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Abstract

Fully developed forced convection in a circular channel filled with a highly porous medium saturated

with a rarefied gas and uniform heat flux at the wall is investigated in the slip-flow regime, using the Darcy

extended Brinkman-Forchheimer momentum equation and the entropy generation due to heat transfer and

fluid friction is formulated. The expressions for velocity and temperature distribution have been obtained

in terms of an asymptotic expansion for large Darcy numbers, assuming both velocity and temperature slip

at the wall. The effects of slip and other parameters are examined on the Nusselt number and entropy

generation rate. For small slip at the wall, it is noted that the velocity slip increases the Nusselt number and

the temperature slip decreases it. The entropy generation number attains high values in the region close to

the channel wall and the velocity and temperature slip parameters reduce it.

Key Words: Forced convection, Highly porous medium, Slip flow regime, Permeability, Entropy generation.

Introduction

Rapid progress in science and technology has led to the development of an increasing number of flow devices
that involve the manipulation of gases in various geometries. The continuum assumption in the Navier-Stokes
equations is only valid when the mean free path of the molecules is smaller than the characteristic dimension
of the flow domain. If this condition is violated, the flow will then be influenced by non-continuum effects
and the conventional no-slip boundary condition imposed at a solid-gas interface becomes invalid. The degree
of rarefaction of the gas and the validity of the continuum hypothesis is determined by the Knudsen number,

which is the ratio of the mean-free-path to a characteristic macroscopic length scale. For 10−2 ≤ Kn ≤ 10−1,
commonly referred to as the slip-flow regime, the flow can be modeled by the Navier-Stokes equations with
limited velocity slip. Thus, in such case, tangential slip-velocity boundary conditions must be implemented at
the solid wall of flow domains. The effects of slip at the solid-gas interface for Couette flow are considered by
Marques et al. (2000). Khaled and Vafai (2004) examined the effect of the slip condition on Stokes and Couette
flows due to an oscillating wall. Some mathematical studies on non-Newtonian fluid flows in porous medium
with the slip condition are discussed by Hayat et al. (2007) and Khan et al. (2008).
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Convection is of fundamental interest in many engineering, industrial, and environmental applications such
as cooling of electronic devices, air-conditioning systems, atmospheric flows, and security of energy systems,
and in designs related to thermal insulation. Forced convective heat transfer through fluid saturated porous
media has been discussed in detail and reviewed by Nield and Bejan (2006). A closed form solution of the
Brinkman-Forchheimer equation for the forced convection in a fluid saturated porous medium with isothermal
and isoflux boundaries was obtained by Nield et al. (1996), valid for all values of the Darcy number. They
found that when the Darcy number is large and simultaneously the Forchheimer number is small, the velocity
profile is approximately parabolic, and the effect of an increase in the viscosity ratio(μeff/μ)is to decrease the

Nusselt number. Here the viscosity ratio depends on the structure of the porous matrix. Bear and Bachmat
(1990) obtained a relation between the viscosity ratio and the tortuosity of the porous medium by the process

of averaging, as (μeff/μ) ε = 1/T , where ε is the porosity and T is the tortuosity of the porous medium.

Several authors investigated flow and heat transfer in channels filled (or partially filled) with porous medium,

i.e. Chauhan and Gupta (1999), Al-Hadhrami et al. (2002), Al-Nimr and Khadrawi (2003), Liu (2006), Barletta

et al. (2007), Kuznetsov and Nield (2008), Zahrani and Kiwan (2009), and many others.
Circular tubes or parallel-plates channels are the most useful and therefore widely used geometries in fluid

flow and heat transfer devices. Estimation of local heat transfer in parallel plates and circular ducts filled
with porous materials was obtained by Haji-Sheikh (2004). An analytical study of thermally developing forced
convection in a parallel plate or circular channel filled with a porous medium, with walls at constant heat
flux and with isothermal walls, was conducted by Nield et al. (2003, 2004), whereas such problems of forced

convection with axial conduction have been studied by Kuznetsov et al. (2003), Hooman et al. (2003), and

Minkowyez and Haji-Sheikh (2006). Hooman et al. (2006) and Barletta et al. (2008) investigated viscous
dissipation effects on thermally developing forced convection in a circular duct filled with a saturated porous
medium. A perturbation based analysis was presented by Hooman and Ranjbar-Kani (2004) on the forced

convection in a porous saturated tube. Nield and Kuznetsov (2006) studied forced convection flow of a rarefied
gas through a channel filled by a hyper-porous medium in the ‘slip-flow regime’, using the Brinkman model.
The problem is solved using limited velocity slip and temperature slip at the walls. The velocity slip coefficient
α and the temperature slip coefficient β are related to the values of the Knudsen number, and the knowledge
about their values has been discussed and summarized by Schaaf and Chambre (1961) and Harley et al. (1995).

Forced convection has been investigated by Hooman and Gurgenci (2007) in a circular tube filled with saturated
porous medium, with no-slip boundary conditions and uniform heat flux at the wall on the basis of a Brinkman-
Forchheimer model in the absence of viscous dissipation. The study of convection processes, as discussed here,
in porous media, is a well-developed field of investigation due to its importance in a variety of situations. One
potential application is found in thermoacoustic engines, which make use of the thermoacoustic phenomena and
provide cooling or heating using environmentally benign gases as the working fluid. In these devices a porous
medium, such as a fine wire mesh, may be embedded inside the fluid gap to enhance the thermal contact and
heat transfer.

The foregoing discussions that deal with the forced convection problem in porous channels are very much
restricted to the aspect of the first law of thermodynamics, and none of them carried out a second law based
analysis to discuss the nature of the irreversibility in terms of entropy generation. Bejan (1995) showed that
in thermal-flow systems, entropy minimization helps to improve the efficiency of the system. Therefore, many
researchers were motivated to perform analysis, based on the second law of thermodynamics, of problems in
porous channels useful in engineering devices, such as Demirel and Kahraman (2000), Mahmud and Fraser
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(2005), Hooman (2006), and Hooman et al. (2007).
In view of the above, in this paper, forced convection flow in a circular channel occupied by a highly porous

medium saturated with a rarefied gas in the Knudsen slip-flow regime is considered for the case of uniform
heat flux on the boundary wall. In the case of forced convection in highly porous medium, in which the solid
phase is sparse, e.g. when a channel is filled by metallic foam, it is reasonable to assume that on a macroscopic
scale there is limited slip at the walls of the channel and this flow situation can be modeled using the Darcy-
extended Brinkman-Forchheimer equation. Thus in this research the Darcy-extended Brinkman-Forchheimer
model is used, assuming both limited velocity slip and temperature slip on the wall. An asymptotic solution
to this problem that includes viscous dissipation effects is presented here considering the case of a large Darcy
number. By incorporating the entropy generation analysis, the research work presented here further contributes
to the fluid flow and heat transfer solutions discussed by other researchers. The variations of the viscosity and
temperature fields, Nusselt number, entropy generation number, and Bejan number are investigated for various
values of the slip parameters, Darcy and Forchheimer numbers, viscosity ratio, and other parameters.

Formulation of the Problem

We consider a circular channel of radius R, occupied by a highly porous medium saturated with a rarefied gas
in the slip-flow regime, for the case of uniform heat flux at the boundary. For fully developed steady flow the
velocity is u∗ (r∗)in the axial direction z∗ of the circular channel. The governing equations are

μeff

(
d2u∗

dr∗2
+

1
r∗

du∗

dr∗

)
− μ

K0
u∗ − CF ρu∗2

√
K0

+ G = 0 (1)

ρCpu∗ ∂T ∗

∂z∗
=

k

r∗
∂

∂r∗

(
r∗

∂T ∗

∂r∗

)
+

μu∗2

K0
+ μeff

(
du∗

dr∗

)2

(2)

Equation (1) is the Darcy-extended Brinkman-Forchheimer momentum equation, whereas Eq. (2) is the steady-
state thermal energy equation in the absence of thermal dispersion and axial thermal conduction. However,
the viscous dissipation term for porous medium is retained following Al-Hadhrami et al. (2002). Local thermal
equilibrium has been assumed.

Here μeff is the effective viscosity; μ the fluid viscosity; K0 the permeability; ρ the fluid density; CF

the Forchheimer coefficient; T ∗ the temperature; Cp the specific heat at constant pressure; k the thermal

conductivity; and (-G) the applied pressure gradient.
The corresponding boundary and symmetry conditions are

at r∗ = 1; u∗ = −α∗ du∗

dr∗
, T ∗ = −β∗ dT ∗

dr∗
,

at r∗ = 0;
du∗

dr∗
= 0,

dT ∗

dr∗
= 0, (3)

where α∗ and β∗ are the velocity slip and the temperature slip coefficients, respectively.
We introduce the following dimensionless quantities:

z = z∗/PeR, r = r∗/R, u = μu∗/GR2, M = μeff/μ, Da = K0

/
R2,

F = ρCF GR3
/
μ2, P e = ρCpRU∗/k, α = α∗/R, β = β∗/R, (4)
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where M is the viscosity ratio; Da the Darcy number; F the Forchheimer number; Pe the Péclet number; α

the dimensionless velocity slip parameter; and β the dimensionless temperature slip parameter.
Using the above, the dimensionless form of Eq. (1) is given by

d2u

dr2
+

1
r

du

dr
− s2

M
u − Fs

M
u2 +

1
M

= 0, (5)

where s = (1/Da)1/2 is the porous medium parameter.

The corresponding flow boundary/symmetry conditions become

at r = 1; u = −α
du

dr
,

at r = 0;
du

dr
= 0. (6)

Further, by defining the mean velocity U∗ and the bulk mean temperature T ∗
m as

U∗ =
2

R2

∫ R

0

u∗r∗dr∗, and T ∗
m =

2
R2U∗

∫ R

0

u∗T ∗r∗dr∗, (7)

new dimensionless variables are introduced as

û =
u∗

U∗ , and θ =
T ∗ − T ∗

w

T ∗
m − T ∗

w

. (8)

The Nusselt number Nu is defined by

Nu = 2Rq”
/
k (T ∗

w − T ∗
m), (9)

where T ∗
w and q” are the temperature and heat flux on the wall.

From the first law of thermodynamics, for the case of uniform heat flux on the wall, we have

∂T ∗

∂z∗
=

dT ∗
w

dz∗
=

2q”

ρCpRU∗ = constant. (10)

Using Eqs. (7)-(10), Eq. (2) in non-dimensional form becomes

d2θ

dr2
+

1
r

dθ

dr
+ ûNu + s2Brû2 + BrM

(
dû

dr

)2

= 0, (11)

where Br = μU∗2/k (T ∗
m − T ∗

w) is the Brinkman number.

The corresponding boundary/symmetry conditions for temperature become

at r = 1; θ = −β
dθ

dr
,

at r = 0;
dθ

dr
= 0. (12)

The definition of the dimensionless temperature leads to the integral compatibility condition,∫ 1

0

ûθrdr = 1/2, (13)

resulting from the first law of thermodynamics (Bejan, 1984).
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Solution of the Problem

We consider the case of a large Darcy number, and write the following asymptotic expansion for the velocity
distribution, assuming that s << 1,

u = u0 + su1 + · · · . (14)

Substituting (14) in Eqs. (5) and (6) and comparing the coefficients of s on both sides, we obtain the set of
ordinary differential equations and boundary conditions for different orders, which are then solved considering
the first 2 orders to give

u =
1

4M

(
a1 − r2

)
+

Fs

1152M3

[
2r6 − 9a1r

4 + 18a2
1r

2 − a2

]
+ O

(
s2

)
. (15)

Using Eqs. (7), (8), and (15), we obtain the mean velocity,

U∗ =
GR2

μ

1
8M

[
(1 + 4α) − Fsa3

32M2

]
, (16)

and

û =
2
a4

(
a1 − r2

)
+

Fs

16M2

a3

a2
4

(
a1 − r2

)
+

Fs

144M2

1
a4

[
2r6 − 9a1r

4 + 18a2
1r

2 − a4

]
+ O

(
s2

)
. (17)

Similarly we proceed to find the temperature distribution by writing the following asymptotic expansion:

θ = θ0 + sθ1 + · · · . (18)

Using the expansion (18) in (11) and (12), and considering only the first 2 orders, we obtain

θ =
Nu

8a4

[
r4 − 4a1r

2 + a5

]
+

BrM

a2
4

(
1 + 4β − r4

)

− sFNu

4608M2a2
4

[
a4

{
r8 − 8a1r

6 + 36a2
1r

4 − 8a2r
2 − a6 − 8βa7

}
− 18a3

{
r4 − 4a1r

2 + a8 + 4βa4

} ]

+
sFBr

288Ma3
4

[
3a4r

8 − 16a1a4r
6 + 36a2

1a4r
4 − 18a3r

4 − a9 − 24βa10

]
. (19)

Finally, the Nusselt number can be found by substituting for û and θ, using (17) and (19) in the integral

compatibility condition (13), as

Nu =
48a4

4 − 8BrMa4a16 − (sFBra22/180M)
a2
4a15 +

(
sFa23

/
1440M2

) , (20)

where
a1 = 1 + 2α, a2 = 11 + 66α + 144α2 + 144α3, a3 = 1 + 8α + 24α2 + 32α3,

a4 = 1 + 4α, a5 = 3 + 8α + 4β (1 + 4α) , a6 = 1 − 8a1 + 36a2
1 − 8a2,

a7 = 1−6a1+18a2
1−2a2, a8 = 4a1−1, a9 = 3a4−16a1a4+36a2

1a4−18a3, a10 = a4−4a1a4+6a2
1a4−3a3,

a11 = a5 + a8 + 4βa4, a12 = a2 + 9a1a5 + 72a3
1,

a13 = a6 + 8βa7, a14 = a9 + 24βa10, a15 = 12a1a5 − 24a2
1 − 6a5 + 20a1 − 3,
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a16 = 6a4 (1 + 4β) − 4a1 + 3, a17 = 6a1a11 − 3a11 − 24a2
1 + 20a1 − 3,

a18 = 10 − 102a1 + 15a5 + 405a2
1 − 10a12 + 60a1a2 + 270a2

1a5 − 30a2a5,

a19 = 5 − 54a1 + 330a2
1 − 80a2 − 360a3

1 + 120a1a2 − 15a13 + 30a1a13,

a20 = (1 + 4β)
(
15 − 90a1 + 270a2

1 − 30a2

)
− 10 + 54a1 − 135a2

1 + 10a2,

a21 = −15a4 + 114a1a4 − 390a2
1a4 + 135a3 − 180a1a3 + 360a3

1a4 + 15a14 − 30a1a14,

a22 = 45a3a16 + 2a4a20 + 2a21, a23 = 90a3a4a17 + 2a2
4a18 + a2

4a19.

When there is no-slip (α = 0, β = 0) at the boundary the above results are in agreement with Hooman and

Gurgenci (2007) in the case of no viscous dissipation. Further, when s = 0 and Br = 0, the channel is free
of porous material with no viscous dissipation and the Nusselt number is approximately 4.3636, which is in
agreement with Ranjbar-Kani (2003).

Entropy Generation

The convection process in a porous medium is essentially irreversible. A continuous entropy generation in the
fluid system is caused because of the exchange of energy and momentum within the fluid and at the impermeable
boundaries. One part of this entropy generation is due to heat transfer in the direction of finite temperature
gradients, and the other part takes place due to fluid friction irreversibility. Following Bejan (1982), the
dimensional volumetric rate of entropy generation for the present problem in cylindrical coordinates can be
written as

S′′′ =
k

T ∗2
0

[(
∂T ∗

∂r∗

)2

+
(

∂T ∗

∂z∗

)2
]

+
1

T ∗
0

[
μu∗2

K0
+ μeff

(
du∗

dr∗

)2
]

, (21)

where T ∗
0 is the reference temperature. In the above equation, the first term represents the entropy generated

in the radial direction by heat transfer, the second term accounts for axial conduction, and the last 2 terms are
the fluid friction contribution in porous medium.

Using the non-dimensional quantities defined in (4) and (7)-(10), we obtain, in dimensionless form, the
entropy generation number

Ns =
S′′′

S′′′
0

=

{(
dθ

dr

)2

+
(

Nu

Pe

)2
}

+ T0Br

{
û2

Da
+ M

(
dû

dr

)2
}

, (22)

where S′′′
0 = k (T ∗

m − T ∗
w)2

/
T ∗2

0 R2 is the reference volumetric entropy generation; and T0 = T ∗
0 /(T ∗

m − T ∗
w) is

the dimensionless reference temperature.
Let us denote Ns1 and Ns2 as the entropy generation due to heat transfer and viscous dissipation, respec-

tively; then Eq. (22) can be written as

Ns = Ns1 + Ns2, (23)

where

Ns1 =
(

dθ

dr

)2

+
(

Nu

Pe

)2

, (24)

and

Ns2 = T0Br

{
û2

Da
+ M

(
dû

dr

)2
}

. (25)
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In the above expressions, we have

dθ

dr
=

Nu

2a4

(
r3 − 2a1r

)
− 4BrM

a2
4

r3 +
sBrF

36Ma3
4

[
3a2r

7 − 12a1a2r
5 + 18a2

1a2r
3 − 9a3r

3
]

− sFNu

576M2a2
4

[
a4

(
r7 − 6a1r

5 + 18a2
1r

3 − 2a4r
)
− 9a3

(
r3 − 2a1r

)]
,

dû

dr
= −4r

a4
− sFa3r

8M2a2
4

+
sF

12M2a4

[
r5 − 3a1r

3 + 3a2
1r

]
,

and û and Nu are given in (17) and (20) respectively.

We also obtain the Bejan number, the ratio of Ns1 to the total entropy generation rate, as

Be = Ns1/Ns. (26)

By knowing the solutions of the dimensionless velocity and temperature fields, Ns and Be are computed for
different values of the various parameters.

Results and Discussion

In the present study an analytic solution is obtained for the velocity profiles, temperature profiles, and Nusselt
number for forced convection in a circular duct occupied by a hyper-porous medium saturated with a rarefied
gas while the entropy generation due to heat transfer and fluid friction is formulated. It is aimed to investigate
the combined effects of Darcy bulk matrix resistance (Darcy effect), porous inertia (Forchheimer effect), bound-

ary friction (Brinkman effect), velocity slip, and temperature slip on the forced convection flow and entropy
generation characteristic inside the duct.

Figure 1 shows the effects of the slip parameters α and β, Forchheimer numberF , viscosity ratio parameter
M , and the parameter s on the fully developed velocity profiles u plotted against r. As expected, the velocity
profile approaches the plane Poiseuille flow whens → 0. The velocity profile is significantly non-linear for small
values of s, and changes substantially with the values of α, M , and s. We have also compared our results with
those obtained in the case of no-slip boundary conditions. Maximum velocity appears at the centerline of the
channel and it is found that velocity slip leads in general to an increase in this velocity. It also increases by
decreasing the parameter s, i.e. by increasing the Darcy number Da. However, the viscosity parameter M leads
to a decrease in the velocity profile in the channel. It is also found that velocity profile decreases by increasing
the Forchheimer number F .

The dimensionless temperature profiles are plotted against r in Figure 2. It is seen that the maximum
temperature appears at the centerline of the channel, and it increases by increasing the velocity slip parameter
α. We have also compared the results for θ in the case of temperature no-slip (β = 0) and slip (β = 0.1)
boundary conditions and found that, when there is slip, temperature θ near the wall is greater than that of the
no-slip case, whereas it is reduced at the centerline of the channel. Further, it is seen that θ increases near the
wall and decreases at the centerline with increasing Brinkman number Br or viscosity ratio parameter M .

97



CHAUHAN, KUMAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0             0.04           0.08         0.12            0.16           0.2           0.24
u

r

s = 0, M = 1.25

s = 0.1, M = 1.25

s = 0.5, M = 1.25

s = 0.5, M = 1.25

 = 0, F = 2
 = 0.05, F = 2
 = 0.1, F = 2
 = 0.1, F = 0

s = 0.5, M = 2

α
α
α
α

0

0.2

0.4

0.6

0.8

1

0                       0.5                        1                       1.5                      2

r

Br = 0
Br = 0.1
Br = 1

 = 0.1,  = 0

 = 0,  = 0.1

 = 0,  = 0.1

 = 0,  = 0

M = 4

α β

α

α

α

β

β

β

Figure 1. Velocity profiles u vs. r. Figure 2. Temperature profiles θ vs. r, for M = 1.25.

We have investigated the effects of the parameters α, β, s, M, F , and Br, in detail, on the Nusselt number
Nu in Figures 3-5. Nusselt number Nu is plotted against small values of F in Figure 3. It is found that Nu
increases with increasingF ; however, it decreases with increasing Br. It is also found that in the porous channel
with no slip(s = 0.3, α = β = 0) the Nusselt number Nu is increased by the introduction of the velocity slip α =

0.1, as expected. However, when there is slip in both velocity and temperature at the boundary(α = β = 0.1),
then the Nusselt number is reduced, which then increases with increasing s. It is also clear from this figure that
Nu decreases with increasing temperature slip β.
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Figure 3. Nu vs. F , for M = 1.25, Br = 0.1. Figure 4. Nu vs. s, for α = 0.1, β = 0.1, Br = 0, F = 2.

The variation in the Nusselt number Nu as a function of the parameter s is shown in Figure 4. As mentioned
before, it increases with increasing s. As expected, one can observe that increasing M decreases the Nusselt
number. This fact is in agreement with the previous results reported in the literature by Nield et al. (1996).

Figure 5 shows that the Nusselt number Nu decreases with the increase in the value of Brinkman number
Br, while it increases with the increase in the Forchheimer number F .

The above discussion dealing with the forced convection in a porous circular duct is restricted to first-law
(of thermodynamics) analysis. Now we conduct a second-law based analysis to determine the nature of the
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irreversibility in terms of entropy generation, which affects very much the thermodynamic efficiency of a system.

Figures 6-8 show the variation in entropy generation number (Ns1) due to heat transfer in the circular duct

against radial distance r for different values of the Péclet number (Pe), Brinkman number (Br), viscosity ratio

parameter (M), velocity slip parameter (α), and temperature slip parameter (β). Entropy generation number

(Ns1) in the central region of the duct is low due to gradually varying and small temperature gradients in this
region, whereas it attains high values close to the duct wall. As the Péclet number or the temperature slip
parameter increases, entropy generation number (Ns1) decreases, while the velocity slip parameter increases
it. However, by increasing the Brinkman number or the viscosity ratio parameter, Ns1 increases in the region
close to the duct wall, while it decreases in the central region of the duct.
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Figure 6. Ns1 vs. r for α = 0.1, β = 0.1, M = 1.25, s =

0.1, F = 2, P e = 10.

0

4

8

12

16

20

0                 0.2                 0.4                 0.6                0.8                  1r

N
s1

Pe = 1
Pe = 2
Pe = 5
Pe = 10
Pe = 2E+7

0

1

2

3

4

5

6

7

8

9

0       0.1     0.2      0.3      0.4      0.5      0.6     0.7      0.8      0.9        1
r

N
s

1

 = 0
 = 0.1

= 0, M =

 = 0.1, M =

 = 0.1, M = 2

 = 0.1, M = 1.25

1.25

1.25

α

α

α

α

β
β

Figure 7. Ns1 vs. r, for α = 0.1, β = 0.1, M = 1.25, s =
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Figure 8. Ns1 vs. r for s = 0.1, F = 2, Br = 0.1, P e = 10.

Figure 9 shows the entropy generation number (Ns2) due to fluid friction in the duct for different parameters.
It is seen that Ns2 reduces to a minimum at the centerline of the duct where the magnitude of the velocity is
maximum; on the other hand, it attains high values in the region close to the duct wall because of the high
rate of fluid strain in this region. Increasing the velocity slip parameter lowers the entropy generation number
(Ns2), while the Brinkman number or the viscosity ratio parameter enhances it.
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The variations in total entropy generation number (Ns) are plotted against the radial distance r in Figures
10 and 11. The total entropy generation number is more pronounced in the region close to duct wall due to both
enhanced heat transfer rates and fluid friction in this region. It increases with increasing Brinkman number or
viscosity ratio parameter. However, it is seen that entropy generation number (Ns) decreases with increasing

Péclet number (Pe) or slip parameters(α and β). This result is important in the entropy minimization process.
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Figure 12 shows the variations in Ns against Br for different values of s and F . It is found that total entropy
generation increases with increasing s while it decreases with F .
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Figure 12. Ns vs. Br for α = 0.1, β = 0.1, M =

1.25, T0 = 1, Br = 0.1, P e = 10.

The radial variation in heat transfer irreversibility in terms of the Bejan number (Be) is shown in Figure

13 for various values of the Brinkman number (Br) and the Péclet number (Pe). When Br = 0, there is no
contribution of fluid friction irreversibility to overall entropy generation, and so the distribution of the Bejan
number with respect to r is invariant, as expected. The Bejan number attains its maximum value (i.e. 1) for
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all r when Br = 0. With the increase in Br or Pe, it decreases. Further, it is observed in Figure 14 that Be
decreases with increasing s or M . It is also found that the effect of the parameter s on the distribution of Be
with respect to r is only seen near the centerline (r = 0) of the duct. However, the velocity slip parameter α

increases Be while the temperature slip parameter β decreases it.
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Conclusion

The Nusselt number and the entropy generation rate are significantly altered as a result of variation in various
parameters involved in the problem, primarily due to the change in velocity and temperature profiles. It is
found that the total entropy generation number attains high values in the region close to the circular duct wall.

1. For small slip at the wall, the velocity increases the Nusselt number whereas it decreases with increasing
temperature slip.

2. The Nusselt number Nu increases with the increase in s or F while it decreases with increases in Br or
M .

3. Increasing Brinkman number or viscosity ratio parameter enhances total entropy generation number (Ns)
significantly, particularly in the region close to the duct wall.

4. The Péclet number (Pe) affects Ns through the axial temperature gradient. It is observed that increasing
Pe decreases Ns.

5. Velocity and temperature slip parameters (α and β) both reduce Ns.

6. Parameter s increases Ns while parameter F reduces it.

7. Bejan number (Be) decreases with the increase in Pe or Br or M or s or β while it increases with α.

These results are useful in many situations for some practical applications in engineering and other fields.
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Nomenclature

Be Bejan number defined in Eq. (26)
Br Darcy-Brinkman number μU∗2/k (T ∗

m − T ∗
w)

CF Forchheimer coefficient
Cp specific heat at constant pressure, [J/kg.K ]
Da Darcy number defined in Eq. (4)
F Forchheimer number defined in Eq. (4)
G negative of applied pressure gradient, [Pa/m]
k porous medium thermal conductivity, [W/m.K]
K0 permeability of the porous media, [m2]
M viscosity ratio μeff/μ
Ns dimensionless entropy generation defined in

Eq. (23)
Nu Nusselt number defined in Eq. (9)
Pe Péclet number defined in Eq. (4)
q′′ heat flux, [W/m2]
r∗, z∗ space coordinates, [m]
r, z dimensionless space coordinates defined in

Eq. (4)
R radius of the circular channel [m]
s porous media parameter (Da)−1/2

S′′′ entropy generation per unit volume, [W/m3.K]
S′′′

0 reference entropy generation per unit volume,
[W/m3.K]

T ∗ temperature, [K]
T ∗

m bulk mean temperature, [K]
T ∗

w wall temperature, [K]
T ∗

0 reference temperature, [K]
T0 dimensionless reference temperature

T ∗
0 /(T ∗

m − T ∗
w)

u∗ axial velocity, [m/s]
u dimensionless axial velocity defined in Eq. (4)
û normalized velocity defined in Eq. (8)
U∗ average velocity, [m/s]

Greek symbols

α∗ velocity slip parameter, [m]
α dimensionless velocity slip parameter defined in

Eq. (4)
β∗ temperature slip parameter, [m]
β dimensionless temperature slip parameter defi-

ned in Eq. (4)
μ fluid viscosity, [N.s/m2]
μeff effective viscosity, [N.s/m2]
ρ fluid density, [kg/m3]
θ dimensionless temperature defined in Eq. (8)
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