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Abstract

The interaction between peristaltic transport of a dusty fluid (Saffman’s model) in a 2-dimensional
uniform channel and the elasticity of the channel’s flexible walls was studied under long wavelength approx-
imation. Perturbation solutions were obtained for the stream functions of both the fluid particles and solid
particles, in terms of the wall slope parameter. The expressions for average velocity of the fluid particles
and solid particles, and average fluid flow rate were derived. The effects of various elastic parameters and
mass concentration of dust particles on the streamline pattern and average flow rate were studied. The
phenomenon of trapping was observed and the area of the trapped bolus increased along with the tension
parameter, but decreased with damping and mass concentration of dust particles.
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Introduction

Peristaltic pumping is the transport of a fluid via
traveling waves imposed on the walls of a tube or
channel. This is known to be a major mechanism
in biological systems, including urine transport from
the kidneys to the bladder through the ureter, the
movement of chyme in the gastro-intestinal tract, the
movement of spermatozoa in the ductus deferens of
the male reproductive tract, movement of ova in the
fallopian tubes, vasomotion of small blood vessels,
and in many other glandular ducts. The industrial
use of peristaltic pumping in roller/finger pumps is
well known. This principle has been adopted by en-
gineers to pump corrosive materials and fluids that
must be kept away from pumping machinery. In
particular, the peristaltic transport of toxic liquid
is used by the nuclear industry so as not to contam-
inate the environment. Peristaltic pumping is used
in biomedical devices such as the heart-lung machine
to pump blood. It is also speculated that peristalsis

may be involved in the translocation of water in tall
trees. The translocation of water involves its motion
through the porous matrix of the trees.

Several investigators mathematically and experi-
mentally studied the peristaltic transport of Newto-
nian fluid to understand its fluid mechanical aspects,
both in mechanical and physiological situations, un-
der various approximations. Many of these studies
explained the basic fluid mechanical aspects of peri-
stalsis and 2 important phenomena—trapping and
reflux. Reflux refers to the net retrograde motion of
some part of a fluid in a direction opposite that of
wave propagation on the wall, and trapping is the
development and transport of an internally circulat-
ing bolus of fluid (Shapiro et al., 1969). Fung and
Yih (1968) observed that pumping against a posi-
tive pressure gradient greater than a critical value
results in a backward flow in the central region of
the stream. An elaborate review of the earlier lit-
erature regarding peristalsis is provided by Jaffrin
and Shapiro (1971). As the behavior of most phys-
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iological fluids is known to be non-Newtonian, at-
tempts have been made to analyze the peristaltic
transport of non-Newtonian fluids. Peristaltic trans-
port of blood in small vessels was investigated by
several researchers (Picologlou et al., 1973; Srivat-
sava, 1986; Philip and Peeyush, 1995; Misery et al.,
1996; Srinivasacharya et al., 2003) that described the
non-Newtonian behavior of fluids as power law, cou-
ple stress, simple micro, micropolar, and generalized
Newtonian fluid models, respectively.

Most studies have treated blood as a single ho-
mogeneous mixture having the properties of a New-
tonian fluid or non-Newtonian fluid, or as 2 fluids
consisting of a boundary layer of pure plasma near
the wall and whole blood elsewhere in the blood ves-
sel. For a realistic description of the flow of blood
it is essential to treat blood as a binary system of
plasma and blood cells. Saffman’s (1962) dusty fluid
model serves as a good model for describing blood as
a binary system. Kaimal (1978) studied peristaltic
transport of a solid-fluid mixture at a low Reynolds
number under long wavelength approximation. Rad-
hakrishnamacharya (1978) studied the pulsatile flow
of a fluid containing small solid particles through a
2-dimensional constricted channel.

However, the interaction of peristalsis and the
elastic properties of the channel wall have not re-
ceived much attention. Mitra and Prasad (1973)
studied peristaltic transport of a Newtonian viscous
fluid in a 2-dimensional uniform channel while con-
sidering the elasticity of the wall. They reported that
flow reversal occurs at the center of the channel if the
walls of the channel are elastic and that the position
may shift to the boundaries if the viscous damping
forces are considered. Srinivasulu and Radhakrish-
namacharya (2002) studied peristaltic transport in
a non-uniform channel with elastic effects. Study of
this interaction under different conditions may lead
to a better understanding of the role of peristalsis in
the transport of physiological fluids.

The present research aimed to study the effects
of channel wall properties on peristaltic transport
of a dusty fluid (Saffman’s model) through a 2-
dimensional channel. Stream functions for both fluid
particles and solid particles were obtained under long
wavelength approximation. The expressions for aver-
age velocity of the fluid particles and solid particles,
and average flow rate of the fluid were derived. The
effects of various parameters on the streamline pat-
tern, average velocity of fluid particles, and average
flow rate were studied.

Formulation of the Problem

Consider the laminar flow of an incompressible fluid
that contains small solid particles, whose number
density (N) (assumed to be a constant N0) is large
enough to define average properties of the dust parti-
cles at a point through a symmetrical 2-dimensional
channel. Peristaltic waves of long wavelength are as-
sumed to travel along the walls of the channel. The
geometry of the wall surface is described by

η = d + a sin
(

2π

λ
(x − ct)

)
(1)

where d is the half width of the channel, a is the
amplitude of the wave, λ is the wave length, and t is
time (Figure 1).
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Figure 1. Geometry of 2-dimensional peristaltic motion
of channel walls.

The equations of motion of a viscous incompress-
ible fluid with uniform distribution of solid particles
are given by Saffman (1962). The flow of fluid is
governed by the continuity and momentum equation

∇.V = 0 (2)

∂V
∂t

+ (V.∇)V = −1
ρ
∇p + υ∇2V +

KN0

ρ
(Vs −V)

(3)
where V = [u, v] is the velocity of the fluid parti-
cles, p is the fluid pressure, ρ is the density of the
fluid, υ is the kinematic coefficient of the viscosity
of fluid, and K is the resistance coefficient for the
dust particles—a constant. The first 2 terms on the
right side of Eq. (3) are, respectively, the pressure
gradient and viscosity terms. The last term repre-
sents the force due to the relative motion between
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the fluid and solid particles. It is assumed that the
Reynolds number of the relative velocity is small. In
such a case the force between the solid and fluid is
proportional to the relative velocity (Saffman, 1962).

The motion of the dust particles is governed by
Newton’s second law

∂Vs

∂t
+ (Vs.∇)Vs =

K

m
(V − Vs) (4)

and the continuity equation

∇.Vs = 0 (5)

where V s = [us, vs] is the velocity of the solid par-
ticles and m is the mass of the solid particles.

The governing equation of motion of the flexible
wall may be expressed as

L(η) = p − po (6)

where L is an operator that is used to represent
the motion of the stretched membrane with damping
forces such that

L = −T
∂2

∂x2
+ m′ ∂2

∂t2
+ C

∂

∂t
(7)

Here, T is the tension in the membrane, m′ is
mass per unit area, C is the coefficient of viscous
damping forces, and p0 is the pressure on the outside
of the wall due to tension in the muscles. This ten-
sion may be due to the constitutive relations of the
muscles when the displacements are known. Certain
terms may be added to Eq. (7) to account for spring
foundations, but they do not change the mathemat-
ical nature of the problem; therefore, to keep the
analysis simple they are not considered herein (Mi-
tra and Prasad, 1973).

It is assumed that p0 = 0 and the walls of the
channel are inextensible, so that only their lateral
motion takes place and the horizontal displacement
of the wall is zero. Thus, the no-slip boundary con-
dition for the velocities is

u = 0, us = 0 at y = ±η (8)

Continuity of stresses requires that at the inter-
faces of the walls and fluid p must be the same as
that which acts on the fluid at y = ±η. The use of
the x – momentum equation yields

∂

∂x
(L(η)) =

∂p

∂x
= ρν

[
∂2u

∂x2
+

∂2u

∂y2

]

−ρ

[
∂u

∂x
+ u

∂u

∂y
+ v

∂u

∂y

]
+

KN0

ρ
(us − u)

at y = ±η (9)

Introducing the stream functions, ψ and φ, such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
, us =

∂φ

∂y
, vs = −∂φ

∂x
(10)

and the following non-dimensional variables

x/= x/λ, y
/= y/d, η

/= η/d, t
/= (υt)/(λd),

ψ/= ψ/υ, φ
/= φ/(Kd

2
/m) (11)

into Eqs. (2)-(5), we obtain the following equations
(after dropping primes and eliminating the pressure
term)

δ

[
∂

∂t

(
∇2

1ψ
)

+
∂ψ

∂y

∂

∂x

(
∇2

1ψ
)
− ∂ψ

∂x

∂

∂y

(
∇2

1ψ
)]

=

∇4
1ψ + P

[
1
R
∇2

1φ −∇2
1ψ

]

(12)

δ

[
R

∂

∂t

(
∇2

1φ
)

+
∂φ

∂y

∂

∂x

(
∇2

1φ
)
− ∂φ

∂x

∂

∂y

(
∇2

1φ
)]

=

R∇2
1ψ −∇2

1φ
(13)

where ∇2
1 =

(
δ2 ∂2

∂x2 + ∂2

∂y2

)
, ε = a/d, δ = d/λ are geo-

metric parameters, and R = υm
Kd2 and P = KN0d2

ρυ are
non-dimensional parameters.

The boundary conditions in non-dimensional
form now become

∂ψ
∂y = 0,

∂φ

∂y
= 0 at y = ±η = ±(1 + εsin2π(x − t))

(14)

∇2
1

∂ψ
∂y − δ

[
∂
∂t

∂ψ
∂y + ∂ψ

∂y
∂
∂x

∂ψ
∂y − ∂ψ

∂x
∂
∂y

∂ψ
∂y

]
+

P
(

1
R

∂φ
∂y

− ∂ψ
∂y

)
=

(
E1

∂3

∂x3 + E2
∂3

∂x∂t2
+ E3

∂2

∂x∂t

)
η

at y = ±η = ±(1 + ε sin 2π(x − t))
(15)

where E1 = Td4

υρ is the membrane tension parameter,

E2 = m′d2

λ3ρ is the mass characterizing parameter, and

E3 = cd3

λ2υρ
is the damping parameter.
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Method of Solution

Assuming the parameter δ is very small, the stream
functions ψ and ϕ may be expanded in power series
of δ as

ψ = ψ0+δψ1+δ2ψ2 + · · ·

φ = φ0+δφ1+δ2φ2 + · · ·
(16)

Substituting Eq. (16) in Eqs. (12)-(15) and collect-
ing the coefficients of various powers of δ on both
sides, we obtain the following sets of coupled linear
differential equations for ψ 0, φ 0, and ψ 1, φ 1:

Zeroth order in δ

∂4ψ0

∂y4
+ P

(
1
R

∂2φ0

∂y2
− ∂2ψ0

∂y2

)
= 0 (17)

R
∂2ψ0

∂y2
− ∂2φ0

∂y2
= 0 (18)

and the corresponding boundary conditions at
y = ±η are

∂ψ0

∂y
=

∂φ0

∂y
= 0 (19)

∂3ψ0

∂y3
+ P

(
1
R

∂φ0

∂y
− ∂ψ0

∂y

)
=

(
E1

∂3

∂x3
+ E2

∂3

∂x∂t2
+ E3

∂2

∂x∂t

)
η

(20)

First order in δ

∂4ψ1

∂y4
+ P

(
1
R

∂2φ1

∂y2
− ∂2ψ1

∂y2

)
=

∂3ψ0

∂t∂y2
+

∂ψ0

∂y

∂3ψ0

∂x∂y2
− ∂ψ0

∂x

∂3ψ0

∂y3

(21)

R
∂2ψ1

∂y2
− ∂2φ1

∂y2
= R

∂3φ0

∂t∂y2
+

∂φ0

∂y

∂3φ0

∂x∂y2
− ∂φ0

∂x

∂3φ0

∂y3

(22)
and the corresponding boundary conditions at
y = ±η are

∂ψ1

∂y
=

∂φ1

∂y
= 0 (23)

∂3ψ1

∂y3
+ P

(
1
R

∂φ1

∂y
− ∂ψ1

∂y

)
=

∂2ψ0

∂t∂y
+

∂ψ0

∂y

∂ψ0

∂x∂y
− ∂ψ0

∂x

∂2ψ0

∂y2

(24)

The solutions of Eq. (17) and Eq. (18), subject to
the boundary condition Eq. (19) and Eq. (20), are

ψ0 = A1(y3−3η2y) (25)

φ0 = A1R(y3−3η2y) (26)

where

A1 = −ε
6

[
(2π)3(E1 + E2)Cos2π(x − t)

−E3(2π)2Sin2π(x − t)
]

Similarly, the solutions of Eq. (21) and Eq. (22),
subject to the boundary condition Eq. (23) and Eq.
(24), are

ψ1 =
[
B1y

7

840
+

B2y
5

120
+

B3y
3

6
+ B4y

]
(27)

φ1 =
[
R

(
B1y

7

840
+

B2y
5

120
+

B3y
3

6

)

−6R2

(
D1y

5

20
+

D2y
3

6

)
+ D3y

]
(28)

where

B1= 12(1 + S)A1(∂A1/∂x)

B2= 6(1 + S)[6A
2
1η(∂η/∂x) + (∂A1/∂t)]

B3 = 12A1(∂A1/∂x)η4 + 36A2
1η

3(∂η/∂x)

−6A1η(∂η/∂t)−B1
4 η4 − B2

2 η2

B4 = −
(

B1η6

120
+ B2η4

24
+ B3η2

2

)

D1 = B1/[6(1 + S)]

D2 = B2/[6(1 + S)]

D3 = 6R2
[

D1η4

4
+ D2η2

2

]
+ RB4

S = N0m
ρ is the mass concentration of dust particles.

Average axial velocities of the fluid particle (ū)
and the solid particle (ūs) (up to first order) over one
period of motion are given by

ū =

1∫
0

udt (29)

ūs =

1∫
0

usdt (30)
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where

u = 3A1(y2−η2) + δ

[
B1y

6

120
+

B2y
4

24
+

B3y
2

2
+ B4

]

(31)

us = 3A1R(y2−η2)+δ

[
R

(
B1y

6

120
+

B2y
4

24
+

B3y
2

2

)

−6R2

(
D1y

4

4
+

D2y
2

2

)
+ D3

]
(32)

The fluid flow rate (Q) defined by

Q =

η∫
0

udy (33)

can be obtained using Eq. (31) as

Q = −2A1η
3 + δ

[
B1η

7

840
+

B2η
5

120
+

B3η
3

6
+ B4η

]

(34)
The time average flow rate over a period of time de-
fined by

Q̄ =

1∫
0

Qdt (35)

can be obtained using Eq. (34).

Results and Discussion

The average fluid flow rate was obtained from Eq.
(35) by carrying out integration with respect to x−t.

To explicitly see the effects of various parameters on
these flow variables, these quantities were numeri-
cally evaluated and the results are graphically pre-
sented in Figures 2-8.

The rigid nature of the wall is represented by the
parameter E1, which depends on the wall tension,
and E2 represents the stiffness property of the wall.
The parameter E3 represents the dissipative feature
of the wall. The choice E3 = 0 implies that the wall
moves up and down, with no damping force on it
and, therefore, indicates the case of elastic walls.

The effect of the rigid nature of the walls on the
streamline patterns for the elastic walls (E3 = 0)
is shown in Figure 2a and b. It can be seen from
this figure that the streamline got closer as the ten-
sion parameter (E1) increased and the phenomenon
of trapping was observed. It is significant to note
that the trapping phenomenon became predominant
and the area of the trapped bolus increased as the
tension parameter increased. The effect of dissipa-
tive walls on the streamline is given in Figure 2c and
d. Figure 2c and d show that, as the dissipative
nature of the wall increased, change in the charac-
ter of the streamlines for fixed values of E1 was not
significant. Though trapping was observed and was
predominant, it can be seen that as damping (E3) in-
creased the area of the trapped bolus in some regions
decreased.
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Figure 2. Effect of E1 and E3 on the streamline pattern of fluid particles for E2= 0.2, δ = 0.2, ε = 0.4, R = 1, and
S = 0.5.
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Figure 2. Continued.

Figure 3 shows the effect of the mass character-
izing parameter (E2) on the streamline pattern for
elastic and dissipative walls. As the mass concentra-
tion parameter (E2) increases, the streamlines get
closure and the area of the trapped bolus increases,
both for elastic (Figure 3a and b) and dissipative
walls (Figure 3c and d). The effect of the mass con-
centration parameter (S) on the streamline pattern

is shown in Figure 4; change in the character of the
streamlines with variation in the mass concentration
of dust particles (S) was not significant. Though
trapping was observed and was predominant for all
values of S, it can be seen that as the mass concen-
tration of dust particles increased, the area of the
trapped bolus in some regions decreased.
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Figure 3. Effect of E2 and E3 on the streamline pattern of fluid particles for E1 = 1.0, δ = 0.2, ε = 0.4, R = 1, and s =
0.5.
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Figure 3. Continued.

The effect of E1, E2, E3, and S on the average
fluid flow rate is shown in Figures 5-8. The phe-
nomenon of reflux, i.e. flow reversal, is observed
for all values of the tension parameter; however, for
small values of tension (E1 = 0.2), this phenomenon
was observed for all values of the amplitude ratio
(ε) up to 0.68 (approx.), and after that the flow
rate became positive. Yet, for higher values of ten-

sion the amplitude ratio at which the fluid flow rate
changed from negative to positive decreased. In par-
ticular, for the tension parameter value of 2.0, reflux
occurred up to ε = 0.56 (approx.) and after that
the flow rate became positive. A similar trend was
observed for the mass characterizing parameter (E2).
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Figure 4. Effect of S on the streamline pattern of fluid particles for E1 = 0.5, E2 = 0.75, E3 = 0.6, δ = 0.2, ε = 0.4, and
r = 1.
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Figure 4. Continued.
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Figure 5. Effect of E1 on the flow rate of fluid particles
for E2 = 0.5, E3 = 0.75, δ = 0.1, R =1, and S
= 0.5.
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Figure 6. Effect of E2 on the flow rate of fluid particles
for E1 = 0.5, E3 = 0.75, δ = 0.1, R =1, and S
= 0.5.
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Figure 7. Effect of E3 on the flow rate of fluid particles
for E1 = 0.5, E2 = 0.75, δ = 0.1, R =1, and S
= 0.5.
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Figure 8. Effect of S on the flow rate of fluid particles for
E1 = 0.5, E2 = 0.75, E3 = 0.75, δ = 0.1, and
R =1.
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It can be seen from Figure 7 that for lower damping
values (E3 = 0.2), reflux occurred for amplitude ra-
tios up to 0.68 (approx.), after which the flow rate
became positive. Nonetheless, as damping increased
(E3 = 2.0) reflux occurred only up to an amplitude
ratio of 0.44 (approx.). Figure 8 shows that for val-
ues of the mass concentration of dust particles (S) up
to 0.6 reflux occurred for all values of amplitude ra-
tios; however, for higher mass concentration of dust
particle values (S = 0.8), reflux occurred only up to
an amplitude ratio of 0.4 (approx.).

Nomenclature

a amplitude of the wave
C coefficient of viscous damping forces
d half width of the channel
E1 membrane tension parameter (Td4/(υρ))
E2 mass characterizing parameter (m′d2/(λ3ρ))
E3 damping parameter (E3 = cd3/(λ2υρ))
K resistance coefficient for dust particles
L an operator used to represent the motion of

the stretched membrane with damping forces
m mass of the solid particles
m′ mass per unit area

N number density of the small solid particles
(assumed to be constant N0)

p fluid pressure,
P non-dimensional parameter (KN 0d

2/(ρυ))
p0 pressure on the outside of the wall due to

tension in the muscles
R non-dimensional parameter (υm/(Kd2))
T tension in the membrane
t time
u, v velocity components of the fluid particles
us, vs velocity components of the solid particles
ū time-average axial velocity of the fluid parti-

cle
ūs time-average axial velocity of the solid par-

ticle
V velocity of the fluid particles
V s velocity of the solid particles
Q fluid flow rate
Q̄ time-average flow rate over a period of time
S mass concentration parameter
λ wavelength
ψ, φ stream functions
ε geometric parameter (a/d)
δ geometric parameter (d/λ)
ρ density of the fluid,
υ kinematic coefficient of the viscosity of fluid
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