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Abstract

The membrane potentials for asymmetric membranes where fixed charges varied linearly with position

were evaluated from the numerical solutions of Nernst-Planck flux and Donnan potential equations. The

evaluated membrane potentials were compared with the results obtained from the conventional TMS theory

where the fixed charge concentration in the membrane was assumed to be uniform. In the comparison,

the number of fixed charges was kept constant by defining an average for the fixed charge concentration.

The numerical results showed that the membrane potential increased in magnitude when the distributions

of fixed charges at the membrane-solution interfaces were unequal. In addition, the deviation from TMS

theory increased more as the charge difference at the interfaces increased.

Key Words: Membrane potential; Donnan potential; Charged membranes; TMS theory; Surface charges;

Fixed charge concentration.

Introduction

Charged membranes such as ion exchange, reverse osmosis, and electrodialysis membranes are usually char-
acterized by measuring the membrane potential (Barragan et al., 1995; Bowen and Mukhtar, 1996; Choi et

al., 2001; Schaep and Vandecasteele, 2001). By definition, the membrane potential is the potential difference
that is generated between 2 solutions of the same electrolyte at different concentrations separated by a charged
membrane. According to the studies by Teorell (1935) and Meyer and Sievers (1936), known as TMS theory,
the membrane potential can be expressed by the sum of the Donnan potential between the membrane surface
and the external solutions and the diffusion potential in the membrane. TMS theory identifies the fixed charges
by defining a fictitious fixed charge concentration, i.e. the concentration of fixed charges attached to the matrix
of the membrane per unit volume. It also assumes that the fixed charge groups are homogeneously distributed
in the membrane. However, it is clear that, as a result of concentration gradient across the membrane, the
local concentrations of counterions at the membrane-solution interfaces at both sides show variations during
the membrane potential measurements. It has been also reported in the literature that membranes with non-
uniformly distributed fixed charges can have different ion selectivity compared to membranes with uniformly
distributed charges (Manzanares et al., 1991; Shahi et al., 2003).
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The purpose of this study was to investigate the effects of non-uniform distributions of fixed charges on
membrane potentials, i.e. having the same number of fixed charges with different distribution profiles. Similar
to TMS theory, the membrane potential equation for linearly varying fixed charges was derived based on the
Nernst-Plank flux equation and Donnan equilibrium. Then a numerical solution procedure was presented to
obtain the membrane potential for uni-univalent electrolyte solutions. According to the simulation results, the
effects of non-uniform distribution of fixed charges on membrane potential were discussed and the results were
compared with the values obtained from TMS. In addition, the calculations were repeated for different values
of the external bulk concentration ratio and the ionic diffusion coefficient ratio and their effects on membrane
potential were investigated. Finally, the obtained simulation results were compared with the experimental
results presented in the literature.

Modeling of the Membrane Potential

The schematic drawing of the studied membrane system is shown in Figure 1. The membrane, which has a
thickness of “d”, separated 2 solutions of uni-univalent electrolyte solutions. CL and CRare defined as the
concentrations of external bulk solutions in the feed side and permeate side, respectively. It is also assumed
that CL is always greater than CR. The direction of ion transport is shown by ‘x’ and the membrane-solution
interfaces are located at the points x = 0 and x = d. In addition, the fixed charge concentrations at the
interfaces are identified as θ (0)andθ (d), respectively.
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Figure 1. Representation of the studied membrane system.

The flux of ions through a positively charged membrane can be written by using the Nernst-Planck equation
(Buck, 1984):

Ji = −Di

[
dCi

dx
+ (−1)i+1 F

RT
Ci

dψ

dx

]
i = 1, 2 (1)

where Di, Ci, and ψ denote the diffusion coefficients, the local molar concentration of the ith ions, and the local
electric potential, respectively. In addition, R, T, and F represent ideal gas constant, absolute temperature,
and Faraday constant, respectively. According to Eq. (1), the charge of ions is equal to 1 and subscript 1 refers
to cations, and subscript 2 to anions.

As a result of the electro-neutrality condition in the membrane, the relation between the concentration of
cations and anions is equal to

C1 − C2 + θ = 0 (2)
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where θ is the local fixed charge concentration. According to Figure 1, the variation in θ in the direction of ‘x’
can be written as

θ (x) = θ (0) + Δθ
d x

Δθ = θ (d) − θ (0) (3)

If the average is defined as the fixed charge concentration divided by the volume of membrane, then the average
of fixed charge concentration is equal to

〈θ〉 =

d∫
0

θdx

d
(4)

It should be pointed out that Eq. (4) is valid when the cross-sectional area of the membrane is constant in the
direction of ion transport and when the fixed charge concentration varies only in the x-direction. When the
distribution of fixed charges is uniform, the average will be equal to the uniform value (< θ >= θ). In the case
of linear variation of fixed charges with position, the average will be equal to the arithmetic averages of the
fixed charges at the membrane-solution interfaces.

The concentrations of ions at the membrane-solution interfaces can be written in terms of the external bulk
concentrations by using the Donnan equilibrium (Mafe et al., 1997):

C1 (0) =

√
C2

L +
(

θ(0)
2

)2

− θ(0)
2

C1 (d) =

√
C2

R +
(

θ(d)
2

)2

− θ(d)
2

(5)

Similar equations can also be written for C2. The summation of Donnan potentials at the membrane-solution
interfaces is equal to (Yamamoto, 2003)

[ψ (0) − ψL] + [ψR − ψ (d)] =
RT

F
In

(
CR

CL

C1 (0)
C1(d)

)
(6)

Diffusion potential through the membrane

When the total current that passes through the membrane is zero, the cation and anion fluxes become equal
for uni-univalent electrolyte. If the steady-state ion flux is identified by ‘J’, it can be easily shown that the
potential difference between the membrane-solution interfaces can be obtained from the combination of Eq. (1)

and Eq. (2) as

dψ

dx
=

RT

F

1
(2C1 + θ)

(
dθ

dx
+ J

(D1 − D2)
D1D2

)
(7)

Then the integration of Eq. (7) from x = 0 to x = d gives the diffusion potential through the membrane:

ψ (d) − ψ (0) =
RT

F

(
Δθ

d
+ J

D1 − D2

D1D2

)∫ d

0

dx

2C1 + θ
(8)
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Numerical solution procedure

A numerical procedure, which was presented by Manzanares et al. (1991), was followed to solve Eq. (1) for

uni-univalent electrolytes with the condition presented in Eq. (2). First, the electric potential gradient through

the membrane is written by the combination of Eq. (1) and Eq. (2):

dψ

dx
=

1
θ

RT

F

(
2
dC1

dx
+

dθ

dx
+

J1

D1
+

J2

D2

)
(9)

By defining a new variable ‘y’, the equations can be simplified:

y =
C1

θ
(10)

If Eq. (9) is substituted into Eq. (1) for i = 1, the resulting equation in terms of variable ‘y’ will be

y + 1
2

y2 + (1 + g1 + g2) y + g1
dy = −dθ

θ
(11)

where

gi =
Ji

2Di
dθ
dx

i = 1, 2 (12)

The roots of the 2nd order polynomial that appeared in the denominator of Eq. (11) are

y1 = 1+g1+g2+
√

(1+g1+g2)2−4g1

2
y2 = g1

y1

(13)

Accordingly, Eq. (11) can be rewritten in terms of its roots:

y + 1
2

(y − y1) (y − y2)
dy = −dθ

θ
(14)

Then the integration of Eq. (14) over the membrane results in

(y − y1θ)A (y − y2)
(1−A)

θ = α (15)

where ‘α’ is a constant and ‘A’ is equal to

A =
y1 + 1

2

y1 − y2
(16)

Or Eq. (15) can be rewritten in terms of C1 and θ by using Eq. (10):

(C1 − y1θ)B (C1 − y2θ) = α (17)

where

B = −1 + 2y1

1 + 2y2
(18)
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In order to obtain the constant ‘α’, Eq. (17) is written at the membrane-solution interfaces (Figure 1):

(C1 (0) − y1θ (0))B (C1 (0) − y2θ (0)) = (C1 (d) − y1θ (d))B (C1 (d) − y2θ (d)) (19)

The steady-state ion fluxes (J1= J) through the membrane at the condition of zero electric current (J1-J2=

0) can be obtained by solving Eq. (19). In the solution, the method of bisection was applied. Once the value

of ‘J’ is evaluated, the constant ‘α’ is known and Eq. (15) can be used to predict the variation of cation

concentrations (C1) with respect to ‘x’ (Figure 1). C1 profile in the membrane was evaluated by using the

method of Newton-Raphson and the error tolerance was set to 1 × 10−12.

Results and Discussion

Effects of variable fixed charge concentration on membrane potential

According to TMS theory, the fixed charge concentration in the membrane is uniform and the membrane
potential is equal to (Beg and Matin, 2002; Xu et al., 2004)

Δψmem =
RT

F

[
In

(
CL

CR

√
4C2

R+ < θ >2− < θ >√
4C2

L+ < θ >2− < θ >

)
+ u In

(√
4C2

L+ < θ >2− < θ > u√
4C2

R+ < θ >2− < θ > u

)]
(20)

where

u =
D1 − D2

D1 + D2
(21)

The magnitude of ‘u’ gives information about the difference in transport velocity of anions and cations through
the membrane. If the diffusion coefficients of cations and anions are equal ‘u’ becomes zero and, therefore, the
diffusional potential will be equal to zero as well.

When the fixed charge concentration in the membrane varies linearly with position, the membrane potential
can be obtained from the summation of Eq. (6) and Eq. (8). In this study, Simpson’s rule was applied to

calculate the integral that appeared in Eq. (8) and the error tolerance was set to 1 × 10−12. The diffusivity

coefficients of cations and anions were taken as 1 × 10−5 cm2/s and 2 × 10−5 cm2/s, respectively, and the
partition coefficients were assumed to be unity.

The variations in membrane potential depending on the external bulk concentration ratio (CL/CR) are

presented in Figure 2. Solid lines in the graphs showed the membrane potentials calculated from Eq. (20),

where the fixed charge concentration was assumed to be uniform (TMS). When the fixed charge concentration
varied linearly with position, the membrane potentials were shown by dashed lines and identified as LINEAR.
It was seen that the predictions of membrane potentials from the numerical solutions were usually higher than
the predictions obtained from TMS. In Figure 2(a) and (b), the average of fixed charge concentration (< θ >)

was equal to 5.5 × 10−4 mol/cm3and, therefore, TMS lines were exactly the same. On the other hand, when

θ varied linearly with position (Eq. (4)) the average was equal to the arithmetic average of the fixed charge

concentrations at the membrane-solution interfaces, i.e.< θ >= (θ (0) + θ (d)) /2. The degree of non-uniformity

increased from Figure 2(a) to Figure 2(b) since the gradient of the fixed charge concentration (Δθ/d) lines

increased. The gradients were 5.5 × 10−4/d and 9 × 10−4/d in Figure 2(a) and Figure 2(b), respectively.
In other words, the difference between the fixed charge concentrations at the membrane-solution interfaces
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increased. The calculations were repeated for higher values of < θ >and the result are presented in Figure 2(c)

and (d). It was clear that the distribution of fixed charges at the membrane-solution interfaces affected the
membrane potential. In addition, the discrepancy between TMS and LINEAR curves increased more as < θ >

increased.
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Figure 2. Membrane potentials for uniform and linear variations in fixed charges.

According to the results presented in Figure 2, the membrane potential increased in magnitude as the
external bulk concentration ratio increased. This is a common observation in different studies presented in the
literature (Bowen and Mukhtar, 1996; Schaep and Vandecastee, 2001; Shaei et al., 2003). For example, Tiwari

and Ahmad (2006) prepared some membranes by mixing cellulose acetate and Zeocarb-225 in different ratios and
then measured the membrane potential using sodium chloride solutions. They measured the membrane potential
by keeping the mean sodium chloride concentration ((CL+ CR)/2) constant and changing the concentration

difference in the 2 cells (C = CL – CR). The data given by Tiwari and Ahmad (2006) on the measured

membrane potentials were redrawn with respect to CL/CR and are shown in Figure 3. It is observed that the

increases in membrane potential were becoming less as CL/CR became higher than 6. A similar conclusion

could be obtained from all curves presented in Figure 2. Especially for the low values of < θ > (Figure 2(a)

and (b)), the curves were much steeper until CL/CR was equal to 6. Then the increase in the magnitude of

membrane potential with CL/CR continued but the change in the increases became smaller. Therefore, it could
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be suggested to perform membrane potential measurements at higher bulk concentration ratios in order to have
consistent results from the experiments.
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Figure 3. Variation in membrane potential as a function of concentration ratio (data taken from Tiwari and Ahmad

(2006)).

Effects of diffusion coefficient ratios of ions on membrane potential

For different values of ionic diffusion coefficient ratio (D1/D2), the evaluated membrane potentials are presented

in Figure 4. The results obtained from TMS (Eq. (20)) and numerical solutions of Nernst Planck flux (Eq. (8))

and Donnan equilibrium equations (Eq. (6)) for different values of D1/D2are presented as solid and dash lines
and named TMS and LINEAR, respectively.
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Figure 4. Effects of ionic diffusion coefficients ratio on membrane potential.

The membrane potential showed increases with D1/D2 for the uniform and linear variations of fixed charge

concentrations since both TMS and LINEAR curves increase with D1/D2. The increases in the membrane

potentials could be explained by analyzing the transport of cation through the membrane by diffusion (Shang
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et al., 2006). As the D1/D2 ratio increases, the diffusivity coefficient of cations increases. As a result, the
diffusional force to drive the cations through the membrane towards the lower concentration side increases.
On the other hand, cations will also be opposed because of the electroneutrality condition and, therefore, this
force needs to be a higher force as the diffusional force increases. In the case of high< θ > values, the effect of
diffusion potential is lower than the Donnan potential and, therefore, the increases in membrane potential with
D1/D2 were low in Figure 4(b).

Conclusions

Based on the numerical solutions of Nernst-Planck flux and Donnan equilibrium equations, the following con-
clusions are drawn:

- Non-uniform distribution of fixed charges through the membrane causes predictions of lower potentials in
magnitude than the ones evaluated from TMS theory.

- As the difference between the fixed charges at the interfaces (i.e. the degree of non-uniformity) increases,
much higher potentials than TMS theory are predicted.

- Membrane potential increases with the external bulk concentration ratio and its increase slows down after
the external bulk concentration ratio reaches 6.

-For the low fixed charge concentrations, the membrane potential increases with the ionic diffusion coefficient
ratio.

Nomenclature

A cross-sectional area of the membrane (m2)
C concentration (mol/m3)
C1(0) cation concentration at the left interface (mol/m3)
C1(d) cation concentration at the right interface (mol/m3)
CL bulk electrolyte concentration in the left-side cell (mol/m3)
CR bulk electrolyte concentration in the right-side cell (mol/m3)
d membrane thickness (m)
D diffusion coefficient (m2/s)
F Faraday constant (C/mol)
J ion flux (mol/(m2-s))
R gas constant (J/(K-mol))
T temperature (K)
x axial coordinate (m)

Greek letters

ψ electrical potential (V)
ψ (0) electrical potential at the left interface (V)
ψ (d) electrical potential at the right interface (V)
θ (0) fixed charge concentration at the left interface (mol/m3)
θ (d) fixed charge concentration at the right interface (mol/m3)
〈θ〉 average of fixed charge concentration (mol/m3)

Subscripts

1 cations L left
2 anions R right
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