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Abstract

The magnetohydrodynamic equilibrium in an axisymmetric plasma is described by the Grad-Shafranov
(GS) equation in terms of the magnetic flux. Boundary element method (BEM) is suitable for plasma
equilibrium since it requires the discretization of only the plasma boundary which changes shape during the
operation of an actual fusion device. In this paper, numerical solutions of the GS equation are obtained
by using the boundary element method, the finite element method (FEM) and the differential quadrature
method (DQM) for a rectangular plasma when the source term (current density function) on the right hand
side is assumed to be a monomial. Our aim is also to find the most applicable numerical procedure between
those three methods for different plasma profiles. We transform the equation to the homogeneous one with a
particular solution eliminating the domain integral in the BEM formulation. For the source term containing
the magnetic flux (nonlinear right hand side) an iterative procedure is made use of in the BEM and FEM
formulations. It is found that the FEM gives better accuracy for a D-shape tokamak plasma whereas the
BEM is more suitable for a Solov’ev tokamak plasma. The solutions agree very well with the previously
published numerical solutions for a rectangular plasma.
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Introduction

A plasma is an electrically conducting fluid or gas
consisting totally or partially of charged particles.
At high temperatures the highly ionized plasma is
an excellent electrical conductor, and can be con-
fined and shaped by strong magnetic fields. Partic-
ular plasma configurations are described in terms of
solutions of the Grad-Shafranov (GS) equation. An
analytical solution is not available for the most gen-
eral form of the GS equation. Therefore, for a given
current density function μ0rJϕ = J(Ψ, r), Ψ and r
being the unknown magnetic flux function and the

radial distance from the magnetic axis, respectively,
the GS equation can be solved by iterative numerical
methods.

One approximation for the right hand side source
function is in terms of monomials, especially for the
fixed boundary rectangular plasma problems, (Ita-
gaki and Fukunaga, 2006; Itagaki et al., 2004; Itagaki
et al., 2005). In this case, since the right hand side
function depends only on the space variables r and
z, any numerical method can directly be applied for
the numerical solution of the GS equation. When the
current density function is nonlinear, the GS equa-
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tion can be solved iteratively as given in (Sawai et
al., 1990).

In the free boundary tokamak-type device prob-
lems which are encountered in actual fusion devices,
plasma changes its boundary (Leuer et al., 2001). To
get accurate numerical results, the discretization of
the domain should be fine or adaptive mesh tech-
niques should be applied. Since the boundary ele-
ment method requires only the discretization of the
boundary, it gives accurate results with less number
of discretization points. This decreases the size of
the matrices and therefore the computational cost in
the final system of algebraic equations although the
coefficient matrix is dense and the zeros scattered
arbitrarily.

In this paper, boundary element method, fi-
nite element method and the differential quadrature
method have all been used to solve the GS equa-
tion to give a distribution of magnetic flux func-
tion in a rectangular plasma. Both FEM and BEM
have been used in D-shape tokamak plasma and the
BEM has been preferred in tokamak-like plasma be-
cause of its varying boundary. Itagaki et al. (2004),
have solved GS equation for a rectangular plasma
by using dual reciprocity boundary element method
(DRBEM) with a fundamental solution containing
elliptic integrals. We use the fundamental solution
in a simple definite integral form given in (Tsuchi-
moto et al., 1990) and (Tezer-Sezgin and Dost, 1993),
which can be calculated numerically by any standard
numerical quadrature.

We transform the equation to the homogeneous
form using a particular solution when the source
term is a linear combination of monomials and when
a particular solution is available. Then BEM is ap-
plied to the homogeneous equation with the new
arranged boundary conditions. The magnetic flux
function is obtained as the sum of the particular so-
lution and the solution of the homogeneous equation.

Jardin (2004), has shown that the reduced quintic
2D triangular finite element is well-suited for many
problems arising in fusion MHD applications (e.g.
2D axisymmetric toroidal equilibrium problem). We
use the finite element method with linear triangular
and bilinear rectangular elements in solving the GS
equation for linear and non-linear right hand side ex-
pansions. Although the discretization complexity for
the free boundary plasma and high computational
cost, the FEM gives more accurate results, especially
for non-linear cases (as in D-shape tokamak plasma).

The numerical solutions of GS equation is ob-

tained for the rectangular plasma problem also by
using the differential quadrature method which is a
simple, easy to implement and computationally in-
expensive domain discretization method. We have
experienced that the DQM is the best method for
the solution of a rectangular plasma because of its
simplicity. FEM with an iterative procedure gives
very good accuracy for a D-shape plasma and BEM
is suitable for a Solov’ev tokamak plasma because of
its boundary-only nature.

BEM Formalation of the Grad-Shafranov
Equation

Grad-Shafranov equation which describes the ideal
magnetohydrodynamics equilibrium of an axisym-
metric toroidal plasma confined by a magnetic field
is written in axisymmetric coordinate system (r, z)
as (Itagaki and Fukunaga, 2006; Itagaki et al., 2004;
Itagaki et al., 2005)

−Δ∗Ψ ≡ −
{

r
∂

∂r

(
1
r

∂

∂r

)
+

∂2

∂z2

}
Ψ

= μ0r
2 dP

dΨ
+

d

dΨ

(
F 2

2

)
≡ μ0rJϕ,

(1)

where Ψ is the magnetic flux function, Jϕ is the
toroidal component of the plasma current, P is the
plasma pressure, F is the poloidal current function
and μ0 is related to plasma current profile as being
the magnetic permeability in the vacuum.

The boundary element method is suitable for
plasma equilibrium since it discretizes only the
boundary of plasma which may change its shape dur-
ing the operation of an actual fusion device.

The fundamental solution Ψ∗ of (1), which satis-
fies

−Δ∗Ψ∗ = rδi, (2)

δi being the Dirac’s delta function, is given in a sim-
ple integral form which is given in (Tsuchimoto et
al., 1990) and (Tezer-Sezgin and Dost, 1993) as

Ψ∗ =
ar

4π

∫ 2π

0

cos(θ)
R

dθ, (3)

where R2 = r2 + a2 − 2ar cos θ + (z − b)2 and the
Dirac’s delta function δi is defined as

δ(x) =

⎧⎨
⎩

+∞, x = 0

0, x �= 0
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and satisfy the identity

∫ +∞

−∞
δ(x)dx = 1 .

The points (a, b) and (r, z) are the source (fixed)
and variable (field) points, respectively. The differ-
ential operator Δ∗Ψ∗ can be written as (Itagaki and
Fukunaga, 2006)

Δ∗Ψ = r

(
∇2 − 1

r

)(
Ψ
r

)
(4)

in order to apply the Green’s second identity more
conveniently.

Multiplying equation (1) with
Ψ∗

r2
and equation

(2) with
Ψ
r2

, subtracting, and integrating over the
domain Ω∫

Ω

1
r
(Ψ∗Δ∗Ψ − ΨΔ∗Ψ∗)dΩ

= −
∫

Ω

Ψ∗

r
(μ0rJϕ) dΩ +

∫
Ω

Ψ
r

δidΩ,

(5)

and using Green’s second identity as is done in (Breb-
bia and Dominguez, 1992), we obtain

∫
Γ

{
Ψ∗

r2

∂Ψ
∂n

− Ψ
r2

∂Ψ∗

∂n

}
dΓ

= −
∫

Ω

Ψ∗

r2
(μ0rJϕ) dΩ +

∫
Ω

Ψ
r

δidΩ,

(6)

which can be reduced to

ciΨi =
∫

Γ

{
Ψ∗

r

∂Ψ
∂n

− Ψ
r

∂Ψ∗

∂n

}
dΓ

+
∫

Ω

Ψ∗

r
(μ0rJϕ) dΩ,

(7)

where the constant ci is 1 for the internal points, and
1/2 for the smooth boundary, ∂/∂n is the derivative
with respect to outward normal on the boundary.

When the boundary of the region is discretized
using N constant boundary elements Γj, the corre-
sponding discretized matrix-vector form of equation
(7) is

N∑
j=1

Hi,jΨj −
N∑

j=1

Gi,jqj = Qi i = 1, ..., N, (8)

where qj =
(

∂Ψ
∂n

)
j

and the entries of matrices and

vectors are given by

Hi,j = ci +
∫

Γj

1
r

∂Ψ∗

∂n
dΓ = ci + H

′
ij

Gi,j =
∫

Γj

Ψ∗

r
dΓ

Qi =
∫

Ω

Ψ∗

r
(μ0rJϕ)dΩ i, j = 1, ..., N .

(9)

Assembly procedure for all the boundary ele-
ments and the insertion of Dirichlet boundary con-
ditions will result in a linear system of equations

[G]{∂Ψ
∂n

} = [H ]{Ψ} − {Q} (10)

to be solved for the unknown normal derivative val-
ues on the boundary nodes(mid-nodes of the bound-
ary elements). Then the magnetic flux can be calcu-
lated at any interior point i = (a, b) by taking ci = 1
and using

Ψi = −
N∑

j=1

H
′
ijΨj +

N∑
j=1

Gijqj + Qi. (11)

The domain integral Qi in the equation (9) spoils
the boundary-only nature of the boundary element
matrix-vector equations in (8). There are several
ways for the elimination of the domain integral when
the right hand side of the Grad-Shafranov equation
is assumed to be a monomial in terms of independent
variables (r, z) or a polynomial in the magnetic flux
function Ψ. The DRBEM application is given by us-
ing constant elements in (Itagaki et al., 2004; Itagaki
et al., 2005) and by using quadratic elements in (Ita-
gaki and Fukunaga, 2006) for monomial sources. In
their study, it brings some more matrix-vector mul-
tiplications in the right hand side of the equation (8)
instead of the vector Qi. These new vectors now con-
tain particular solution values on the boundary and
interior points. Instead, we transform the GS equa-
tion to a homogeneous equation by using a particular
solution for the case of monomial source.

The particular solution ϕ(l,m) that satisfies the
GS equation with a monomial source −Δ�ϕ(l,m) =
rlzm is given by an infinite series (Itagaki et al.,
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2004):

ϕ(l,m) = − rlzm+2

(m + 1)(m + 2)
{1+

∞∑
k=1

k∏
s=1

[
− (l − 2s + 2)(l − 2s)

(m + 2s + 1)(m + 2s + 2)
z2

r2

]
} .

(12)

We define a new variable Ψ̂

Ψ̂ = Ψ − ϕ(l,m) (13)

which satisfies the homogeneous equation

−Δ∗Ψ̂ = 0 (14)

with the boundary conditions

Ψ̂BC = ΨBC − ϕ
(l,m)
BC . (15)

BEM formulation of the equation (14) with the
boundary conditions (15) will result in a system of
discretized equations (8) with a zero vector on the
right hand side. Ψ̂ is the solution of this homoge-
neous system and then the magnetic flux function Ψ
will be calculated as a sum of homogeneous solutions
and a particular solution:

Ψ = Ψ̂ + ϕ(l,m). (16)

This computation is much cheaper than the compu-
tation of domain integrals in (8).

When the right hand side μ0rJϕ of the GS equa-
tion is assumed to be a polynomial F in Ψ(non-linear
function of Ψ) an iteration can be imposed as

−Δ∗Ψ(n+1) = F (r, z, Ψ(n)). (17)

Starting value Ψ(0) will be guessed with the re-
lated boundary conditions and the solution is ob-
tained after a finite number of iterations with a pre-
scribed tolerance.

FEM Formulation of the Grad-Shafranov
Equation

Rewriting the Grad-Shafranov equation as

−
{

∂2Ψ
∂r2

+
∂2Ψ
∂z2

− 1
r

∂Ψ
∂r

}
= F (Ψ, r, z)

= μ0rJϕ,

(18)

we can apply Galerkin FEM procedure (Reddy,
1993) with the approximation for Ψ:

Ψ(r, z) =
ndof∑
j=1

ΨjNj(r, z) (19)

where ndof is the number of degree of freedom for an
element and Nj ’s are the shape functions. Then, we
multiply the equation (18) with the shape functions
Ni’s and integrate over the domain (elements) Ωe:

−
ndof∑
j=1

∫
∂Ωe

(
∂2Nj

∂r2
Ni +

∂2Nj

∂z2
Ni

)
dΩ

+
ndof∑
j=1

∫
Ωe

1
r

∂Nj

∂r
NidΩ

=
∫

Ωe

F (Ψ, r, z)NidΩ,

(20)

where i = 1, .., ndof. Applying Green’s identity to
the first term we get

−
ndof∑
j=1

∫
∂Ωe

∂Nj

∂n
Nids

+
ndof∑
j=1

∫
Ωe

(
∂Nj

∂r

∂Ni

∂r
+

∂Nj

∂z

∂Ni

∂z

)
dΩ

+
ndof∑
j=1

∫
Ωe

1
r

∂Nj

∂r
NidΩ

=
∫

Ωe

F (Ψ, r, z)NidΩ.

(21)

Then the following element matrix equation is ob-
tained:

ndof∑
i=1

ndof∑
j=1

Ki,jΨj =
ndof∑
i=1

Fi,

where

Ki,j = −
∫

∂Ωe

∂Nj

∂n
Nids

+
∫

Ωe

{
∂Nj

∂r

∂Ni

∂r
+

∂Nj

∂z

∂Ni

∂z
+

1
r

∂Nj

∂r
Ni

}
dΩ

Fi =
∫

Ωe

F (Ψ, r, z)NidΩ =
∫

Ωe

μ0rJϕdΩ,

and the boundary integral in Kij takes the value zero
for Dirichlet type boundary conditions.

Assembly procedure and the insertion of Dirich-
let boundary conditions will give the final system of
equations to be solved for Ψ as

[K]{Ψ} = {F }. (22)

If the function F (Ψ, r, z) is nonlinear, an it-
erative procedure similar to equation (17) can be
used. As in the BEM procedure for the non-linear
case, initial values of Ψ are guessed, for the itera-
tion process, from the given boundary conditions.
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Then the iteration is repeated until the condition
‖Ψn+1 − Ψn‖ < TOL is satisfied for a preassigned
tolerance TOL. For the solution of the resulting lin-
ear system of equations a solver which is suitable for
sparse systems is used.

DQM Formulation of the Grad-Shafranov
Equation

The polynomial based differential quadrature
method, (Shu, 2000), which is simple to apply and
uses considerably small number of grid points for a
prescribed accuracy, is also applied to solve GS equa-
tion for obtaining the magnetic flux function Ψ when
the right hand side is assumed to be monomials.

The differential quadrature method approxi-
mates the derivative of a smooth function at a grid
point by a linear weighted summation of all the func-
tional values in the whole computational domain.
Suppose the degree of the polynomials approximat-
ing the unknown Ψ are Mr and Mz in r and z direc-
tions, respectively, then the second order derivatives
can be approximated at a grid point (ri, zj) by the
polynomial based differential quadrature approach
as

Ψrr(ri, zj) =
Mr∑
k=1

br(i, k)Ψ(rk, zj),

Ψzz(ri, zj) =
Mz∑
k=1

bz(j, k)Ψ(ri, zk).

Therefore, the DQM formulation of the GS equa-
tions (18) becomes for μ0rJϕ = rlzm

Mr∑
k=1

br(i, k)Ψkj +
Mz∑
k=1

bz(j, k)Ψik

− 1
ri

Mr∑
k=1

ar(i, k)Ψkj = ri
lzj

m

i = 1, ..., Mr , j = 1, ..., Mz,

(23)

where Ψik = Ψ(ri, zk), Mr and Mz are the number
of grid points, br(i, k) and bz(j, k) are the weight-
ing coefficients for the second order derivatives, and
ar(i, k) and az(j, k) are the weighting coefficients for
the first order derivatives of Ψ in r and z-directions,
respectively. Explicit forms of these coefficients are
given in (Shu, 2000) as

ar(i, k) =
M(ri)

(ri − rk)M(rk)
i �= k

ar(i, i) = −
Mr∑

k = 1
k �= i

ar(i, k) i, k = 1, ..., Mr

az(j, k) =
M(zj)

(zj − zk)M(zk)
j �= k;

az(j, j) = −
Mz∑

k = 1
k �= j

az(j, k) j, k = 1, ..., Mz

br(i, k) = 2ar(i, k)
[
ar(i, i) −

1
ri − rk

]
, i �= k

br(i, i) = −
Mr∑

k = 1
k �= i

br(i, k) i, k = 1, ..., Mr

bz(j, k) = 2az(j, k)
[
az(j, j) −

1
zj − zk

]
, j �= k

bz(j, j) = −
Mz∑

k = 1
k �= j

bz(j, k) j, k = 1, ..., Mz

where

M(rk) =
Mr∏

j = 1
j �= k

(rk − rj)

M(zk) =
Mz∏

j = 1
j �= k

(zk − zj).

The linear system of algebraic equations resulting
from the discretized equations (23) can be written in
matrix-vector form for the unknown vector Ψ after
the insertion of the given boundary conditions as

[A]{Ψ} = {B},

where the entries of the matrix [A] are formed from
the weighting coefficients shown on the equation (23)
and the vector {B} has coefficients Bij = rl

iz
m
j .

A natural choice for the grid points is that of
equally spaced points but a nonuniform grid with
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Chebyshev-Gauss-Lobatto points delivers more ac-
curate solutions, (Shu and Richards, 1992). The
matrix [A] contains many zero elements which are
irregularly distributed. Thus, it is still considered as
a full matrix and may be stored as a whole. There is
a storage problem when the number of mesh points
is increased but the DQM has the advantage of using
considerably small number of mesh points for giving
very good accuracy. Also, the ordering of the un-
known vector is important and one should carefully
select the order of elements of {Ψ} to get a well-
conditioned coefficients matrix [A], (Tezer-Sezgin,
2004).

Numerical Results

In this section, solutions of the GS equation for
the fixed boundary (rectangular plasma) and the
free boundary (tokamak-type devices) cases are pre-
sented in terms of magnetic flux function contours.
The variables r and z, which denote distances, are
taken in meters (m) and the magnetic flux unit is in
Webers (Wb). BEM, FEM and DQM are all applied
in the case of rectangular plasma where the nonho-
mogeneity is assumed to be monomials. BEM and
FEM results are given for D-shape tokamak plasma
where the non-homogeneity is nonlinear in the un-
known magnetic flux function. In this case the itera-
tion procedure is made use of assuming the solution
is known at the previous step. Either the right hand
side vector is calculated in the resulting linear sys-
tem of equations (equations (8) or (22)) or with the
help of particular solution (whenever available) the
homogeneous system is solved. Only BEM solution
of tokamak plasma given by Solov’ev is presented
because of the advantages of the method which is
suitable for the irregular boundary.

Rectangular plasma

In a hypothetical rectangular plasma with 0.5 m ≤
r ≤ 1.5 m, −0.5 m ≤ z ≤ 0.5 m, the GS-equation
is solved with a monomial source term 1, r2z3 and
r3z2 for μ0rJϕ. The boundary condition Ψ = 0 is im-
posed along each side of the rectangle. This problem
with the source r3z2 has been solved with DRBEM
in (Itagaki et al., 2004) using the fundamental solu-
tion in the elliptic integrals form. In this study, the
problem is solved by transforming the GS equation
to homogeneous equation using a particular solution
and applying BEM with fundamental solution in def-
inite integral form, (Tezer-Sezgin and Dost, 1993).

This fundamental solution can be computed by any
numerical quadrature (e.g. Gauss-Legendre). Thus,
the complexity of computations is eliminated and the
computational time is decreased. In the BEM ap-
plication, N = 80 constant boundary elements are
used. The resulting linear system of equations has
the size 80×80, only. The coefficient matrix contains
scattered zeros and does not show a sparse behavior
but still the computational cost is small since the
size is small. Figures 1, 2, 3 represent contours of
magnetic flux function Ψ obtained by using BEM.
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Figure 1. Ψ(Wb) for rectangular plasma with BEM for
μ0rJϕ = 1
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Figure 2. Ψ(Wb) for rectangular plasma with BEM for
μ0rJϕ = r3z2
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The same problem has been solved with finite el-
ement method by using both linear triangular and
bilinear rectangular elements with 21 × 21 points
which corresponds to 800 triangular elements and
400 rectangular elements, respectively. Figures 4, 5,
6 represents the FEM results in terms of Ψ contours
for triangular elements since the same accuracy is
obtained for both type of the elements.
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Figure 3. Ψ(Wb) for rectangular plasma with BEM for
μ0rJϕ = r2z3
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Figure 4. Ψ(Wb) for rectangular plasma with FEM for
μ0rJϕ = 1
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Figure 5. Ψ(Wb) for rectangular plasma with FEM for
μ0rJϕ = r3z2
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Figure 6. Ψ(Wb) for rectangular plasma with FEM for
μ0rJϕ = r2z3

Magnetic flux function is obtained also by us-
ing DQM, which is simple, easy to implement and
computationally inexpensive domain discretization
method (Shu, 2000). The aim is to compare the
results obtained by BEM and FEM. The magnetic
flux function Ψ for the same sources 1, r3z2 and
r2z3 is obtained with almost the same accuracy by
using DQM with only Mr = Mz = 20 grid points
and the contours are presented in Figures 7, 8, 9.
One may notice that the DQM results in a 441×441
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linear system of equations whereas the BEM requires
only a 80 × 80 and the FEM 441 × 441 linear sys-
tem of equations to be solved with the dicretizations
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Figure 7. Ψ(Wb) for rectangular plasma with DQM for
μ0rJϕ = 1
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Figure 8. Ψ(Wb) for rectangular plasma with DQM for
μ0rJϕ = r3z2

used in DQM, BEM and FEM, respectively. Since
in the BEM formulation the evaluation of integrals
are required, the DQM is still preferred in terms of
computational cost.

Although DQM gives quite good accuracy with
minimal computational cost compared to BEM and
FEM results, it is suitable only for rectangular
regions. For tokamak-type devices, D-shape and
Solov’ev tokamak plasmas, the FEM and BEM are
preferred, respectively.
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Figure 9. Ψ(Wb) for rectangular plasma with DQM for
μ0rJϕ = r2z3

D-Shape tokamak plasma

Another problem in modeling a tokamak-type
plasma in D-shape is also solved iteratively when
the right hand side function is taken as μ0rJϕ =
0.1(1−0.70199r2)(1−Ψ)0.6 and the constant param-
eter values are used as in the reference (Itagaki et al.,
2004). The problem is solved by applying both BEM
and FEM methods in [0.5 m, 1.5 m]×[−1 m, 1 m] with
homogeneous boundary conditions. Figure 10 shows
the contours of magnetic flux function Ψ for this D-
shape tokamak plasma. Since the right hand side is
nonlinear an iterative procedure as in (17) is used.
The use of FEM is more advantageous than the use
of BEM in considering the rate of convergence with
a tolerance of 10−9.
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Figure 10. Ψ(Wb) for D-shape tokamak plasma (BEM and FEM)

Solov’ev tokamak plasma

Leuer et al. (Leuer et al., 2001) defined the Solov’ev
tokamak plasma with the current density function

μ0rJϕ = f0

(
r2 + r2

0

)
with the boundary values rb = r0

√
1 +

2a cosα

r0
and

zb = ar0 sin α where α = 0 : 2π, f0 = 1, r0 = 1,
a = 0.5. The exact solution is given as (Leuer et al.,
2001)

Ψexact =
f0r0

2a2

2[
1 −

(z

a

)2

−
(

r − r0

a
+

(r − r0)2

2ar0

)2
]

with the Dirichlet type boundary condition Ψ = 0.
The problem has been solved with FEM in (Leuer

et al., 2001) using 3200 adaptive grid points, which
is quite complex for the discretization and computa-
tions. We have solved the same problem with BEM
using only 200 boundary elements and transform-
ing the equation to the homogeneous equation using

the particular solution ϕp =
r4

8
+

z2

2
. Results are

compared with the exact solution and represented in
terms of contours in Figure 11.

It can be seen that the BEM is more advanta-
geous to use in this problem concerning the sizes of
the resulting algebraic system of equations.
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Figure 11. Ψ(Wb) for the tokamak plasma(Solov’ev’s GS Equation) with BEM and Exact solution.

Conclusion

In this paper, BEM, FEM and DQM methods have
been discussed in solving GS equation numerically.
GS equation describes magnetohydrodynamic equi-
libria of axisymmetric plasmas such as those pro-
duced in tokamak experiments. These three numer-
ical methods are compared for different plasma pro-
files. The results obtained from all the procedures
for a rectangular plasma are in good agreement with
the results obtained by (Itagaki et al., 2004) . This
demonstrates the validity of the presented methods,
especially when the monomial approximations are
used for the source function μ0rJϕ. Because of the
simplicity and small computational cost, the DQM
is preferred for the rectangular plasma. For a non-

linear source function, iterative procedure together
with the FEM is very efficient in obtaining solu-
tions for D-shape tokamak plasma when the rate of
the convergence is concerned whereas iterative pro-
cedure with BEM is more suitable for Solov’ev toka-
mak plasma when the size of the final discretized
systems are considered.
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