plotted versus time
in Figures 8 and 9 for Q = 0, ϕ = 0.7, Kn = 0, (α
= 1.5, 2, 3) and Q = 0.2, ϕ = 0.7, α = 1.5, (Kn =
0, 0.05, 0.1), respectively. It is clear that the fric-
tion force has opposite behavior compared with the
pressure rise.
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Figure 7. Maximum pressure rise versus amplitude ratio
ϕ for α = 2.
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