
Turkish J. Eng. Env. Sci.
32 (2008) , 201 – 209.
c© TÜBİTAK
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Abstract

Compaction is one of the most efficient and practical soil improvement techniques that can be applied
to earthworks. In the field, compaction control is commonly carried out by sand-cone and nuclear gauge
tests. Whether conducted in the field or in the laboratory, these tests are intended to determine optimum
water content and dry unit weight parameters, information required for design specifications. In this study,
the parameters of field soil densification obtained by various testing methods performed in the same region
are compared: unit weight, water content, and densification percentage are measured by nuclear density
and sand cone tests. The variations in the outcomes of nuclear density and sand cone tests, namely unit
weight, water content, and densification percent, are recorded. It is well-known that the nuclear density test
has the advantage of rapid application; nevertheless, this method gives approximate results that should be
correlated with a more precise technique, such as sand cone testing. The data at hand are first subjected
to statistical analyses. Next, several techniques are used to identify the correlation between the results of
the 2 tests. Finally, susceptibility and reliability concepts are considered in evaluating the combined usage
of the tests in civil engineering practice.
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Introduction

Soil is extensively utilized as a basic material of
construction, as witnessed by the existence of earth
structure such as dams and road embankments. In
these cases, it is desirable that the soil used as in-
place material possess reliable properties. The soil
should have sufficient strength, be relatively incom-
pressible so that future settlement will not be exces-
sive, maintain a constant volume change against vari-
able water content or other factors, be resistant to
deterioration, and possess proper permeability. The
requirements can best be achieved by a precise se-
lection of fill material type and proper placement
application. The essential properties of a fill can
be checked independently, however, desirable charac-

teristics, such as high strength, low compressibility,
and stability, are normally associated with density
(or unit weight) values that can be fastened through
good compaction.

When soil is used for construction purposes, ei-
ther in embankments or in pavement subgrades, it is
distinctively layered to form the final shape. Obvi-
ously, each layer is compacted before being covered
with the following layer. After proper placement and
compaction, the resulting soil mass has the strength
and bearing capabilities that are as good as or bet-
ter than many natural soil formations. To evalu-
ate the degree of compaction, it is common to check
soil zones using the in-situ density (or in-situ unit
weight) test procedure. Typically, each compacted
layer is checked at random locations. Placement
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of the next layer begins only after tests indicate a
satisfactory compaction level. Therefore, field tests
should be well understood and carefully assessed to
ensure correct construction.

In the literature, a number of studies have been
undertaken to correlate the engineering properties of
soils with compaction characteristics. Joslin (1959),
after making a number of compaction tests, deter-
mined 26 different compaction curves called “Ohio
compaction curves”. Using the Ohio curves, a com-
paction curve can be wholly plotted using the water
content (ω) dry unit weight (γd) point of a single
proctor test. Basheer and Najjar (1995) used the ar-
tificial neural network (ANN) approach for estimat-
ing the optimum water content (ωopt) and maximum
dry unit weight (γdmax) of soils as an alternative to
regression analyses. In their study, the consistency
limits and the unit weight of soils were input param-
eters introduced to ANN to determine the wopt and
γdmax of soils. The results of the revised ANN were
compared with the regression outcomes, and as a re-
sult the ANN method proved to be superior. Najjar
et al. (1996) conducted a study to estimate ω and
γd parameters from other index parameters using
the ANN methodology, in comparison with regres-
sion analysis. Pandian et al. (1997), in reexamining
the compaction characteristics of 3 types of soil, es-
tablished a simple density-water content-liquid limit
relationship. The authors observed that the path of
the soil compaction curve for a specific compactive
effort could be predicted by determining the liquid
limit, the water content, and the coarse fraction. In
this regard, the relationship represented by a series
of compaction curves for a practical range of liquid
limit-water contents; thereby, the entire path of com-
paction behavior can be determined using discrete
dry density-water content data and the liquid limit
value.

Another approach to verify the compaction pro-
cess is through investigating correlative relationships
among ωopt, γdmax, soil classification, index prop-
erties, and grain size distribution (Turnball 1948,
Davidson and Gardiner 1949). In this context, Ring
et al. (1962) investigated the effect of average parti-
cle diameter, fineness average, and fines content on
compaction behavior. Ramiah et al. (1970) corre-
lated both ω and γd with the liquid limit. Jeng and
Strohm (1976) correlated the ω and γd with the index
properties of the soil. Korifiatis and Manikopoulos
(1982) developed a model for granular soils to pre-
dict the γdmax by means of factors such as grain size

distribution properties and mean grain size. Wang
and Huang (1984) set up a model for the prediction
of the ω and γd using specific gravity, fines modulus,
plastic limit, coefficient of uniformity, and particle
diameters corresponding to 10% and 50% passing as
independent parameters. All the models listed above
exhibited determination coefficients (R2) ranging be-
tween 0.791 and 0.951.

Besides, many engineers worldwide have devel-
oped innovative, statistical approaches to assess
compaction in the field. In this regard, Servais and
York (1990) and Gabr et al. (1995) compared the
precision of nucleodensitometers and sand cone test-
ing.

In the light of previous studies, it should be
agreed that, volume-based field tests for measuring
compaction process, such as sand cone and balloon,
give precise results; nevertheless, these techniques
are destructive and quite time-consuming. On the
other hand, nuclear density gauges introduce con-
siderable error while recording real-time compaction
measurements. Therefore, the common approach for
large projects which entail a great number of mea-
surements is to combine usage of both types of tests
at the same locations with a certain frequency, thus
correcting nuclear gauge measurements by making
correlations. In this study, comprehensive statistical
analyses have been applied to the data of a high-
way project obtained by conducting both of the 2
types of tests on the same sites of a highway project.
Additionally, multiple regression analyses (linear and
nonlinear) and ANN methodology have been applied
to identify the correlation between the results of 2
tests. Then, susceptibility and reliability concepts
have both been considered in assessing the use of
the combined tests for civil engineering practice.

Field Methods for Compaction Control

Compaction quality assessment (CQA) is a vital is-
sue especially for the construction of highways, fills,
dikes, and dams. CQA commonly consists of evalu-
ating the densification percentage, which is the ratio
of field dry density after compaction to maximum
dry density obtained from Proctor tests in the labo-
ratory. It should be noted that the majority of con-
struction projects require densification ratios greater
than 90% (Das, 2001). The preferred methods for
the CQA in the field are sand cone and nuclear den-
sity tests. Seismic velocity, California Bearing Ratio,
and plate bearing resistance tests may also be used
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to measure field densities. In the sand cone test, a
test hole in the compacted field is filled with sand
of a known volume. Later, the water content and
weight of the material extracted from the hole are
measured in the laboratory. Then, field dry density
is calculated using these data. However, the water
content determination of the fill material needs 24 h,
which is rather long for the scheduling of construc-
tion projects. Therefore, most engineers overlook the
likely measurement error and rely on nuclear density
tests, which enable the computation of CQA param-
eters within a few minutes. The sand cone test has
other disadvantages: (a) Sand in the cone is sensi-
ble to vibrations due to the construction machinery
in the vicinity of the test point; (b) Wet material
is prone to cause cone volume errors. On the other
hand, nucleodensitometers are sensitive to cobble ex-
istence in the test field; its use necessitates great
care because the equipment uses hazardous radioac-
tive material. Consequently, the optimal approach is
to establish a correlation between the results of fast
nuclear gauge tests and those of reliable sand cone
tests.

Database and Statistical Analysis

In this study, the nuclear and sand cone test data
were collected from the subbase layer of a road con-
struction in Afyon, a city located in the mid-western
part of Turkey. In total, 87 test data taken from 3
different locations have been incorporated into mod-
els. The soil database demonstrates that the soils
are dominantly SM according to USCS. Two of the
tested soils are SP-SM. The tests for the database
were performed on the soil samples from the same
soil class to prevent the adverse effects of variations
in engineering properties such as PI and LL. The
natural soils tested, having different physical and me-
chanical properties, were compacted to obtain max-
imum dry density and optimum water content using
standard Proctor compaction. Only 3 geotechnical
parameters, namely, dry density, moisture content,
and densification percent parameters, were consid-
ered in the comparison between sand cone and nu-
clear density tests. The scattering of the data points
in terms of maximum dry density observations and
the corresponding optimum moisture content values
are plotted in Figure 1.

The water content is found using different meth-
ods in the 2 tests. Water content in sand cone test
is measured manually, while it is measured automat-
ically by a special mechanism in the nuclear test de-

vice. The water content estimation by the nuclear
test is not nearly as precise as that by the sand cone
test; therefore, nuclear test based water content es-
timation can be misleading.
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Figure 1. Scatting of (a) dry unit weight values and (b)
corresponding water content values.

As can be seen in Figure 1a, which demonstrates
the scatter of dry unit weight data, there is a small
gap around the 2.10 level. Frequency histograms of
the same parameter (Figures 2a and 2b) indicate the
same data behavior. Moreover, dry density distri-
bution of nuclear tests indicated that the data is
bimodal with a considerable gap between the 2.10
and 2.20 levels. This distinct feature is not acute in
sand cone distribution (Figure 2b). In other words,
there is no measurement recorded by the nuclear
tests around 2.15 level. This can be explained by
the physical characteristics of the tests. In addi-
tion, as emphasized in the text, the nuclear test is
a real-time measurement methodology, which allows
instant quality control. However, the consistency
as well as the reliability of nuclear testing is lower
than the sand cone test. The aim of this study is to
represent the deviation between the results of the 2
methodologies and to establish a correlation between
them. In this way, it is aimed to improve the use of
rapid means of assessing in-situ density.
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Figure 2. Histograms of (a) γds, (b) γdc, (c) ωs, and (d) ωc parameters.

In order to show the variation of the data set, de-
scriptive statistical analysis of the model variables is
performed (Table 1). Regarding the statistical prop-
erties of sand cone dry density (γds) parameter, it
should be emphasized that normal dirstribution of
this parameter is right-skewed, and negative kurto-
sis coefficient indicates that the data is cumulated
below the mean value. Analyzing the dry density val-
ues obtained from nuclear density tests (γdc), similar
characteristics are obtained. The average of the γds

is somewhat greater than the average of γdc, while
a reverse arrangement is observed for standard devi-
ation parameters. Parallel to dry unit weights, the
average of water contents of sand cone tests (ωs) is
greater than that obtained from nuclear gauge tests
(ωc). Relatively low values were obtained for skew-
ness coefficients of ωs and ωc values calculated from
both tests; therefore, a right-tailed normal distribu-
tion curve is indicated. Besides, the negative kur-
tosis coefficients demonstrate that most of the data
are below the average value. Investigation of average
densification percentage values obtained from the 2
tests (Ss and Sc) leads to the conclusion that a denser

structure is measured from sand cone tests. Again,
right-skewed distributions are obtained with positive
kurtosis coefficients, indicating a cumulative behav-
ior of data above the average.

In Figure 2, histograms of considered parameters
are given. To evaluate the goodness-of-fit of the 6
model parameters to selected probability distribu-
tions, Anderson-Darling tests are employed. The
Anderson-Darling test is a goodness of fit statistic for
the maximum likelihood and the least squares esti-
mation methods, which are helpful for comparing the
fit of predetermined competing distributions. The
statistic measures the weighted square distance be-
tween plot point and fitted line in a probability plot,
which utilizes larger weights in the tails of the dis-
tribution. Smaller Anderson-Darling values indicate
a better-fit distribution to the data in hand. There-
fore, the low Anderson-Darling values given in Table
2 indicate that lognormal, normal, and lognormal
distributions are fit to dry unit weight, water con-
tent, and densification percent parameters, respec-
tively.
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Table 1. Descriptive statistics of the database.

Parameter γds γdc ωs ωc Ss Sc

Number of Data 87 87 87 87 87 87
Average 2.100 2.081 6.376 4.971 102.164 101.212
Median 2.057 2.002 6.180 4.800 101.260 100.820
Mode 1.988 1.974 6.830 5.400 100.280 100.760

Minimum 1.886 1.696 2.330 1.400 95.800 100.000
Maximum 2.432 2.424 11.880 8.800 111.080 108.070

Standard Dev. 0.127 0.133 2.196 1.484 2.646 1.292
Skewness 0.719 0.978 0.132 0.279 1.183 2.460
Kurtosis -0.466 -0.509 -0.636 -0.191 1.673 8.961

Table 2. Anderson-Darling values for the determination of goodness-of-fit.

Distribution γds γdc ωs ωc Ss Sc

Normal 3.719 9.174 0.498 0.568 4.398 4.710
Weibull 4.290 8.620 0.390 0.630 6.790 10.330

Lognormal 3.514 9.040 1.126 0.584 4.205 4.550
Extreme 4.570 8.717 1.158 2.129 7.079 10.660

Exponential 35.17 35.24 16.95 20.07 37.71 38.63

Figure 3 demonstrates the best fit distributions
to these parameters, in accordance with the maxi-
mum likelihood estimation method. The graphs are
solely a graphical representation of the percentiles,
corresponding to the selected distribution. Percent-
age values in Figure 3 are transformed to associated
probabilities. Besides, in order to indicate the de-
gree of relationship between the measured dry unit
weights of the 2 tests, the Spearman, Pearson and
Kendall coefficients are also calculated as 0.6443,
0.9011, and 0.4716, respectively. Therefore, it can
be concluded that a nonlinear equation between dry
unit weights is not sufficient to characterize the tar-
get behavior.

The maximum likelihood estimation method is
used to calculate the best fit distributions for the 6
parameters in question. These distribution plots are
best fit to the input and output data. The fitted line
is a graphical representation of the percentiles. Ini-
tially, percentiles are calculated for the various per-
cents, based on the chosen distribution. The asso-
ciated probabilities are then transformed and used
as y variables. The percentiles may be transformed,
depending on the distribution, and are used as the x
variables. The transformed scales, chosen to linearize
the fitted line, differ depending on the distribution
used.

Correlation Analyses

At the beginning of the correlation analyses, linear
and nonlinear regression analyses are applied to the
data set to determine the relationships between the
dry unit weight (γds) of sand cone test by means of
γdc and ωc parameters obtained from nuclear den-
sity tests. Among the 85 equations established, 2
regression equations (linear and the best nonlinear)
were selected based on the Fisher (F ) and coefficient
of determination (R2) values. The resulting linear
regression equation including the γds, γdc, and ωc is:

γds = 0.36 + 0.846× γdc − 0.004× ωc (1)

The R2 and F values were calculated as 0.813 and
183.8, respectively. These values indicate a meaning-
ful correlation among model parameters. The best
nonlinear regression equation between the free pa-
rameters addressed in the preceding paragraph is
given in Eq. (2):

γds = 15.617− 52.281
γdc

− 2.572
ωc

+ 50.234
γ2

dc

+0.487
ω2

c
+ 4.848

(γdcωc)

(2)

The coefficient of determination of this equation is
0.836, which is an acceptable value. The F value is
determined as 82.48, which is genuinely greater than
the critical Fisher value (Fcr) of 3.10. The F value
surpassing the critical value demonstrates the effec-
tiveness of the regression equation. Figure 4 better
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Figure 3. Probability plots of best fit distributions for (a) γds and γdc; dry unit weights obtained from sand cone and nu-
clear tests, (b) ωs and ωc, water contents obtained from sand cone and nuclear tests, (c) Ss and Sc, densification
percent values obtained from sand cone and nuclear tests.

highlights the performance of regression equations
and established mappings. It can be concluded that
linear and nonlinear regression analyses exhibit sim-
ilar achievements.

In the second of the study ANN based correlation
models are considered to establish desired mapping
described by the data. ANNs, powerful universal ap-
proximators, are superior in extracting relationships
between known input and output patterns, imitating
the processing logic of the biological neuron (Civalek
and Çatal, 2004). ANNs, which are used in classifica-
tion, clustering, modeling and estimation, are partic-
ularly good at modeling nonlinear systems utilizing a
parallel processing logic. Among the several types of
ANNs, Back-propagation neural networks (BPNNs)

are probably the most popular type, possessing feed-
forward structure and utilizing a supervised learning
algorithm. In this study, as an alternative to regres-
sion analyses, BPNN is employed to establish target
mapping between design parameters. Since the lit-
erature is full of ANN discussions, no further expla-
nation on ANN methodology is given here (Russell
and Norving, 1995; Haykin, 1999; Kecman, 2001).

Two-layered BPNN structure is constituted for
the estimation γds using ωc and γdn parameters that
are collected from nuclear density tests. Tangent hy-
perbolic activation function, the sum of mean-square
error function, Lavenberg-Marquardt learning tech-
nique, and the following normalization equation are
used in developed BPNN models.
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Figure 4. Mappings of (a) linear and (b) nonlinear re-
gression analyses.

xni =
xi − min(x)

max(x) − min(x)
(3)

where, xi is an input value of the data set, xni is the
normalized input value, min(x) is the minimum of x
data set, max(x) is the maximum of x data vector.
It should be noted that a small parametric study
is also carried out to determine the optimal size of
hidden neurons by trying 10, 30, 50, and 70 neu-
rons. Furthermore, 4 different ANN architectures
are trained up to 2000 epochs. Due to the paramet-
ric study, the best mapping among the dry density
and water content of nuclear tests with the dry den-
sity of sand cone test is obtained using 50 hidden
neurons. The learning graph of the ANN with 50
hidden neurons is shown in Figure 5. As can be ob-
served from the figure, after 400 epochs, the high
rate of decrease in MSE is substituted by a fixed be-
havior of this parameter at a value of 0.0045. The
scatter plot between model outputs and target values
is given in Figure 6 evaluating ANN’s performance.
Consequently, a nearly one-to-one correspondence is
attained through ANN methodology, as can be de-
termined from the R2 value of 0.999 (Figure 7).
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Figure 5. BPNN structure for the estimation of γds.
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Figure 6. MSE (Mean square error) obtained from learn-
ing process for networks possessing a hidden
layer constituting 50 neurons.

Finally, in order to observe the performance of
NN-based correlation model, the network is tested
by unseen data. As generally known, the success of
a NN model is highly dependent to the data that
is utilized through training sessions. Therefore, it is
important to test the network’s response to a dataset
that was not used in the training phase. In this inves-
tigation, a testing database, which consists of 10 data
points, is obtained by additional tests to evaluate the
network’s final performance. The scatter plot given
in Figure 8 shows the result of the testing study. As
can be seen from the figure, even though it is not suc-
cessful as training session, the ANN-model exhibits
outstanding performance considering the difficulty in
the estimation of soil behaviors.
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��� ��� ��� ��� ��� ��

���

���

���

���

���

��


&��� .�����

8��� /����� $��

1 � 9

1
��
��
"�

��
��
��
���

-�
"�
�

9�� �� ��� ������� -�"��

� �����
�

γ��'�)#�#γ��'�)

γ �
�'
�)

8���#/�����#$��:#γ��'�)#�#'����
)#γ��'�)#�#'���
�)

�

γ��'�)
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Results and Discussion

In this study, using the dry density, water content
and densification percentage values obtained from
sand cone and nuclear gauge tests, relationships be-
tween these parameters are investigated via regres-
sion analyses and artificial neural networks. Conse-
quently, the computational results regarding the cor-
relation coefficients lead to the conclusion that the

ANN method is more capable of expressing the re-
lationships between the parameters than regression
analyses.

The basic objective of the study is the evaluation
of the precision and uncertainty in the test meth-
ods utilized for compaction control. In this scope,
Anderson-Darling tests and histograms of the data
set indicate that exponential distribution fits the 6
input data including dry density, water content, and
densification percentage values. The given scatter
plots, basic statistical parameters, and normal dis-
tribution curves of the histograms indicate that dry
unit weights are not uniformly distributed. This ran-
dom behavior necessitates establishing a nonlinear
relationship between the CQA parameter, depicted
in the preceding paragraphs. Furthermore, because
CQA is related to many parameters like reliability
of the equipment, accurate application of test proce-
dures, and laboratory distance; an uncertainty anal-
ysis is required on the principal test results. This
study is conducted to evaluate relationships between
reliable sand cone tests and fast applicable nuclear
tests. A nearly perfect relationship facilitates the
verification of fast nuclear test results via sand cone
test results. Initially, linear, nonlinear regression
analyses and also artificial neural networks are per-
formed to establish relationships between dry unit
weights and water content values of sand cone and
nuclear tests, which were performed on a road con-
struction in the Inner Aegean Region of Turkey. A
basic statistical approach leads to the conclusion that
a linear or nonlinear regression approach does not
satisfactorily characterize the behavior between the
6 values, which demonstrate the densification data
in the field. Artificial neural networks, which en-
able the characterization of nonlinear relationships
between selected input and output values, produce
much better relationships, which are confirmed by
the high coefficient of determination values.

In this study, 87 experiments are considered
to be sufficient for characterizing the input output
mapping. Obviously, more extensive data is al-
ways preferable; nevertheless, an analyzer must de-
cide how much data will serve by considering the
distribution and scatter diagrams, which are the
good demonstrators of data quality. However, the
database in this study should be developed with fur-
ther testing. The established relationship should be
updated in order to improve the reliability.
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Nomenclature

AI artificial intelligence
ANN artificial neural network
BPNN backpropagation neural network
CQA compaction quality assessment
F Fisher value
MSE mean square error
PI plasticity index
LL liquid limit
Sc densification percentage obtained from nu-

clear test
Ss densification percentage obtained from

sand cone test
USCS unified Soil Classification System

x input data to ANN
xni normalized input value
γd dry unit weight
γdmax maximum dry unit weight
γdc dry density obtained from nuclear test
γds dry density obtained from sand cone test
γds(a) actual dry density value obtained from

sand cone test
γds(c) calculated dry density value from nuclear

test
ω water content
ωc water content obtained from nuclear test
ωs water content obtained from sand cone test
ωopt optimum water content
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