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doi:10.3906/muh-0905-6

Hall current and heat transfer effects on MHD flow in a channel

partially filled with a porous medium in a rotating system

Dileep Singh CHAUHAN and Priyanka RASTOGI
Department of Mathematics, University of Rajasthan, Jaipur-302055, INDIA

e-mail: dileepschauhan@yahoo.com

Received 04.05.2009

Abstract

MHD viscous electrically conducting fluid flow and heat transfer in a parallel plate channel partially

filled with a porous medium and partially with a clear fluid was considered in the presence of an inclined

magnetic field in a rotating system. Hall effects were taken into account. It was found that the Coriolis

force, Hall current, and the permeability of the porous medium influenced significantly the flow behavior in

the channel and the temperature field. Effects of the rotation parameter (R), Hall current parameter (m),

permeability of the porous material (K), viscosities ratio parameter (φ1), Hartmann number (M), and angle

of inclination (θ) of the applied magnetic field (H0) on the velocity distributions, temperature distributions,

and the rate of heat transfer are depicted graphically and discussed.
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Introduction

The study of heat transfer processes in porous media is a well developed field of investigation because of its
importance in a variety of situations occurring in geothermal systems, microelectronic heat transfer equipment,
thermal insulation, and thermoacoustic engines, which can provide cooling or heating using environmentally
benign gases as the working fluid. Nield and Bejan (2006) surveyed in detail this topic. In recent years, studies
of heat transfer and flow of electrically conducting viscous fluids through a porous medium have attracted
considerable attention, in the presence of a magnetic field, e.g. Bian et al. (1996), McWhirter et al. (1998a,

1998b), Geindreau and Auriault (2002), Seddeek (2002), Chauhan and Jain (2005), Hayat et al. (2007a, 2008),

and Sunil and Mahajan (2009).

The study of the interaction of the Coriolis force with the electromagnetic force is important. In particular,
rotating MHD flows in porous media with heat transfer is one of the important current topics because of its
applications in thermofluid transport modeling in magnetic geosystems (Armstead, 1982), meteorology, MHD
power generators, turbo machinery, solidification process in metallurgy, and in some astrophysical problems.
It is generally thought that the existence of the geomagnetic field is due to finite amplitude instability of the
Earth’s core. Since most cosmic bodies are rotators, the study of convective motions in a rotating electrically

167



CHAUHAN, RASTOGI

conducting fluid is essential in understanding better the magnetohydrodynamics of the interiors of the Earth
and other planets. It has motivated a number of studies on convective motions in hydromagnetic rotating
systems, which can provide explanations for the observed variations in the geomagnetic field. The rotating
flow subjected to different physical effects has been studied by many authors, such as Eltayeb and Roberts
(1970), Childress and Soward (1972), Eltayeb (1972), Singh et al. (1994), Nield (1999), Riahi (2002), Krishna

et al.(2002), Bég et al. (2008), and Seth et al. (2009).

In most cases, the Hall term is ignored in applying Ohm’s law as it has no marked effect for small magnetic
fields. However, to study the effects of strong magnetic fields on the electrically conducting fluid flow, we see
that the influence of the electromagnetic force is noticeable and causes anisotropic electrical conductivity in
the plasma. This anisotropy in the electrical conductivity of the plasma produces a current known as the Hall
current. The Hall effect is important when the magnetic field is high or when the collision frequency is low,
causing the Hall parameter to be significant (Sutton and Sherman, 1965). The effects of Hall current on the fluid
flow and heat transfer in rotating channels have many engineering applications in flows of laboratory plasmas,
in MHD power generation, in MHD accelerators, and in several astrophysical and geophysical situations. Thus,
in a rotating system, the effect of Hall current on MHD flow in parallel plate channels has been investigated by
many researchers. Mandal and Mandal (1983) and Ghosh (2002) investigated effects of Hall current on MHD

Couette flow between parallel plates in a rotating system. Raghavachar and Gothandaraman (1989) studied
hydromagnetic convection in a rotating fluid layer in the presence of Hall current. Ghosh and Bhattacharjee
(2000) considered Hall effects on MHD flow in a rotating channel in the presence of an inclined magnetic field.

Hayat et al. (2005) investigated the effects of Hall current on unsteady flow of a non-Newtonian fluid in a

rotating system. Recently, Ghosh et al. (2009) investigated Hall effects on heat transfer and MHD flow in a
rotating channel.

The flow of fluids through and across a porous medium is a topic of special interest in many engineering
challenges, for example, in the chemical industry separation processes, in pollutant dispersion along aquifers,
and in environmental transport processes in soils (Bear and Bachmat, 1987). The effects of Hall current were

investigated by Hayat et al. (2007b, 2007c) on the rotating oscillating flows of non-Newtonian fluids through

porous medium. Bég et al. (2008) studied the transient viscous incompressible hydrodynamic Couette flow in
a rotating porous medium. Flow in channels partially filled by a porous medium and partially filled by a clear
fluid is important because such fluid flow situations occur in many engineering applications. Coupled and heat
transfer problems in channels partially filled by a porous medium were studied analytically by Kim and Russell
(1985), Chauhan and Gupta (1999), Kuznetsov (1996, 1998, 2000), Al-Nimr and Khadrawi (2003), and many
others.

The present study investigates the magnetohydrodynamic flow of an electrically conducting fluid with heat
transfer in a parallel plate channel partially filled by a porous medium. Channel is rotating with uniform angular
velocity Ω about an axis normal to the plates. A uniform magnetic field H0 is applied at an angle θ from the
positive direction of axis of rotation. The Hall effects are taken into consideration. Exact analytic solutions
are provided, by taking appropriate boundary conditions. In solving this problem, we utilize the boundary
conditions at the clear fluid-porous medium interface, suggested by Ochao-Tapia and Whitaker (1995a, 1995b).
The physical interpretation for the various parameters is discussed with the help of graphs.
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Formulation of the problem

The steady flow of a viscous incompressible electrically conducting fluid in an infinite parallel plate channel
partially filled with a porous medium and rotating with uniform angular velocity Ω about an axis normal to
the plates is considered. A uniform magnetic field H0 inclined at an angle θ from the positive direction of the
axis of rotation is applied. A porous material of thickness ‘h’ is fixed to the lower impermeable plate, which is
maintained at a constant temperature T0, and the upper impermeable plate is fixed at a distance ‘L’ from the
porous interface and maintained at a constant temperature T1. A Cartesian coordinate system is taken with x
and y axis lying on the porous-clear fluid interface and z axis perpendicular to it (see Figure 1). A constant

pressure gradient
(
− ∂p

∂x

)
is applied at the mouth of the channel to generate the primary flow in the x-direction.

Secondary flow is induced in the y-direction due to rotation/Hall effect and ∂p
∂y is taken as zero. In the case

of a strong applied magnetic field, the Hall effect induces an electric current that flow normally to both the
magnetic and electric field, which in turn induces a transverse motion of the fluid. Thus Hall current induces
a secondary flow, and so there will be 2 components of the velocity. All physical quantities are assumed to be
functions of z only, since the channel is infinite along the x and y directions. The flow and temperature field is
divided into 2 regions:

I-Region (0 ≤ z ≤ L), clear fluid region; and

II-Region (−h ≤ z ≤ 0), porous region.

θ

X

Y

H0

T=T0

t=T 1

I-Region

II -Region

(Clear fluid)

(Porous medium)

o

Z

z = L

z = 0

z = -h

Figure 1. Schematic diagram.

For this physical situation, we assume the velocity vector q, magnetic field H , electric field E, current density

vector J in clear fluid region (I-region), and q̄, H̄, Ē, J̄ in the porous region (II-region) as follows:

q = (u′, v′, 0); q̄ = (U ′, V ′, 0)

H = (h′
1 + H0 sin θ, h′

2, H0 cos θ); H̄ = (H ′
1 + H0 sin θ, H ′

2, H0 cos θ)

E = (E′
1, E′

2, E′
3); Ē = (Ē′

1, Ē′
2, Ē′

3)

J = (J ′
1, J ′

2, 0); J̄ = (J̄ ′
1, J̄ ′

2, 0) (1)

and t′, T ′ are the temperatures in the clear fluid region and porous medium respectively.
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The governing MHD equations in a rotating frame of reference for flow, magnetic field, and temperature
distribution in the 2 regions are given by

For region-I (clear fluid region)

∂u′

∂x
+

∂v′

∂y
= 0, (2)

−2Ωv′ = υ
∂2u′

∂z2
+

μe

ρ
J2H0 cos θ − 1

ρ

∂p

∂x
, (3)

2Ωu′ = υ
∂2v′

∂z2
− μe

ρ
J1H0 cos θ, (4)

0 =
k

ρCp

∂2t′

∂z2
+

υ

Cp

[(
∂u′

∂z

)2

+
(

∂v′

∂z

)2
]

+
1

σ ρCp

[(
∂h′

1

∂z

)2

+
(

∂h′
2

∂z

)2
]

. (5)

For steady motion, the Maxwell equations and the generalized Ohm’s law (Cowling, 1957), neglecting ion-slip
and thermo-electric effect, are given by

∇ · B = 0, (6)

∇× E = 0, (7)

∇× H = J, (8)

∇ · J = 0, (9)

and

J +
τeωe

H0
(J × H) = σ

[
E + μe (q × H) +

1
eηe

∇pe

]
, (10)

where B = μeH is the magnetic induction.
Here, ρ, μe, υ, σ, ωe, τe, e, ηe, pe, k and Cpare the fluid density, magnetic permeability, kinematic

viscosity, electrical conductivity, cyclotron frequency, electron collision time, electric charge, number density of
electron, electron pressure, thermal conductivity and specific heat at constant pressure.

For partially ionized gases, electron pressure gradient may be neglected, and it is also assumed thatωiτi << 1,
where ωi and τi are the cyclotron frequency and the collision time of ions respectively.

Since all physical quantities are functions of z only, by Eq. (1), Eqs. (2), (6), and (9) are satisfied identically;

and using Eqs. (7) and (8), Eqs. (3), (4), and (10) reduce to

υ
d2u′

dz2
+

μe

ρ
H0 cos θ

dh′
1

dz
+ 2Ωv′ =

1
ρ

dp

dx
, (11)

υ
d2v′

dz2
+

μe

ρ
H0 cos θ

dh′
2

dz
− 2Ωu′ = 0, (12)

d2h′
2

dz2
− m cos θ

d2h′
1

dz2
+ σ μeH0 cos θ

dv′

dz
= 0, (13)

and,
d2h′

1

dz2
+ m cos θ

d2h′
2

dz2
+ σ μeH0 cos θ

du′

dz
= 0, (14)

where m = τeωe is the Hall current parameter.
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Governing equations for region-II (porous region):

∂U ′

∂x
+

∂V ′

∂y
= 0, (15)

−2ΩV ′ = φ1υ
∂2U ′

∂z2
+

μe

ρ
J̄2H0 cos θ − υ

K0
U ′ − 1

ρ

∂p

∂x
, (16)

2ΩU ′ = φ1υ
∂2V ′

∂z2
− μe

ρ
J̄1H0 cos θ − υ

K0
V ′, (17)

0 = k̄
ρCp

∂2T ′

∂z2 + μ
K0ρCp

(
U ′2 + V ′2) + μ

ρCp

[(
∂U ′

∂z

)2

+
(

∂V ′

∂z

)2
]

+ 1
σ ρCp

[(
∂H′

1
∂z

)2

+
(

∂H′
2

∂z

)2
]

,

(18)

where φ1 = μ
μ
; μ, the clear fluid viscosity; μ, the effective viscosity of the fluid in porous medium; K0, the

permeability of the porous medium; and k, the effective thermal conductivity in the porous medium.
For steady motion, the Maxwell equations and Ohm’s law, taking Hall current into account, are given by

∇ · B = 0, (19)

∇× E = 0, (20)

∇× H = J, (21)

∇ · J = 0, (22)

and, J +
τeωe

H0

(
J × H

)
= σ

[
E + μe

(
q̄ × H

)
+

1
eηe

∇pe

]
, (23)

where B = μeH .

Since all physical quantities are functions of z only, using Eq. (1), Eqs. (15), (19), and (22) are satisfied

identically; using Eqs. (20) and (21), Eqs. (16), (17), and (23) reduce to

φ1υ
d2U ′

dz2
+

μe

ρ
H0 cos θ

dH ′
1

dz
− υ

K0
U ′ + 2ΩV ′ =

1
ρ

dp

dx
, (24)

φ1υ
d2V ′

dz2
+

μe

ρ
H0 cos θ

dH ′
2

dz
− υ

K0
V ′ − 2ΩU ′ = 0, (25)

d2H ′
2

dz2
− m cos θ

d2H ′
1

dz2
+ σ μeH0 cos θ

dV ′

dz
= 0, (26)

and,
d2H ′

1

dz2
+ m cos θ

d2H ′
2

dz2
+ σ μeH0 cos θ

dU ′

dz
= 0. (27)

The corresponding boundary conditions are giv en by
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at z = L; u′ = 0, v′ = 0, h′
1 = 0, h′

2 = 0, t′ = T1,

at z = 0; u′ = U ′, v′ = V ′, h′
1 = H ′

1, h
′
2 = H ′

2, t
′ = T ′,

μ
dU ′

dz
− μ

du′

dz
=

β√
K0

μU ′, μ
dV ′

dz
− μ

dv′

dz
=

β√
K0

μV ′,

dh′
1

dz
=

dH ′
1

dz
,

dh′
2

dz
=

dH ′
2

dz
, k

dt′

dz
= k

dT ′

dz
,

at z = −h; U ′ = 0, V ′ = 0, H ′
1 = 0, H ′

2 = 0, t′ = T0, (28)

where β is a constant.

Solutions of the problem

We introduce the following non-dimensional quantities:

η = z
L

, u = L
υ
u′, v = L

υ
v′, h1 = 1

σ μeυH0
h′

1, h2 = 1
σ μeυH0

h′
2,

K = K0
L2 , U = L

υ U ′, V = L
υ V ′, H1 = 1

σ μeυH0
H ′

1, H2 = 1
σ μeυH0

H ′
2, t = t′−T0

T1−T0
, T = T ′−T0

T1−T0
.

(29)

Using above non-dimensional quantities, and the following new complex variables,

F = u + iv , H = h1 + ih2,

F = U + iV, H = H1 + iH2,
(30)

Eqs. (11-14), (24-27), and Eqs. (5) and (18) reduce to

d2F

dη2
+ M2 cos θ

dH

dη
− 2iRF = −G, (31)

(1 − im cos θ)
d2H

dη2
+ cos θ

dF

dη
= 0, (32)

d2F

dη2
+

M2 cos θ

φ1

dH

dη
− K1F − 2iRF

φ1
= − G

φ1
, (33)

(1 − im cos θ)
d2H

dη2
+ cos θ

dF

dη
= 0, (34)

d2t

dη2
+ PrEc

[(
dF

dη

)(
dF

dη

)c

+ M2

(
dH

dη

) (
dH

dη

)c]
= 0, (35)

d2T

dη2
+

Pr Ec

φ2

[
1
K

(
F F

c
)

+ φ1

(
dF

dη

) (
dF

dη

)c

+ M2

(
dH

dη

)(
dH

dη

)c
]

= 0, (36)
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where the superscript c denotes the complex conjugate, and K1 = 1
Kφ1

, M = μeH0L
√

σ
ρυ , the Hartmann

number, R = ΩL2

υ , the rotation parameter, G = L3

ρυ2

(
− ∂p

∂x

)
, the non-dimensional pressure gradient, Ec =

υ2

L2Cp(T1−T0)
, the Eckart number, and Pr = υρCp

k
is the Prandtl number.

The corresponding boundary conditions in non-dimensional form are given by

at η = 1; F = 0, H = 0, t = 1,

at η = 0; F = F̄ , H = H̄, t = T,

φ1
dF̄

dη
− dF

dη
=

β√
K

F̄ ,
dH

dη
=

dH̄

dη
,

dt

dη
= φ2

dT

dη
,

at η = −α;F̄ = 0,H̄ = 0,T = 0. (37)

where α = h
L , and φ2 = k

k .

Integrating Eq. (32), we obtain

dH

dη
= −(A1 + F cos θ)

(1 − im cos θ)
, (38)

where A1is a constant of integration.

Using Eq. (38) in Eq. (31), we get

d2F

dη2
− A2F = A1B − G, (39)

where A2 = M2 cos2 θ
1−im cos θ

+ 2iR,and B = M2 cos θ
1−im cos θ

.

On solving Eq. (39), we obtain

F = A2 sinh Aη + A3 cosh Aη +
G − BA1

A2
, (40)

Using (40) in (38), we get

dH

dη
+ A1D +

B

M2

{(
G − BA1

A2

)
+ A2 sinh Aη + A3 cosh Aη

}
= 0, (41)

where D = 1
1−im cos θ .

On solving (41), we obtain

H = −
[
A1Dη +

B

M2

{(
G − BA1

A2

)
η +

A2 cosh Aη + A3 sinh Aη

A

}
+ A4

]
. (42)

Similarly, we obtain the solution for the porous region:

F = B2 sinh Cη + B3 cosh Cη +
G − BB1

φ1C2
, (43)
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H = −
[
B1Dη +

B

M2

{(
G − BB1

φ1C2

)
η +

B2 cosh Cη + B3 sinh Cη

C

}
+ B4

]
. (44)

Using the expressions of F, H, F̄ , H̄ from Eqs. (40), (42-44) in Eqs. (35-36), and solving, we obtain the solutions
for temperature fields in both regions:

t = −Pr Ec
[

F1
4a2

3
cosh 2a3η − F2

4a2
4

cos 2a4η + F7
4a2

3
sinh 2a3η − F8

4a2
4

sin 2a4η

+F14 sinh a3η cos a4η + F15 cosh a3η sin a4η + F16 cosh a3η cos a4η

+F17 sinh a3η sin a4η + F9
2

η2
]
− (E1η + E2) ,

(45)

T = −Pr Ec
[

F18
4c2

3
cosh 2c3η − F19

4c2
4

cos 2c4η + F24
4c2

3
sinh 2c3η − F25

4c2
4

sin 2c4η

+F31 sinh c3η cos c4η + F32 cosh c3η sin c4η + F33 cosh c3η cos c4η

+F34 sinh c3η sin c4η + F26
2 η2

]
− (E3η + E4) ,

(46)

where A1, A2, A3, A4, B1, B2, B3, B4, E1, E2, E3, E4 are constants of integration. These are obtained using
the corresponding boundary conditions and reported in the appendix.

Rate of heat transfer at the upper plate

(
dt
dη

)
η=1

= −Pr Ec
[

F1
2a3

sinh 2a3 + F2
2a4

sin 2a4 + F7
2a3

cosh 2a3 − F8
2a4

cos 2a4

+F10 sinh a3 cos a4 + F11 cosh a3 sin a4 + F12 cosh a3 cos a4

+F13 sinh a3 sin a4 + F9] − E1.

(47)

Rate of heat transfer at the porous medium interface

(
dt

dη

)
η=0

= −Pr Ec

[
F7

2a3
− F8

2a4
+ F12

]
− E1. (48)

Discussion

This study investigates the influence of Hall current and heat transfer effects on the rotating MHD flow in a
channel partially filled by a porous medium. In this research we have taken the form of boundary conditions at
the clear fluid-porous medium interface suggested by Ochao-Tapia and Whitaker (1995a, 1995b), who carried
out a volume averaging analysis for the fluid-porous interface region. They have shown that the process
of matching the Stokes’ equations to the Brinkman-extended Darcy equation at the interface requires the
continuity of velocity but a discontinuity in the shear stress. This condition for the jump in the shear stress
includes an adjustable parameter, β, which allows necessary flexibility in modeling the porous interface region,
and also to fit experimental data in the analytical results. When the parameter β is set equal to zero, the
results reduce to the Brinkman model with the boundary condition as continuity of tangential shear stress at
the porous interface. Ochao-Tapia and Whitaker (1995a, 1995b) provided the values of the parameter β for a
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list of porous materials. We have utilized these values in this research and also compared these results with the
case when β = 0.

The non-dimensional velocity components u and U in primary flow direction are plotted in Figures 2 and
3, for various values of the parameters K, R, m, β, θ and φ1. The permeability K is a measure of the ease with
which a fluid will flow through the porous medium; so for a given pressure gradient, Figure 2 shows that by
increasing the permeability K of the porous medium, the primary velocity increases in the porous region and
near its surface. However, it is reduced in the remaining channel and near the upper plate the effect of K is
insignificant. The effects of other parameters can be seen in Figure 3. It is evident from this figure that the
primary velocity in the channel decreases with the increase in the rotation parameter R in both clear fluid and
porous medium region. It is observed that a maximum peak occurs in the middle of the composite channel

when R = 2, which flattens as R is increased. The rotation parameter R = ΩL2

υ
defines the relative magnitude

of the Coriolis force and the viscous force in the regime; therefore it is clear that high magnitude Coriolis forces
are counter-productive for the primary flow. The effect of β is to increase the primary flow inside the porous
region and near its interface but it decreases in the middle and above. Further it is found that Hall parameter
m decelerates the primary flow. It is seen that when the rotation is small, R = 2 by increasing the viscosities
ratio parameter φ1, primary flow velocity decreases because the effective viscosity of the fluid increases in the
porous medium. However, when rotation is increased to R = 9, we observe that it increases in the channel
except inside the porous medium and the nearby region of its interface. When the angle of inclination θ of
the applied magnetic field with the positive direction of the axis of rotation is zero, the applied magnetic field
becomes normal to the plates and as expected, by decreasing θ primary flow velocity decreases when rotation
is small, R = 2. However, the results are more complex when rotation is large.
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Figure 2. Primary velocity profiles u, U vs. η for G =

10, m = 1, M2 = 20, R = 9, β = 0.7, φ1 = 1.25, θ = 45.

Figure 3. Primary velocity profiles u, U vs. η for G =

10, K = 0.1, m = 1, M2 = 20,β = 0.7, φ1 = 1.25, θ = 45.

The non-dimensional velocity components v and V in the secondary flow direction are plotted in Figures 4
and 5. It is found that the secondary flow velocity increases in magnitude with the increase in Hall parameter
m. As reported in numerous MHD studies, this velocity component is a result of the Hall effect; therefore it
will respond positively to increases in m values. It is also seen that the secondary flow is increased throughout
the composite channel by increasing the permeability parameter K or angle of inclination θ or the parameter β,
whereas it is decreased by increasing the viscosities ratio parameter φ1. Further it is found that by increasing
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the rotation parameter R, secondary flow becomes oscillatory.
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Figure 4. Secondary velocity profiles v, V vs. η for G =

10, m = 1, M2 = 20, R = 9, β = 0.7, φ1 = 1.25, θ = 45.

Figure 5. Secondary velocity profiles v, V vs. η for G =

10, K = 0.1, m = 1, M2 = 20, β = 0.7, φ1 = 1.25, θ = 45.

A similar trend is reported for the primary and secondary flows in a rotating parallel plates channel without
porous substrate by Ghosh and Bhattacharjee (2000), Ghosh (2002), and Seth et al. (2009).

Figures 6 and 7 show the variation in induced magnetic field h1, H1 in primary flow direction and h2, H2

in secondary flow direction, respectively, for various values of the parameters. It is evident from these figures
that these magnetic field components change sign in the composite channel. It is found in Figure 6 that the
magnitude of induced magnetic field in primary flow direction is decreased by increasing the rotation parameter
R. It is also decreased in the lower half channel by increasing β, but in the upper half it increases in magnitude.
The permeability K of the porous medium also has the same effect on it as that of β. However, it is increased if
we take Hall current into account m = 1, comparing to m = 0 case. Figure 7 shows that with the increase in the
Hall current parameter m the magnitude of induced magnetic field in secondary flow direction decreases. When
rotation is small, R = 2, it changes sign frequently in the channel and its magnitude increases with increasing
R. However, by increasing β or K it increases in the upper half channel and decreases in magnitude in the lower
half channel.

With the assumed boundary conditions, the equation of energy for the steady fully developed state has a
solution that is independent of x and y. All the convective terms on the left-hand side become equal to zero.
The resulting temperature distribution is, therefore, due to the generation of heat through viscous and joule
dissipation, and to conduction in the transverse direction. In this case, that is when there is no convection of
heat, the temperature distribution is seen to depend on the product Pr Ec = NBr(Brinkman number) and M

(Hartmann number).

Note that, for a given value of the temperature difference of the 2 walls of the channelT1 − T0 > 0, heat
flows from the upper wall to the fluid, and as flow in the channel increases because of pressure gradient or other
flow parameters, a reversal of the direction of the flow of heat at the upper plate occurs when the temperature
gradient at it changes sign. For a given pressure gradient, we find critical Brinkman numberNBr∗(= Pr Ec)for

which dt
dη = 0 at the upper wall. This critical Brinkman number indicates that heat flows from upper wall to

fluid(NBr < NBr∗), or heat flows from fluid to the upper wall(NBr > NBr∗). This effect of heat transfer is
of fundamental importance for the consideration of cooling at high velocities.
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Figure 6. Induced magnetic field h1, H1 vs. η for G =

10, K = 0.1, m = 1, M2 = 20, β = 0.7, φ1 = 1.25, θ = 45.

Figure 7. Induced magnetic field h2, H2 vs. η for G =

10, K = 0.1, M2 = 20, R = 9, β = 0.7, φ1 = 1.25, θ = 45.

Figures 8 and 9 show the rates of heat transfer at the upper impermeable wall for various values of the

parameters R, K, β, φ1, m, G, θandM2. In these figures the rate of heat transfer is plotted against Brinkman

numberNBr(= PrEc). It is found that as NBr increases, the rate of heat transfer
(

dt
dη

)
η=1

decreases, and

becomes zero for certain Brinkman number (NBr∗), and then changes sign (reversal of the heat flow direction).
It is seen from Figures 8 and 9 and the corresponding Tables 1 and 2 that, as the pressure gradient G increases,
this reversal of heat flow takes place at smaller NBr, since by increasing G flow is increased in the channel,
and so the frictional heat. A similar effect is seen for the parameter β and for the magnetic field M. However,
reversal of heat flow takes place at smaller NBr by decreasing the rotation parameter R, or the viscosities ratio
φ1, or the parameter K, or the angle of inclination θ, or the Hall current parameter m.
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Figure 8. Rate of heat transfer
�

dt
dη

�
η=1

vs. PrEc for G

= 10, K = 0.1, m = 1, M2 = 20, β = 0.7, φ1 = 1.25, φ2 =

1.67, θ = 45.

Figure 9. Rate of heat transfer
�

dt
dη

�
η=1

vs. PrEc for K

= 0.1, m = 1, M2 = 20, R = 9, β = 0.7, φ1 = 1.25, φ2 =

1.67, θ = 45.
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Table 1. Depicting the critical values of NBr at which�
dt
dη

�
η=1

= 0 in Figure 8.

R φ1 β K NBr∗

2 1.25 0.7 0.1 0.192798
2 1.25 0 0.1 0.215634
2 4 0.7 0.1 0.257066
5 1.25 0.7 0.1 0.389834
7 1.25 0.7 0.1 0.596155
9 1.25 0.7 0.01 0.806927
9 1.25 0.7 0.1 0.85521

Table 2. Depicting the critical values of NBr at which�
dt
dη

�
η=1

= 0 in Figure 9.

G M2 M θ NBr∗

15 20 1 45 0.380093
15 20 1 90 0.408414
10 20 0 45 0.787752
10 20 1 45 0.85521
10 20 2 45 0.89847
5 50 1 45 3.210924
5 20 1 45 3.420839

The temperature distribution for various values of the product PrEc is seen plotted in Figures 10 and 11. It
is observed that when Pr Ec=0, the temperature distribution is linear. For PrEc> 0, a parabolic distribution
is superimposed on it, which is due to the heat generated through viscous and joule dissipation. It is observed
that the temperature in the channel increases with increasing PrEc whereas the magnetic field M decreases it.
Further, it is seen that the effect of the rotation parameter R is to decrease the temperature in the channel.
Because of rotation, it is seen that the rate of heat transfer at the upper plate decreases. Increasing rotation
therefore opposes the conduction of heat from the upper plate of the channel into the fluid, causing a decrease
in fluid temperature in the channel. Similar results have been reported by Ghosh et al. (2009). Moreover, it
is seen that when the Hall parameter m is small, and when it increases from m = 0 to m = 1, temperature is
reduced. Further, it is also reduced when the permeability of the porous substrate attached to the lower wall
is increased from K = 0.01 to K = 0.1.
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Figure 10. Temperature distribution t, T vs. η for G =

10, K = 0.1, m = 1, M2 = 20, R = 9, β = 0.7, φ1 = 1.25,

φ2 = 1.67, θ = 45.

Figure 11. Temperature distribution t, T vs. η for G =

10, K = 0.1, m = 1, M2 = 20, PrEc = 4, β = 0.7, φ1 =

1.25, φ2 = 1.67, θ = 45.

Conclusion

We have investigated the Poiseuille flow of a viscous conducting fluid in a composite parallel plate channel,
rotating with a uniform angular velocity about an axis normal to the plates, in the presence of an inclined
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magnetic field. The flow is induced by a constant pressure gradient and the fluid and plates rotate in unison
with the same constant angular velocity. A porous substrate of finite thickness is attached to the lower plate.
Hall current is also taken into account.

The effects of various parameters on the flow and heat transfer are observed from the graphs, and are
summarized as follows:

1. The velocity components in the primary flow direction decreases with an increase in R, m, or φ1

2. With an increase in K or β, the primary flow increases in the porous region and near its surface, whereas
it decreases in the middle and upper part of the channel.

3. With an increase in K, m, β, or θ, the secondary flow increases, whereas it decreases with an increase in
φ1 and becomes oscillatory with an increase in R.

4. The induced magnetic field in the primary flow direction increases with an increase in m, whereas in the
secondary flow direction it decreases. However, the effect of R is just reverse to that of m.

5. With an increase in K or β, both induced magnetic fields in primary and secondary flow direction decrease
in the porous region and near its surface, whereas both increase in the upper part of the channel.

6. Rate of heat transfer at the upper wall decreases with an increase in NBr, becomes zero at certain
Brinkman number (NBr∗), and then changes sign. This change occurs early by decreasing R, K, φ1, θ,
or m, or by increasing G, β, or M.

7. Temperature in the channel increases with an increase in Brinkman number NBr(=PrEc), and decreases
with an increase in R, m, or K.
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Nomenclature

Cp specific heat at constant pressure
e electric charge
Ec Eckart number
E′

1 induced electric field in clear fluid in x-direction
E′

2 induced electric field in clear fluid in y-direction
E′

3 induced electric field in clear fluid in z-direction
Ē′

1 induced electric field in porous medium in
x-direction

Ē′
2 induced electric field in porous medium in

y-direction
Ē′

3 induced electric field in porous medium in
z-direction

G non-dimensional pressure gradient
H0 applied magnetic field

h1 induced magnetic field in clear fluid in
x-direction

h2 induced magnetic field in clear fluid in
y-direction

H1 induced magnetic field in porous medium in
x-direction

H2 induced magnetic field in porous medium in
y-direction

J ′
1 current density in clear fluid in x-direction

J ′
2 current density in clear fluid in y-direction

J̄ ′
1 current density in porous medium in x-direction

J̄ ′
2 current density in porous medium in y-direction

k thermal conductivity of clear fluid
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k effective thermal conductivity of fluid in porous
medium

K non-dimensional permeability of porous layer
m Hall current parameter (= τeωe)
M Hartmann number
NBr Brinkman number (= Pr Ec)
pe electron pressure
Pr Prandtl number
R rotation parameter
t temperature in clear fluid region
T temperature in porous region
u velocity in clear fluid in x-direction
v velocity in clear fluid in y-direction
U velocity in porous medium in x-direction
V velocity in porous medium in y-direction

Greek symbols

β adjustable parameter in the jump boundary
condition

φ1 viscosities ratio (= μ/μ)
φ2 conductivities ratio

(
= k/k

)
η non-dimensional coordinate in the z-direction

(= z/L)
ηe number density of electron
μ viscosity of the clear fluid
μ effective viscosity of fluid in porous medium
μe magnetic permeability
θ angle of inclination of magnetic field
ρ fluid density
σ electrical conductivity
υ kinematic coefficient of viscosity
Ω angular velocity
τe electron collision time
ωe cyclotron frequency
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(b21q13 + b22q14) + (b21q31 − b22q32)

]
,
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F21 = − 2
φ2

[(
1
K

+
b2
1 + b2

2

M2

)
(b22q13 − b21q14) + (b22q31 + b21q32)

]
,

F22 =
2
φ2

[(
1
K

+
b2
1 + b2

2

M2

)
(b31q13 + b32q14) + (b31q31 − b32q32)

]
,

F23 = − 2
φ2

[(
1
K

+
b2
1 + b2

2

M2

)
(b32q13 − b31q14) + (b32q31 + b31q32)

]
,

F24 =
1
φ2

(b21b31 + b22b32)
[

1
K

+ φ1

(
c2
3 + c2

4

)
+

b2
1 + b2

2

M2

]
,

F25 = − 1
φ2

(b22b31 − b21b32)
[

1
K

− φ1

(
c2
3 + c2

4

)
+

b2
1 + b2

2

M2

]
,

F26 =
1
φ2

[
M2

(
q2
29 + q2

30

)
+

(
1
K

+
b2
1 + b2

2

M2

)(
q2
13 + q2

14

)
+ 2 (q13q31 − q14q32)

]
,

F27 =
c3F22 − c4F23

c2
3 + c2

4

, F28 =
c4F22 + c3F23

c2
3 + c2

4

, F29 =
c3F20 − c4F21

c2
3 + c2

4

, F30 =
c4F20 + c3F21

c2
3 + c2

4

,

F31 =
c3F29 − c4F30

c2
3 + c2

4

, F32 =
c4F29 + c3F30

c2
3 + c2

4

, F33 =
c3F27 − c4F28

c2
3 + c2

4

, F34 =
c4F27 + c3F28

c2
3 + c2

4

,

F35 = F1
4a2

3
cosh 2a3 − F2

4a2
4

cos 2a4 + F7
4a2

3
sinh 2a3 − F8

4a2
4
sin 2a4 + F14 sinh a3 cos a4

+F15 cosh a3 sin a4 + F16 cosh a3 cos a4 + F17 sinh a3 sin a4 + F9
2

F36 =
F1

4a2
3

− F2

4a2
4

+ F16 −
F18

4c2
3

+
F19

4c2
4

− F33, F37 =
(

F7

2a3
− F8

2a4
+ F12

)
− φ2

(
F24

2c3
− F25

2c4
+ F29

)
,

F38 =
F18

4c2
3

cosh 2c3α − F19

4c2
4

cos 2c4α − F24

4c2
3

sinh 2c3α +
F25

4c2
4

sin 2c4α − F31 sinh c3α cos c4α

− F32 cosh c3α sin c4α + F33 cosh c3α cos c4α + F34 sinh c3α sin c4α +
F26

2
α2,

F39 =
F36 + F37 + F38 − F35

α + φ2
, E3 = PrEc F39 −

1
α + φ2

, E4 = PrEc (αF39 − F38) −
α

α + φ2
,

E1 = Pr Ec (φ2F39 − F37)− φ2
α+φ2

, E2 = Pr Ec (αF39 − F38 − F36)− α
α+φ2

a21, a31, b21, b31, q11, q13, q29, q31

are the real parts of A2, A3, B2, B3, Q6, Q7, Q15, Q16 respectively and a22, a32, b22, b32, q12, q14, q30, q32 are
the imaginary parts of A2, A3, B2, B3, Q6, Q7, Q15, Q16 respectively.
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