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Abstract

An approximated model and mathematical formulation are presented for the uniform torsion analysis
of closed moderately thick-walled, thick-walled, and solid cross-sections. For this purpose, the considered
section is ideally divided into thin-walled closed strips one inside the other. Using this model and Bredt’s
theory, the torsional moments carried by each strip are obtained. Then, considering that the number of the
imaginary strips is sufficiently high, formulas are derived for the maximum shearing stress and the angle of
twist of the considered cross-section. To demonstrate the accuracy and efficiency of the formulation, results
for several cross-sections having exact or numerical solutions are presented. These results show that the
formulation gives accurate values for solid and hollow sections with regular curvilinear contours. On the
other hand, although for the thin-walled and moderately thick-walled sections there is high accuracy in the
results, for the thick-walled and solid ones the accuracy decreases gradually. Thus, it is thought that the
derived formulas can be useful especially for the analysis of a wide class of closed thin-walled and moderately
thick-walled cross-sections subjected to torsional loading.

Key Words: Uniform torsion, Approximate analysis, Moderately thick-walled sections, Thick-walled sec-
tions, Solid sections.

Introduction

Torsion is an important factor in the design of some
load carrying elements such as shafts, curved beams,
edge beams in buildings, and eccentrically loaded
bridge girders. Therefore, the uniform (St. Venant)
and non-uniform torsion problem of structural com-
ponents has long been the subject of theoretical
and practical interest in the field of solid mechan-
ics (Chen et al., 2001).

Structural elements with very different cross-
sectional shapes are widely used in various engineer-
ing structures. The exact solutions for torsion have
been found for some simple cross-sectional shapes
such as circle, ellipse, and triangle. In the theory
of elasticity, unfortunately, it is difficult to obtain

analytical solutions for complicated cross-sections.
To solve general cross-sectional problems, numeri-
cal methods are usually necessary. The widely used
numerical methods are the finite element method
(Herrmann, 1965; Li et al., 2000; Jiang and Hen-
shall, 2002; Darılmaz et al., 2007), the finite differ-
ence method (Ely and Zienkiewicz, 1960), and the
boundary element method (Friedman and Kosmatka,
2000; Sapountzakis, 2001; Sapountzakis and Mokos,
2004). The first 2 of these methods require the whole
cross-section to be discretised into elements or grids.
For a complicated section, both of these methods ne-
cessitate a large number of elements or grids. The
boundary element method requires discretisation of
the boundary only, but in this method one has a sin-
gular integral on the boundary. Recently, mesh-free
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methods have developed fast as alternative solution
methods (Ko�lodziej and Fraska, 2005; Di Paola et
al., 2008).

In the solution of torsional problems the anal-
ogy methods such as membrane, electrical, and fluid
flow analogies have also been used (Zhen-min and
Ke-xue, 1986). In analysing complex sections, these
techniques may be time consuming and the accuracy
of the results depends largely on the experimental
procedure followed.

The difficulty of solving accurately the torsional
problem of generally shaped cross-sections has driven
some researchers to simpler approximate calcula-
tions or approximate models. Lamancusa and Sar-
avanos (1989) performed the torsional analysis of
hollow square tubes with finite elements, using a
2-dimensional thermal analogy. They investigated
the dependence of torsional properties on wall thick-
ness. Serra (1996) using an approximated model and
starting from the well-known Bredt’s formulas (valid
only for thin-walled closed sections) obtained a for-
mulation for the calculation of the torsional problem
of solid cross-sections. Wang (1998) introduced the
method of eigenfunction expansion and matching to
solve the torsion problem of arbitrary shaped tubes
described by curved and straight pieces. Najera
and Herrera (2005) presented a method to approxi-
mate the torsional rigidity of non-circular solid cross-
sections encountered in mechanisms and machines.
Hematiyan and Doostfatemeh (2007) presented a
simple formulation for torsion analysis of moderately
thick hollow tubes with polygonal shapes.

In this paper, Serra’s (1996) modelling pro-
cess has been extended to model arbitrarily shaped
closed moderately thick-walled and thick-walled
cross-sections subjected to uniform torsion. This is
of considerable importance for such sections, since
these find application areas especially in structural
and mechanical engineering. The developed formu-
lation can also be applied to solid cross-sections.

The outline of this presentation is as follows. In
the following section the analysis model and the
derived formulation are described. Then, expres-
sions for maximum shearing stress and the angle of
twist are obtained. To verify the accuracy of the
model and the expressions, results for some cross-
sections having analytical or numerical solutions are
presented in the subsequent section. The conclusions
obtained are given in the last section.

Analysis Model and Formulation

An arbitrarily shaped thick-walled closed cross-
section subjected to a torsional moment T is shown
in Figure 1(a). The domain and the boundaries of
the cross-section are denoted by Ω, Γout, and Γinn,
respectively. The point C is the centre of rotation
of the cross-section and the origin of the x and y
axes. The material of the cross-section is assumed to
be homogeneous, isotropic, and linearly elastic with
a shear modulus G. Moreover, it must be pointed
out that the formulation developed in the following,
which is based on Bredt’s theory, does not consider
the cross-sectional warping and ignores the stress
concentrations.
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Figure 1. (a) An arbitrary shaped thick-walled cross-
section under torsional moment, (b) discretisa-
tion of the section into imaginary closed strips.

The whole cross-section is divided into n imag-
inary closed strips, all having the same thickness
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over a radial line, and numbered from 1 to n (Figure
1(b)). It must be noted that the numeration of the
strips is started from the core of the hole and there-
fore, while i is the last strip of the hollow region, i+1
is the first strip of the solid part of the cross-section.
The mathematical relation between any strip and the
outer and inner boundaries of the section is called
homothety.

Figure 2 compares the jth and nth strips of the
cross-section. Suppose that P is a point on the me-
dian curve of the nth strip. For the calculation, the
following definitions are used: Γn is the median curve
of the nth strip, ρn is the segment CP, dSn is the
arch element over Γn, and An is the area bounded
by Γn. Assume also that Γj , ρj , dSj , and Aj are the
same quantities related to the jth strip (Figure 2).
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Figure 2. Two strips of the cross-section.

Due to the similarity between the CQQ′ and
CPP′ triangles, one can write

ρj (θ) =
j

n
ρn (θ) , dSj =

j

n
dSn (1a, b)

(j = i + 1, i + 2, . . ., n)

Moreover, from the knowledge of differential geome-
try, the areas surrounded by the jth and nth strips
are

Aj =
1
2

2π∮
0

ρ2
j (θ)dθ, An =

1
2

2π∮
0

ρ2
n (θ)dθ (1c, d)

and taking into account Eq. (1a), one obtains

Aj

An
=

(
j

n

)2

→ Aj =
(

j

n

)2

An (1e)

From Figure 3(a) and considering the triangle
CPN′′ in Figure 3(b), for the thickness δj of the jth
strip, the following expression is obtained:
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Figure 3. (a) The jth strip of the section, (b) the calcu-
lation of the thickness, δj , of this strip.

cos (θ − β) =
nδj

ρn (θ)
→

δj = δ =
ρn (θ)

n
cos (θ − β) (2)

Let us consider now that the jth and kth strips
take the torsional moments ΔTj and ΔTk from the
total moment T . At this stage, using Bredt’s second
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formula, the angles of twist ωj and ωk of the jth and
kth strips can be written, respectively, as

ωj =
ΔTj

4GA2
j

∮
Sj

dSj

δ
(3a)

(j = i + 1, i + 2, . . ., n)

ωk =
ΔTk

4GA2
k

∮
Sk

dSk

δ
(3b)

(k = i + 1, i + 2, . . ., n)

In these equations Sj and Sk are the perimeters of
the jth and kth strips, respectively. On the other
hand, according to the compatibility condition of the
problem, one can write

ωj = ωk = ω (4)

(j �= k, j, k = i + 1, i + 2, . . ., n)

which implies that all the strips rotate at the same
angle ω. Now, substituting Eqs. (3a) and (3b) into
Eq. (4),

ΔTj

4GA2
j

∮
Sj

dSj

δ
=

ΔTk

4GA2
k

∮
Sk

dSk

δ
(5a)

(j �= k, j, k = i + 1, i + 2, . . ., n)

and considering Eq. (1b), one obtains

ΔTj

A2
j

j =
ΔTk

A2
k

k (5b)

Substitution of Eq. (1e) into Eq. (5b) gives

ΔTj

j3
=

ΔTk

k3
(6)

Now, when the index k is taken equal to the i+1,
Eq. (6) gives

ΔTj =
(

j

i + 1

)3

ΔTi+1 (7a)

and

ΔTn =
(

n

i + 1

)3

ΔTi+1 (7b)

On the other hand, torsional moment equilibrium of
the cross-section yields

T =
n∑

j=i+1

ΔTj (8)

Substituting Eq. (7a) into Eq. (8), and considering
that

n∑
j=i+1

j3 =
n∑

j=0

j3 −
i∑

j=0

j3 =

[
n (n + 1)

2

]2

−
[
i (i + 1)

2

]2

(9)

one obtains

ΔTi+1 =
4T (i + 1)3

[n (n + 1)]2 − [i (i + 1)]2
(10)

and then substituting this expression into Eq. (7b),
one arrives at the following expression

ΔTn =
4Tn3

[n (n + 1)]2 − [i (i + 1)]2
(11)

which is the torsional moment carried by the nth
strip of the cross-section.

Calculation of Maximum Shear Stress and the
Angle of Twist

In this section, firstly the expression of shearing
stresses on the boundary of a general cross-section
is derived and then the angle of twist per unit length
is obtained.

Shear stresses on the outer boundary of the
cross-section

For the calculation of the shear stresses on the outer
boundary of the section, now consider the outer strip,
i.e. the nth strip of the section. This strip carries the
torsional moment ΔTn. At this stage it is convenient
to use Bredt’s first formula in the following:

τn =
ΔTn

2δnAn
(12)

By substituting the expressions of ΔTn and δn from
Eqs. (11) and (2) into the above equation, one ob-
tains

τn (θ) =
2T

ρn (θ)An cos (θ − β)n

×

n4

[n (n + 1)]2 − [i (i + 1)]2
(13)
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When the section is divided ideally into the suffi-
ciently high number of strips, i.e. the number n is
high enough, such as 1000, 10,000, 50,000, one has

ρn → ρ̄, An → Ā

cos (θ − β)n → cos (θ − β)

⎫⎬
⎭ (14)

where ρ̄: radius of the boundary (segment CP, Fig-
ure 2), Ā: area of the section, and cos (θ − β): value
of cos (θ − β) on the point P (Figure 2). Therefore,
the expression for the shearing stress τ on the bound-
ary becomes

τ (θ) =
2T

ρ̄Ā cos (θ − β)
n4

[n (n + 1)]2 − [i (i + 1)]2

(15)
If the cross-section is a solid section, i.e. if it does
not have any hole, in this case i = 0, and taking
n → ∞, one has

lim
n → ∞

n4

[n (n + 1)] 2 =
lim

n → ∞

(
n

n + 1

)2

→ 1

(16)
and hence Eq. (15) takes the following form

τ (θ) =
2T

ρ̄Ā cos (θ − β)
(17)

which coincides with Serra’s (1996) shearing stress
expression. By using Eqs. (15) and (17), respec-
tively, the shearing stress at any point on the con-
tour, and at the same time the maximum shearing
stress, of a closed moderately thick-walled, thick-
walled, or solid cross-section can be calculated.

Angle of twist of the cross-section

To arrive at an expression for the angle of twist ω of
the cross-section, let us consider Eq. (3a)

ωj =
ΔTj

4GA2
j

∮
Sj

dSj

δ
(j = i + 1, i + 2, . . ., n)

From the differential geometry, the infinitesimal arch
element dSj can be written in polar coordinates as

dSj =
√

ρ
′2
j + ρ2

jdθ (18)

where the prime denotes derivation with respect to
θ, and hence Eq. (3a) becomes

ωj =
ΔTj

4GA2
j

θ=2π∮
θ=0

√
ρ

′2
j + ρ2

j

ρn

n cos (θ − β)
dθ (19)

By substituting Eqs. (1a), (1e), and (7a) into Eq.
(19) and taking into account Eq. (10), one arrives at

ω =
T

GA2
n

n4

[n (n + 1)]2 − [i (i + 1)]2
×

2π∮
0

√
ρ′2

n + ρ2
n

ρn cos (θ − β)
dθ (20)

Again, considering that the cross-section is divided
into a large number of strips, one can write the above
equation in the following form

ω =
T

GĀ2

n4

[n (n + 1)]2 − [i (i + 1)]2
×

2π∮
0

√
ρ̄

′2 + ρ̄2

ρ̄ cos (θ − β)
dθ (21)

In the case of a solid section i becomes zero, and
taking the limit as n → ∞, Eq. (21) takes finally
the following form:

ω =
T

GĀ2

2π∮
0

√
ρ̄′2 + ρ̄2

ρ̄ cos (θ − β)
dθ (22)

which coincides with Serra’s (1996) angle of rotation
expression.

Application to Several Cross-Sections and
Discussion

To verify the accuracy and efficiency of the derived
expressions of (15), (17), (21), and (22), several
cross-sections having analytical or numerical solu-
tions are chosen. Firstly 6 solid sections and then
3 hollow sections are considered.

Solid cross-sections

a) Circular cross-section with radius r, Figure 4 :
For this section ρ̄ = r, Ā = πr2, and θ = β →
cos (θ − β) = 1. Thus, from Eqs. (17) and (22) one
obtains

τappr
max =

2T

πr3
, wappr =

2T

Gπr4

which are equal to the exact solutions.
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Figure 4. Solid circular cross-section.

b) Elliptical cross-section with diameters 2a and
2b, (a > b), Figure 5 : For the ellipse Ā = πab, and in
this section maximum shearing stresses occur at the
end points, Pt and Pb, of the minor axis, Figure 5.
At these points ρ̄ = b and θ = β → cos (θ − β) = 1;
therefore, from Eq. (17) one finds

τappr
max =

2T

πab2

which is equal to the exact value (İnan, 1988). As
for the angle of twist, by the properties of an ellipse,
the following expressions can be written

ρ (θ) =

[
a2

(
1 + tan2 θ

)
1 + (a/b)2 tan2 θ

]1/2

(23a)

cos (θ − β) =

[
1 + (a/b)2 tan2 θ

]
{ (

1 + tan2 θ
) [

1 + (a/b)4 tan2 θ
] }1/2

(23b)
and therefore from Eq. (22)

ω =
T

G (πab)2
×

2π∫
0

(
1 + tan2 θ

) [
1 + (a/b)4 tan2 θ

]
[
1 + (a/b)2 tan2 θ

] 2 dθ

=
T

G

(
πa3b3

a2 + b2

)
which is equal to the exact solution of the theory of
elasticity (İnan, 1988).

y

x

P

( )

Pt

bP

a2

b2
T

C

Figure 5. Solid elliptical cross-section.

c) Regular octagonal cross-section with a side
of a, Figure 6 : In this section, maximum stress
is obtained at the midpoints of the sides where
ρ̄ = 1.2071a and cos (θ − β) = 1. For the section
Ā = 4aρ̄ = 4.8284a2 and therefore

τappr
max =

2T

(1.2071a) (4.8284a2) 1
∼= 0.34315

T

a3

The theory of elasticity gives the following maximum
stress value for the section (İnan, 1988):

τ exact
max = 0.38643

T

a3

Thus, the relative error (τ exact
max − τappr

max )/τ exact
max is ob-

tained as 11.20%.
For the angle of twist, after determination of ρ(θ)

in each of the 8 regions of the section, Eq. (22) yields

ωappr =
T

G (4.8284a2)2

⎡
⎢⎣

π/8∫
−π/8

√
ρ̄′2 + ρ̄2

ρ̄ cos (θ − β)
dθ + · · ·

· · ·+
15π/8∫

13π/8

√
ρ̄′2 + ρ̄2

ρ̄ cos (θ − β)
dθ

⎤
⎥⎦

=
T

G (4.8284a2)2
[0.828 + 0.828 + · · ·+ 0.828]

=
T

G (4.8284a2)2
8 × 0.828 = 0.2841

T

Ga4

and exact solution is (İnan, 1988)

ωexact = 0.2733
T

Ga4

The relative error for twist |(ωexact − ωappr)/ωexact|
is obtained as 3.95%.
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Figure 6. Solid regular octagonal cross-section.

d) Regular hexagonal, square, and equilateral tri-
angular cross-sections, Figure 7 : For these sections
τappr
max and ωappr values are calculated and compared

with the exact values (İnan, 1988) in the Table. As
can be seen, from hexagon to triangle, the relative
errors increase for both τ and ω.

Hollow cross-sections

a) Circular section with a co-centric circular hole:
Consider a hollow circular cross-section with outer
radius rout = r and inner radius rinn = 0.5 r, shown
in Figure 8. Let us divide the cross-section into n =
10,000 imaginary closed strips. Since the ratio of in-
ner and outer radii is 0.5, i becomes 5000. As stated
earlier i is the number of the last strip of the hol-
low region. Moreover, for this cross-section ρ̄ = r,
cos (θ − β) = 1, and Ā = πr2. Now, using Eqs. (15)
and (21) one obtains

τappr
max = 1.06646

2T

πr3
, ωappr = 1.06646

2T

Gπr4

which are almost equal to the exact values of

τ exact
max = 1.06666

2T

πr3
, ωexact = 1.06666

2T

Gπr4

b) Elliptical section with a co-centric elliptical
hole: Consider an elliptical section with outer diam-
eters 2aout, 2bout and inner diameters 2ainn, 2binn

(Figure 9). For such a cross-section, with ainn /
aout = binn / bout = k < 1, the theory of elasticity
gives the following results (Timoshenko, 1970; İnan,
1988; Sadd, 2005):

x

y

a

T

C

y

x

T

C

y

xT

C

(a) (b) (c)

a
a

Figure 7. Some other solid sections; (a) regular hexagon, (b) square, (c) equilateral triangle.

Table. Comparison of approximate and exact τmax and ω values for hexagonal, square, and equilateral triangular cross-
sections.

Cross- Max. shearing stress Angle of twist Relative errors, %
section τappr

max τ exact
max ωappr ωexact For τ For ω

Hexagon,
Figure 7(a) 0.8888 T/a3 1.0193 T/a3 1.0266 T/Ga4 0.9628 T/Ga4 12.808 6.628

Square,
Figure 7(b) 4 T/a3 4.8077 T/a3 8 T/Ga4 7.092 T/Ga4 16.80 12.803
Triangle,

Figure 7(c) 16 T/a3 20 T/a3 55. 424 T/Ga4 46.188 T/Ga4 20 20

283
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τ exact
max =

2T

π aoutb2
out (1 − k4)

(24a)

ωexact =
T

Gπ
a3

outb
3
out

a2
out + b2

out

(
1 − k4

) (24b)

Now, let us select a special case of k = 0.60. When
the section is divided into n = 10,000 imaginary
closed strips, i becomes 6000. For the section ρ̄ =
bout, cos (θ − β) = 1, and Ā = πaoutbout. From Eqs.
(15) and (21) one can obtain the τ and ω values as

τappr
max = 1.14869

2T

πaoutb2
out

,

ωappr = 1.14869
T

Gπ
a3

outb
3
out

a2
out + b2

out

which are almost equal to the exact values obtained
from Eqs. (24a) and (24b)

τ exact
max = 1.14889

2T

πaoutb2
out

,

ωexact = 1.14889
T

Gπ
a3

outb
3
out

a2
out + b2

out

c) Hollow square cross-section: As the last exam-
ple, a hollow square section with uniform thickness,
shown in Figure 10, is considered. Structural ele-
ments having this type of cross-section are widely
used in numerous engineering systems, such as truss
and framed structures, automotive chassis, mecha-
nisms, and robot arms (Lamancusa and Saravanos,
1989).
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r

r0.5

T

C

Figure 8. Hollow circular cross-section.
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Figure 9. Elliptic section with elliptic hole.
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Figure 10. Hollow square cross-section.

The outer length of each edge and the wall thick-
ness of the section are a and t, respectively. Analy-
ses are carried out for the range of 0 ≤ t ≤ 0.5. In
this case, the calculated section is situated between
2 extreme sections: negligibly thin-walled and solid
sections.

It must be pointed out that, while the inner cor-
ners and outer mid-length points of this section are
both locations of high stress, disregarding the stress
concentration on the inner corners, only mid-length
stresses are considered here. Investigation of the
stresses at the inner corners is outside the scope of
this analysis.

As is well known, one can express the maximum
shearing stress and the angle of twist of any cross-
section, in compact form, as

τmax =
T

WT
, ω =

T

GKT
(25a, b)
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in which WT and GK T are the torsional strength
moment and the torsional rigidity of the section, re-
spectively. Making use of Eqs. (15) and (21), and
taking into account the specific properties of the con-
sidered cross-section, we can write WT and GK T in
non-dimensional forms as follows:

WT

a3
=

T

τmaxa3
=

[n (n + 1)] 2 − [i (i + 1)] 2

4n4
(26a)

GKT

Ga4
=

T

ωa4
=

[n (n + 1)]2 − [i (i + 1)]2

n4
2π∮
0

√
ρ̄′2 + ρ̄2

ρ̄ cos (θ − β)
dθ

(26b)

For this type of section, Lamancusa and Saravanos
(1989) give second, third, and fourth-order polyno-
mial expressions for the non-dimensional torsional
strength moment and the torsional rigidity expres-
sions, which are derived from the performed finite
element analyses. In the following, only third-order
polynomials are given:

WT

a3
=

T

τmaxa3
=

1.864
(

t

a

)
− 5.340

(
t

a

)2

+ 4.984
(

t

a

)3

(27a)

GKT

Ga4
=

T

ωa4
=

0.978
(

t

a

)
− 2.309

(
t

a

)2

+ 1.826
(

t

a

)3

(27b)

On the other hand, from the thin-wall approxima-
tion theory (Bredt’s theory) the following equations
are obtained readily for these 2 quantities:

WT

a3
=

T

τmaxa3
=

2At

a3
= 2

t

a

(
1 − t

a

)2

(28a)

GKT

Ga4
=

T

ωa4
=

4GA2

Ga4
∮

dS
t

=
t

a

(
1 − t

a

)3

(28b)

where A is the area enclosed by the median curve.
Equations (26a), (27a), (28a), and Eqs. (26b),

(27b), (28b) are plotted in Figure 11(a) and (b),
respectively. It is clear from Figure 11(a) that
all 3 methods show good agreement for low thick-
ness/width ratios, but the thin-wall formula (Eq.
(28a)) especially and presented formula (Eq. 26(a))
to some extent, deviate from the finite element
method results (Eq. (27(a)) at high thicknesses.
For the solid section, the exact value of dimension-
less torsional strength moment, (WT /a3)× 103, is
208, and therefore the relative errors of the thin-wall
approximation, presented formulation, and the finite
element method are 20.19%, 20.19%, and 5.77%, re-
spectively. As for non-dimensional torsional rigidity,
it is deduced from Figure 11(b) that, again, the
presented formulation, finite element method, and
thin-wall approximation are in good agreement for
thin-walled sections. For the thick-walled and solid
sections, while the results of the presented formula
(Eq. (26b)) are similar to those of the finite element
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Figure 11. For hollow square section, variation of dimensionless quantities with t/a ratio; (a) torsional strength moment,
(b) torsional rigidity.
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method (Eq. (27b)), the results of the thin-wall ap-
proximation (Eq. (28b)) display significant discrep-
ancy from the results of the finite element method.
For the solid square cross-section, the exact value of
the non-dimensional torsional rigidity, (GKT /Ga4)×
103, is 141, and therefore the relative errors of the
thin-wall approximation, presented formulation, and
the finite element method are 55.67%, 11.35%, and
0.71%, respectively.

From the above-presented solid and hollow sec-
tion examples, we can make the following remarks:

• In the case of circular and elliptical cross-
sections, which have regular curvilinear con-
tours, exact values are obtained for both shear-
ing stresses and angles of twist.

• For the sections with contours formed by
straight sides and having obtuse angles, such
as regular octagonal and hexagonal cross-
sections, good approximation is obtained with
the exact values.

• In the case of cross-sections with contours
formed by straight sides and having right or
acute angles, such as square and triangular sec-
tions, approximated theory gives less good re-
sults. This is caused partially by no consider-
ation of warping effect in the presented formu-
lation.

• For the closed thin-walled and moderately
thick-walled sections there is high accuracy,
but for the thick-walled ones the accuracy is
somewhat low.

• Since the sharp dead corners have very lit-
tle contribution to the total torsional strength
of the cross-section, and because the approx-
imated theory is unable to take into ac-
count this aspect, the following relations apply:
τappr
max ≤ τ exact

max and ωappr ≥ ωexact.

Conclusions and Future Work

One of the main problems that must be solved in the
design of some load carrying elements subjected to
torsion is to determine the maximum shear stresses
and the angles of twist under a given torsional mo-
ment. The approximate model and the mathemat-
ical formulation presented in this paper allow for
conducting uniform torsion analysis of closed mod-
erately thick-walled, thick-walled, and solid cross-
sections. Similar to thin-walled theory, stress con-

centrations have been ignored in the formulation.
Easily and quickly calculable expressions of maxi-
mum shearing stress and the angle of twist have been
derived for both hollow and solid cross-sections. The
maximum shearing stress and the angle of twist val-
ues of a series of sample cross-sections have been
calculated and compared with the analytical or nu-
merical values. The results have shown that the ob-
tained formulas give exact values for the sections
having regular curvilinear contours. Moreover, re-
sults obtained for hollow sections demonstrated that
the model is more suitable for sections with small
and moderate wall thicknesses than for those having
high wall thickness values. In conclusion, the model
and the formulation presented in this paper are ef-
ficient and can help engineers to solve the uniform
torsion problem of a wide variety of cross-sections
encountered in engineering practice.

To improve the presented formulation, the au-
thors are working on a new study that takes into
account the cross-sectional warping effect. Another
possible extension of the study is the torsion analy-
sis of composite sections made of 2 or more different
materials, which is left for a future study.

Nomenclature

A area of the cross-section,
Aj area confined by the jth strip,
G modulus of shear,
GK T torsional rigidity of the cross-section,
a, b, t dimensions related to the sample cross-

sections,
i index,
n number of imaginary strips,
r radius of circular cross-section,
T torsional moment,
WT torsional strength moment of the cross-

section,
β angle between the horizontal line and

any median curve,
δ thickness of a strip,
ΔTj torsional moment carried by the jth

strip,
Γinn inner boundary of the cross-section,
Γj median curve of the jth strip,
Γout outer boundary of the cross-section,
Ω domain of the cross-section,
ρ distance from the centre of rotation,
τ shear stress,
θ angle measured from the x axis,
ω angle of twist.
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