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Abstract

This study investigated the effect of injection/suction between 2 horizontal parallel porous flat plates,
with transverse sinusoidal injection of fluid at the stationary plate and its corresponding removal by periodic
suction through the plate in motion, assuming the sinusoidal injection at the lower plate and its corresponding
removal by the upper plate in motion. The approximate solutions were obtained for the flow field, pressure,
skin-friction, temperature field, and rate of heat transfer, and are discussed with the help of graphs and
tables.
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Introduction

Transpiration cooling methods have been developed
in an attempt to protect structural elements in tur-
bojet and rocket engines from the influence of hot
gases, such as combustion chamber walls, exhaust
nozzles, and gas turbine blades. They have many
engineering applications in the development of mis-
siles, satellites, and spacecraft. In view of this Eck-
ert (1958) obtained an exact solution of the plane
Couette flow with transpiration cooling. The prob-
lem remained 2 dimensional due to uniform injection
and suction applied at the porous plates. Flow and
heat transfer along a plane wall with periodic suc-
tion velocity has been studied by Gersten and Gross
(1974). Effects of such a suction velocity on vari-
ous flow and heat transfer problems along flat and
vertical porous plates have been studied by Singh et
al. (1978a, 1978b) and Singh (1993). Recently, the
problem of transpiration cooling with the application
of the transverse sinusoidal injection/suction veloc-
ity has been studied by Singh (1999). Chaudhary
and Jain (2007) studied exact solutions of incom-

pressible Couette flow with constant temperature
and constant heat flux on walls in the presence of
radiation. Recently, Sharma et al. (2007) discussed
the unsteady free convection oscillatory Couette flow
through a porous medium with periodic wall temper-
ature. Hence, the aim of the present study was to ex-
amine the effects of injection/suction on the Couette
flow between 2 horizontal parallel porous plates, with
transverse sinusoidal injection of fluid at the station-
ary plate and its corresponding removal by periodic
suction through the plate in motion. The governing
equations were solved for small amplitude oscillation
(ε) of injection/suction velocity. The solution was
obtained by regular perturbation, in terms of ε. The
effect of various parameters on flow characteristics
were examined and are discussed with the help of
graphs and tables.

Formulation of the Problem

We considered the Couette flow of a viscous incom-
pressible fluid between 2 parallel flat porous plates,
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with transverse sinusoidal injection of the fluid at
the stationary plate and its corresponding removal
by periodic suction through the plate in average mo-
tion (U). Let x*-z* plane lie along the plates and
y*-axis be taken normal to the free stream velocity.
The distance (d) is taken between the plates. The
lower and upper plates are assumed to be at constant
temperature T0 and T1, respectively, with T1 > T0.
The plates are considered infinite in the x∗ direction.
Hence, all physical quantities will be independent of
x∗because an asymptotic flow was selected, assum-
ing sinusoidal injection/suction velocity [V*(z*) =
V (1 + ε cos π z*/d)] at the lower and upper plates.
The physical configuration of the problem is visual-
ized in Figure 1 (Singh, 1999). Denoting the velocity
components u, v, and w in the x, y, and z directions,
respectively, and the temperature by θ, the problem
is governed by the following non-dimensional equa-
tions:

vy + wz = 0 (1)

vuy + wuz = [uyy + uzz]/λ (2)

vvy + wvz = −py + [vyy + vzz]/λ (3)

vwy + wwz = −pz + [wyy + wzz]/λ (4)

vθy + wθz = (θyy + θzz)/λPr (5)

where y = y*/d , z = z*/d, u = u*/U, v = v*/V, w
= w*/V, p = p∗/ρ V2, Pr (Prandtl number) = ν/α,
λ(injection/suction parameter) Vd/ν , θ = (T∗− T0)
/ (T1− T0).
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Figure 1. The physical configuration of the problem.

All physical variables are defined in the Nomen-
clature. The (*) stands for dimensional quantities.
The corresponding boundary conditions in the di-
mensionless form are:

y = 0 : u = 0, v(z) = 1 + ε cosπz, w = 0, θ = 0,

y = 1 : u = 1, v(z) = 1 + ε cos πz, w = 0, θ = 1 (6)

Solution of the Problem

Since the amplitude of the injection/suction velocity
ε (<<1) is very small, we now assume the solution
of the following form:

f(y, z) = fo(y) + εf1(y, z) + ε2f2(y, z) + . . .. (7)

where f stands for any of u, v, w, p, and θ . When
ε = 0, the problem is reduced to the well-known 2-
dimensional flows with constant injection and suc-
tion at both plates (Eckert, 1958). The solutions of
this 2-dimensional problem are

u0(y) = (eλy − 1)/(eλ − 1), (8) (8)

θo(y) = (eλPry − 1)/(eλPr − 1), v0 = 1, w0 = 0, p0 =
constant.

When ε �= 0, substituting (7) in Eq. (1) to (5)
and comparing the coefficient of ε, neglecting those
of ε2, ε3, etc., the following equations are obtained
with the help of solution (8):

v1y + w1z = 0 (9)

v1uoy + u1y = (u1yy + u1zz)/λ (10)

v1y = −p1y + (v1yy + v1zz)/λ (11)

w1y = −p1z + (w1yy + w1zz)/λ (12)

v1θoy + θ1y = (θ1yy + θ1zz)/λPr (13)

The corresponding boundary conditions reduce to

y = 0 : u1 = 0, v1 = cos πz, w1 = 0, θ1 = 0

y = 1 : u1 = 0, v1 = cos πz, w1 = 0, θ1 = 0 (14)

This is the set of linear partial differential equations
that describe the flow. To solve these equations we
assume v1, w1, p1, u1, and θ1 of the following form:

u1(y, z) = u11(y) cos πz

v1(y, z) = v11(y) cos πz

w1(y, z) = −{v/
11(y)sinπz}/π

p1(y, z) = p11(y) cos πz

θ1(y, z) = θ11(y) cos πz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)
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where primes denote differentiation with respect to
y. The expressions for v1(y,z) and w1(y,z) were cho-
sen so that the equation of continuity (9) is satisfied.
Substituting (15) in (10) to (13) we obtain the fol-
lowing equations

u11yy − λu11y − π2u11 = λv11u0y (16)

v11yy − λv11y − π2v11 = λp11y (17)

v11yyy − λv11yy − π2v11y = λp11π
2 (18)

θ11yy − λPrθ11y − π2θ11 = λPrv11θ0y (19)

Corresponding boundary conditions are:

y = 0 : u11 = 0, v11 = 1, v11y = 0, θ11 = 0,

y = 1 : u11 = 0, v11 = 1, v11y = 0, θ11 = 0

⎫⎬
⎭
(20)

Solving Eqs. (16) to (19) under the boundary condi-
tions (20) and using Eqs. (15), we get the solutions
for v1, w1, p1, u1, and θ1 as

v1(y, z) = A−1[A1e
αy + A2e

βy − A3e
πy − A4e

−πy ] cosπz.. . .(21) (21)

w1(y, z) = −(πA)−1[A1αeαy + A2βeβy − A3πeπy + A4πe−πy ]sinπz (22)

p1(y, z) = A−1[A3e
πy + A4e

−πy ] cosπz (23)

u1(y, z) = [Eeαy + Feβy + C1{A1e
(α+λ)y/2α + A2e

(β+λ)y/2β − A3e
(π+λ)y/π + A4e

(λ−π)y/π}] cosπz (24)

θ1(y, z) = [Mesy + Nety + C2{A1(αλ + αλPr)−1.e(α+λPr)y

+A2(βλ + βλPr)−1.e(β+λPr)y − A3(πλPr)−1.e(π+λPr)y + A4(πλPr)−1.e(λPr−π)y}] cosπz (25)

where
A = 2π(β − α)(1 + eλ) + (απ − βπ + αβ − π2)(eα+β + eβ−α)

+(απ − βπ − αβ + π2)(eα−π + eβ+π),

A1 = 2βπ(1 + eβ) − (π2 + βπ)(eβ−π + eπ) + (π2 − βπ)(eβ+π + e−π),

A2 = −2απ(1 + eα) + (π2 + απ)(eα−π + eπ) − (π2 − απ)(eα+π + e−π),

A3 = π(α − β)(eα+β + e−π) − (απ + αβ)(eβ−π + eα) + (βπ + αβ)(eα−π + eβ),

A4 = π(α − β)(eα+β + eπ) − (απ − αβ)(eβ+π + eα) + (βπ − αβ)(eα+π + eβ),

α = [λ + (λ2 + 4π2)1/2]/2, β = [λ − (λ2 + 4π2)1/2]/2,

s = [λPr + (λ2Pr2 + 4π2)1/2]/2, t = [λPr − (λ2Pr2 + 4π2)1/2]/2,

C1 = λ[A(eλ − 1)]−1, C2 = λ2Pr2[A(eλPr − 1)]−1,

C3 = λ[A(eλ − 1).(eα − eβ)]−1, C4 = λ2Pr2[A(eλPr − 1)(es − et)]−1,

E = C3[A1(eβ − eλ+α)/2α + A2(eβ − eλ+β)/2β − A3(eβ − eλ+π)/π + A4(eβ − eλ−π)/π],

F = C3[A1(eλ+α − eα)/2α + A2(eλ+β − eα)/2β − A3(eλ+π − eα)/π + A4(eλ−π − eα)/π],

M = C4[A1(αλ + αλPr)−1(et − eα+λPr) + A2(βλ

+βλPr)−1(et − eβ+λPr) − A3(πλPr)−1(et − eπ+λPr) + A4(πλPr)−1(et − eλPr−π)],

N = C4[A1(αλ + αλPr)−1(eα+λPr − es) + A2(βλ

+βλPr)−1(eβ+λPr − es) − A3(πλPr)−1(eπ+λPr − es) + A4(πλPr)−1(eλPr−π − es)].

Now, after knowing the velocity field, we can calculate skin-friction components τxx and τzz in the main and
transverse directions, respectively, as

τxx = dτ∗
xx/μU = (du0/dy)y=0 + ε(du11/dy)y=0 cos πz (26)

τxx = λ(eλ −1)−1 +ε[Eα+Fβ +C1{A1(α+λ)/2α+A2(β +λ)/2β−A3(π +λ)/π +A4(λ−π)/π}] cosπz (27)
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τzz = dτ∗
zz/μV = ε(∂w1/∂y)y=0 (28)

τzz = −ε(πA)−1 [A1α
2 + A2β

2 − A3π
2 − A4π

2]sinπz (29)

From the temperature field we can obtain the heat transfer coefficient, in terms of the Nusselt number as

Nu = dq∗w/[κ(T0 − T1)] = (dθ0/dy)y=0 + ε(dθ11/dy)y=0 cos πz (30)

Nu = λPr(λPr − 1)−1 + ε[Ms + Nt + C2{A1(α + λPr).(αλ + αλPr)−1

+A2(β + λPr).(βλ + βλPr)−1 − A3(π + λPr).(πλPr)−1 + A4(λPr − π).(πλPr)−1}] cosπz (31)

Results and Discussion

Main flow velocity profiles are presented in Figure
2. This graph indicates that the main flow velocity
decreased with the injection/suction parameter (λ).
The transverse velocity component is presented in
Figure 3. It was observed that forward flow devel-
oped from y = 0 to about y = 0.5, and then onwards
there was backward flow. This was due to the fact
that the dragging action of the faster layer exerted
on the fluid particles in the neighborhood of the sta-
tionary plate was sufficient to overcome the adverse
pressure gradient and, hence, there was forward flow.
The dragging action of the faster layer exerted on the
fluid particles reduced due to the periodic suction at
the upper plate and, hence, this dragging action was
insufficient to overcome the adverse pressure gradi-
ent; therefore, there was backward flow. Further-
more, it is evident from Figure 3 that velocity w1

decreased with increasing λ in the forward and back
flow. Pressure values are reported in Table 1; pres-
sure decreased with the injection/suction parameter
(λ). The decrease in pressure was sufficiently large
for small fluid injection/suction.
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Figure 2. The velocity profiles for ε = 0.2 and z = 0.

The values of skin-friction τxx and τzz in the main
and transverse flow directions are given in Table 2.

It was observed that τxx and τzz decreased with in-
creasing λ. It is also clear from Table 2 that the
values of τzz were much lower than those of τxx.
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Figure 3. The transverse velocity for z = 0.5.

Table 1. Pressure values of (p1) for z = 0.

y p1(λ = 0.2) p1(λ = 0.5)
0 22.468 8.8780

0.1 15.752 6.2182
0.2 10.604 4.1773
0.3 6.5114 2.5520
0.4 3.0665 1.1807
0.5 –0.0732 –0.0773
0.6 –3.2202 –1.3342
0.7 –6.6877 –2.7281
0.8 –10.820 –4.3934
0.9 –16.030 –6.4960
1.0 –22.835 –9.2450

Nusselt number (Nu) values are shown in Figure
4. It was observed that Nu decreased with increas-
ing λ in both situations [Pr = 0.71 (air) and Pr = 7
(water)]. It is also clear from Figure 4 that Nu was
much lower in the case of water (Pr = 7) than air
(Pr = 0.71).
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Figure 4. The Nusselt number for ε = 0.2 and z = 0.

Table 2. Skin-friction component (τxx and τzz) values for
ε = 0.2.

λ τxx (z = 0) τzz (z = 0.5)
0.1 0.9508 0.3562
0.2 0.9033 0.3529
0.3 0.8575 0.3495
0.4 0.8133 0.3462
0.5 0.7707 0.3429
0.6 0.7298 0.3395
0.7 0.6905 0.3363
0.8 0.6528 0.3330
0.9 0.6166 0.3297
1.0 0.5820 0.3265

Conclusions

On the basis of the above discussion we conclude
that the main flow velocity and skin friction com-
ponents in the main and transverse flow directions
decreased with increases in the injection/suction pa-
rameter. Additionally, the dimensionless coefficient
of heat transfer (Nusselt number) decreased with
the injection/suction parameter and the transverse
velocity component increased with increasing from

small values (λ < 0.5) of the injection/suction pa-
rameter, while the reverse effect was observed for
λ > 0.5. The present analysis gave a better result,
as we considered the injection/suction velocity vari-
able at both plates, because in actual practice injec-
tion/suction cannot be uniform in all cases.
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Nomenclature
d distance between plates
Nu Nusselt number
p dimensionless pressure
p∗ pressure
Pr Prandtl number
q∗

w constant heat flux per unit area
T∗ temperature of fluid
T∗

∞ temperature of free stream
U average velocity
V injection/suction velocity
u∗,v∗,w∗ components of velocity
u,v,w dimensionless velocity components
x∗,y∗,z∗ Cartesian coordinates
x,y,z dimensionless Cartesian coordinates
α thermal diffusivity
ε amplitude of injection/suction velocity

(<< 1)
κ thermal conductivity
λ injection/suction parameter
μ viscosity
ν kinematics viscosity
θ dimensionless temperature
ρ density
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