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e-mail: ubabuscu@yildiz.edu.tr

Received 19.03.2010

Abstract

The effect of an initial stretching of a rectangular plate with a cylindrical hole on the stress and displace-

ment distributions around the hole, which are caused by the additional loading, was studied using the finite

element method. It is assumed that the initial stresses are caused by the uniformly stretching forces acting

on the 2 opposite ends. It is also assumed that the cylindrical hole contained by the thick plate is between

these ends and goes in parallel with them. The aim of the author is to analyze the effect of anisotropy and

initial loading on the stress and displacement distributions around the cylindrical hole of the considered

plate. The mathematical formulation of the corresponding boundary-value problem is presented within the

framework of the 3-dimensional linearized theory of elasticity. In order to find a solution to this problem,

the 3D finite element method was employed. The numerical results on the distribution of the stress and

displacement distributions around the cylindrical hole and the influence of the initial forces, geometrical and

mechanical parameters on these distributions are presented and discussed.

Key Words: Initial stretching force, stress concentration, cylindrical hole, composite thick plate, FEM

(Finite Element Method)

Introduction

Holes in structural components can create stress concentration and hence reduce the mechanical properties.
In other words, stress concentrations significantly affect the life of an engineering structure. Knowledge of
stress concentration in the vicinity of a hole should be required for a reliable design of structural components.
Particularly, the increasing use of composite materials in the structural elements requires a better understanding
and modeling of the behavior of these structures.

There are many studies on the effects of holes on the static and dynamic characteristics of construction
elements (Chaudhuri, 2007; Jain and Mittal, 2008; Lei et al., 2001; Savin, 1961; Temiz et al., 2003; Toubal et

al., 2005; Zheng et al., 2008). Based on the analyses of the above-mentioned investigations, there are a few
studies on the influence of the initial stresses arising as a result of initial stretching on the stress concentration
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caused by an additional loading in the case where the superposition principle is not applicable (Akbarov et

al., 2004; Akbarov et al., 2008; Yahnioglu and Babuscu Yesil, 2009). Here under non-applicability of the
superposition principle it is understood that the stress field caused by the additional loading significantly
depends on the initial loading. However, according to the well-known mechanical considerations for the cases
where the magnitude of the initial loading is greater than that of the additional loading, these investigations
can be carried out within the framework of the 3-dimensional linearized theory of deformable body (Guz, 1999).

The present study concerns stress and displacement distributions on an initially statically stressed thick
rectangular composite plate which contains an internal cylindrical hole (lying width-wise in the plate) given a
rectangular cross section with rounded off corners. The governing equation is derived within the scope of the
3-dimensional linearized theory of elasticity (TDLTE). Due to theoretical difficulties in dealing with complicated

problems, the finite element method (FEM) is employed in order to solve the corresponding boundary-value
problems in the determination of the initial stress-state, as well as in the determination of the stress-state for
the additional static loading. The numerical results for the stress and displacement distributions around the
hole are presented and the influence of the initial stresses and other problem parameters on these distributions
are analyzed and discussed.

Formulation of the Problem

Consider a thick rectangular plate containing a cylindrical hole. Its geometry is shown in Figure 1. The
Cartesian coordinate system Ox1x2x3 is associated with the plate so as to give Lagrange coordinates in the
initial state. Assume that the plate occupies the region (Ω − Ω′), where

Ω = {0 ≤ x1 ≤ �1; 0 ≤ x2 ≤ h; 0 ≤ x3 ≤ �3} ,

Ω′ =
{(

�1
2

− b + R

)
≤ x1 ≤

(
�1
2

+ b − R

)
; hA ≤ x2 ≤ h − hU ; 0 ≤ x3 ≤ �3

}
∪

{
(x1, x2, x3)| (x1 − x01)

2 + (x2 − y01)
2 ≤ R2,(

�1
2 − b

)
≤ x1 ≤

(
�1
2 − b + R

)
; hA ≤ x2 ≤ h − hU ; 0 ≤ x3 ≤ �3

}
∪

{
(x1, x2, x3)| (x1 − x02)

2 + (x2 − y02)
2 ≤ R2,(

�1
2 + b − R

)
≤ x1 ≤

(
�1
2 + b

)
; hA ≤ x2 ≤ h − hU ; 0 ≤ x3 ≤ �3

}
. (1)

In Eq. (1) (x01, y01) ((x02, y02)) is the center of the left (right) half circular arc in the plane x3= const. and

hA( hU) is the height of the part of the plate at the bottom (top) of the hole. Suppose that the material of
the strip is transversally isotropic with isotropy axis Ox2. Moreover, assume that the plate is simply supported
at all edge surfaces and in the initial state the uniformly distributed normal stretching forces with intensity q
act on the surfaces x1 = 0 and x1 = �1. The additional uniformly distributed normal forces with intensity p
(< q) act on the upper face plane of the plate. Hence, this problem is investigated in 2 parts: in the first part

(initial state), the initial stress-state is determined for the uniformly distributed normal static forces q, and in

the second part (perturbed state), the stress field under the action of the additional static forces on the upper
face-plane of the initial stretching plate is determined. Through the investigation, all quantities referring to the
initial state will be labeled by the superscript (0) and repeated indices are summed over their ranges.
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BABUŞÇU YEŞİL

Figure 1. Considered plate geometry and some values of geometrical parameters.

According to the discussions above, the initial stress-state can be determined by the solution to the boundary-
value problem given below.

∂σ
(0)
ij

∂xj
= 0; σ(0) = Dε(0); σ(0) =

{
σ

(0)
ij

}
; ε(0) =

{
ε
(0)
ij

}
; ε

(0)
ij =

1
2

(
∂u

(0)
i

∂xj
+

∂u
(0)
j

∂xi

)

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A22 A23 0 0 0
A13 A23 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A55 0
0 0 0 0 0 2A66

⎤
⎥⎥⎥⎥⎥⎥⎦

u
(0)
2

∣∣∣
x1=0;�1

= u
(0)
2

∣∣∣
x3=0;�3

= 0, σ
(0)
1i

∣∣∣
x1=0;�1

= qδi
1,

σ
(0)
2i

∣∣∣
x2=0;h

= 0, σ
(0)
3i

∣∣∣
x3=0;�3

= 0, σ
(0)
ij nj

∣∣∣
S

= 0, i; j = 1, 2, 3. (2)

In Eq. (2), Aij are the material constants, δj
i is the Kronecker symbol, S shows the surface of the cylindrical

hole, and nj is the components of the unit normal vector to the surface S, and the other notation is conventional.

To determine the stress-state caused by the additional loading (i.e. the perturbed state), the following
boundary-value problem must be solved:

∂

∂xj

(
σji + σ

(0)
in

∂ui

∂xn

)
= 0, (3)
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σ = Dε; σ(0) =
{
σ

(0)
ij

}
; ε(0) =

{
ε
(0)
ij

}
; εij =

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(4)

u 2|x1=0;�1
= u 2|x3=0;�3

= 0,

(
σ1i + σ

(0)
in

∂ui

∂xn

)
n1

∣∣∣∣
x1=0;�1

= 0,

(
σji + σ

(0)
in

∂ui

∂xn

)
nj

∣∣∣∣
x2=h

= pδi
2,

(
σji + σ

(0)
in

∂ui

∂xn

)
nj

∣∣∣∣
x2=0

= 0,

(
σ3i + σ

(0)
1n

∂ui

∂xn

)
n3

∣∣∣∣
x3=0;�3

= 0,

(
σji + σ

(0)
in

∂ui

∂xn

)
nj

∣∣∣∣
S

= 0, i; j = 1, 2, 3. (5)

Note that the equations and relations given in Eqs. (3-5) are the corresponding ones for TDLTE as written

in References. (Akbarov et al., 2004; Akbarov et al., (2008); Guz, 1999). Thus, the mathematical formulation

of the problem considered has been exhausted. Note that the solution to the boundary-value problem (2) gives

us the distributions of the initial stresses and the solution to the boundary-value problems (3-5) gives us the
distributions of the stresses and displacements under the additional forces acting on the upper face plane of the
plate. Moreover, the field equations of the second boundary-value problem contain the functions determined by
the solution to the first boundary-value problem. Therefore, the second boundary-value problem can be solved
after the first boundary-value problem.

1. FEM Modeling

For the FEM modeling of the boundary-value problem in Eq. (2), the functional

Π(0) =
1
2

∫∫∫
Ω−Ω′

σ
(0)
ij ε

(0)
ij dΩ −

∫∫
Sq

σ
(0)
ij nju

(0)
i dSq (6)

is used. However, for the FEM modeling of (3-5) according to [11], the functional

Π =
1
2

∫∫∫
Ω−Ω′

Tij
∂uj

∂xi
dΩ −

∫∫
Sp

TijnjuidSp (7)

is employed, where

Tij = σij + σ
(0)
ij

∂ui

∂xn
. (8)

In Eq. (8) the stresses σ
(0)
ij are called the initial stresses and determined from the solution of the boundary-value

problem given in Eq. (2). For each functional, using the virtual work principle and employing the well known
Ritz technique, FEM modeling of each problem is obtained. In this case, the solution domain is divided into a
finite number of triangular prism elements with 6 nodes (for the surrounding of the cylindrical hole) and brick

elements with 8 nodes (for the remaining part of the region not covered by triangular prism elements) (Figure
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2). The selection of the number degrees of freedom (NDOF) values follows the requirements that the boundary
conditions given by the stresses should be satisfied with very high accuracy and the numerical results obtained
for the various NDOFs should converge.
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Figure 2. a) The finite elements mesh around the cylindrical hole; b) The geometry of the brick and the triangular

prism finite elements.

Solution method requires that the region (Ω − Ω′) occupied by the plate be presented as the combination
of the finite elements given below:

(Ω − Ω′) =
M⋃

k=1

Ωk (9)

where Ωk is the kth finite element.
Within each finite element Ωk displacements are expressed with the shape functions and unknown displace-

ments at nodes;

u(k) ≈ N(k)a(k), K = 1, 2, . . ., M (10)

where (
a(k)

)T

=
{
uk

11, u
k
21, u

k
31, u

k
12, u

k
22, u

k
32..., u

k
1p, u

k
2p, u

k
3p

}
,
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(
N (k)

)T

=

⎧⎨
⎩

Nk
1 0 0 Nk

2 0 0 ... Nk
p 0 0

0 Nk
1 0 0 Nk

2 0 ... 0 Nk
p 0

0 0 Nk
1 0 0 Nk

2 ... 0 0 Nk
p

⎫⎬
⎭ ,

(
u(k)

)T

=
{
uk

1 (x1, x2, x3) , uk
2 (x1, x2, x3) , uk

3 (x1, x2, x3)
}

. (11)

In Eq. (11) p equals 8 (6) for a brick (a triangular prism) finite element. Substituting Eq. (10) into Eq. (6)

and Eq. (7), after some mathematical manipulations, finally yields the following system of algebraic equations:

for the first boundary-value problem (2),

K(0)a(0) = r(0) (12)

and for the second boundary-value problem ((3)-(5))

K a = r . (13)

In Eqs. (12) and (13) K(0) and K are the stiffness matrixes, a is the vector the components of which are the

displacements at the nodes, and r(0) and r are the force vectors [12].

The solutions to Eqs. (12) and (13) give the values of the displacements at the nodes. However, the equation

(13) includes the values of the stresses from the first boundary-value problem. Therefore, before finding the

solution to Eq. (13), the distributions of stresses for the first problem should be found. Using the solution to

Eq. (12) and Hooke’s law (given in Eq. (2)), these can be obtained.
Note that the numerical solution to both considered problems are modeled with the same finite elements

and the same arrangements.

Numerical Results and Discussion

Assume that the material of the plate is a composite consisting of a large number of alternating layers of
2 materials. Suppose that the material of each layer is isotropic and these layers are located on the planes
x2 = const. The values related to the matrix and to the reinforcing material is indicated by the subscripts 1
and 2, respectively. Let λk and μk be the Lamé constants; Ek, the Young module; νk, the Poisson’s ratios,
and ηk, the concentrations of the components in the representative pack. Assume that the plate material is
transversally isotropic with the symmetry axis Ox2, and the effective mechanical constants Aij (in (2)) are

given below (Akbarov and Guz, 2000)

A23 = A12 = λ1η1 + λ2η2 − η1η2

(
λ1 − λ2

(λ1 + 2μ1) − (λ2 + 2μ2)
(λ1 + 2μ1) η2 + (λ2 + 2μ2) η1

)
,

1
2

(A11 + A12) = (λ1 + 2μ1) η1 + (λ2 + 2μ2) η2 −
(λ1 − λ2)

2

(λ1 + 2μ1) η2 + (λ2 + 2μ2) η1
,

1
2

(A11 − A13) = η1μ1 + η2μ2,

A66 = A44 =
μ1μ2

μ1η2 + μ2η1
, A55 = η1μ1 + η2μ2, A11 = A33,
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A22 = (λ1 + 2μ1) η1 + (λ2 + 2μ2) η2 − η1η2
((λ1 + 2μ1) − (λ1 + 2μ2))

2

(λ1 + 2μ1) η2 + (λ2 + 2μ2) η1
. (14)

Consider the case where the geometry of plate has symmetry with respect to x1 = �1/2 and x3 = �3/2 planes.
So FEM solutions are obtained in a quarter part of the domain. This domain is divided into 30, 40, and 12 brick
elements in the direction of Ox1, Ox3 and Ox2 axes, respectively but 16 triangular prism elements surround
the cylindrical hole in a layer. For the FEM modeling, 13,440 brick elements and 640 triangular prism finite
elements, 16,605 nodes and 49,282 NDOFs have been used in total.

Note that before obtaining the numerical results, the PC programs composed by the author are tested on
the problems considered in the papers (Akbarov et al., 2004; Akbarov et al., 2008; Yahnioglu and Babuscu

Yesil, 2009).

In the present paper, due to understandable difficulties in dealing with the clarity of the graphs, all graphics
are illustrated in the cylindrical coordinate system and given at the plane x3 = �3/2. The values of all the
parameters are given in the figures.

Figure 3 shows the influence of the initial stretching, i.e. q/E1, on the values of σθθ/p at the mid-point of

each element around the cylindrical hole on the x3 = �3/2 plane for E2/E1 = 1 (i.e. for an isotropic thick plate)

and E2/E1 = 10 (i.e. for an anisotropic thick plate). As can be seen in the figures, it is concluded that the

absolute value of σθθ/p significantly decreases with initial stretching force and the more the initial stretching

force is applied, the more the difference is between the σθθ/p obtained for q/E1 = 0 and the σθθ/p obtained for

q/E1 �= 0.
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(a) 
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R/l1 =0.00416

(b) 

Figure 3. The influence of q/E1 on the values of σθθ/p. a) For E2/E1 = 1, b) For E2/E1 = 0.

Figure 4 shows the distribution of σθθ/p on the surface of the cylindrical hole for a quarter region of the

plate. It follows from the graphs that the absolute maximum values of σθθ/p occur around the x3/�3 = 1/2
plane.
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Figure 4. The distribution of the stress σθθ/p on the surface of the cylindrical hole.

Figures 5 and 7 show the influence of the initial stretching, i.e. q/E1, on the values of ur and uθ at the

mid-point of each element around the hole for E2/E1 = 1 and E2/E1 = 10. It follows from the graphs that the

absolute maximum values of all the displacements decrease with q/E1. The values of the displacement uz are
smaller than those of the other displacements.
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Figure 5. The influence of q/E1 on the values of ur ; a) For E2/E1 = 1, b) For E2/E1 = 10.
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Figure 6. The distribution of the displacement ur on the surface of the cylindrical hole.
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Figure 7. The influence of q/E1 on the values of uθ ; a) For E2/E1 = 1, b) For E2/E1 = 10.

The distributions of ur, uθ, and uz on the surface of the cylindrical hole are given in Figures 6, 8, and 9.
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Figure 8. The distribution of the displacement uθ on the surface of the cylindrical hole.
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Figure 9. The distribution of the displacement uz on the surface of the cylindrical hole.

Figure 10 shows the influence of the ratio b/R(where b (R) is the half length of the hole along the Ox1(Ox2)

axis) on the values of σθθ/p. In this case the increase of the b/R causes the increase of the volume of the hole.

It follows from the graphs that the absolute values of σθθ/p increase monotonically with b/R and decrease with

the initial stretching q/E1.
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Figure 10. The influence of b/R on the values of σθθ/p for a)E2/E1 = 1, b) E2/E1 = 10.

Figures 11-13 show the influence of the anisotropy (i.e. the values of E2/E1) on the values of σθθ/p,ur and

uθ, respectively. It follows from these graphs that the absolute maximum values of σθθ/p,ur, and uθ decrease

with E2/E1. Following from these graphs, it is concluded that the difference between the values of σθθ/p, ur,

and uθ for q/E1 = 0 and the values of σθθ/p, ur and uθ for q/E1 �= 0 increase with E2/E1.
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Figure 11. The influence of E2/E1 on the values of σθθ/p for a) q/E1 = 0, b) q/E1 =0.005.
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Figure 12. The influence of E2/E1 on the values of ur .

Figures 14 shows the influence of the hole’s location on σθθ/p. The parameter hU/R shows the thickness

of the part of the plate at the top of the hole. Therefore, while the value of hU/R decreases, the hole changes
its location entirely and moves closer to the upper face plane of the plate. It follows from the graphs that
the absolute values of σθθ/p increase monotonically with the decreasing hU/R for the cases where q/E1 �= 0

andq/E1 = 0 .
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Figure 13. The influence of E2/E1 on the values of the displacement uθ .
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Figure 14. The influence of hu/R on the values of σθθ/p for q/E1 = 0 and q/E1 = 0.005.

Figures 15 and 16 show the influence of γ31 = �3/�1 on the values of σθθ/p for the case where E2/E1 = 1

(for q/E1 = 0.0 and q/E1 = 0.005) and E2/E1 = 10 (for q/E1 = 0.0 and q/E1 = 0.005). γ31 = �3/�1 shows
the ratio of the 2 lengths along the 2 perpendicular directions, i.e. the length of the thick plate along the Ox3

axis (denoted by �3) and along the Ox1 axis (denoted by �1). It follows from the graphs that the absolute

values of σθθ/p increase monotonically with increasing γ31 = �3/�1 for the cases where q/E1 �= 0, q/E1 = 0,

and E2/E1 = 1, E2/E1 = 10, and approach the limit values, i.e. the values determined from the corresponding
boundary-value problem in the plane-strain state. These results confirm the trustiness of the algorithm and the
PC programs composed by the author and used for the determination of the numerical solution.
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Figure 15. The influence of γ31 = �3/�1 on the values of σθθ/p for E2/E1 = 1 and for a) q/E1 = 0, b) q/E1 =0.005.
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Figure 16. The influence of γ31 on the values of σθθ/p for E2/E1 = 10 and for a) q/E1 = 0, b) q/E1 =0.005.

Conclusion

In the present paper, stress and displacement distributions of an initially statically stressed plate containing
an internal cylindrical hole (lying width-wise in the plate) given a rectangular cross section with rounded off
corners is studied. The investigation focuses on the effect of the initial stresses on the stress and displacement
distributions arising as a result of the action of the additional static forces. The governing equation is derived
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within the scope of the 3-dimensional linearized theory of elasticity in initially stressed bodies. The 3D finite
elements method is employed so as to provide a solution to the corresponding boundary-value problems. The
numerical results on the stress and displacement concentrations around the hole and the influence of the initial
stresses and other problem parameters on these stresses are presented and discussed. Based on these analyses,
the following concrete conclusions can be drawn:

• The absolute value of σθθ/p significantly decreases with the initial stretching force and the more the initial

stretching force is applied the more the difference is between the σθθ/p obtained for q/E1 �= 0.

• The absolute maximum values of all the displacements decrease with q/E1. The values of the displacement
uz are smaller than those of the other displacements.

• The absolute values of σθθ/p increase monotonically with b/R and decrease with the initial stretching

q/E2/E1.

• The absolute maximum values of σθθ/p,ur, and uθ decrease with E2/E1. The difference between the

values of σθθ/p, ur, and uθ for q/E1 = 0 and the values of σθθ/p, ur, and uθ for q/E1 �= 0 increase with

E2/E1.

• The absolute values of σθθ/p increase monotonically with the decreasing hU/R for the cases where q/E1 �=
0 and q/E1 = 0.

• The absolute values of σθθ/p increase monotonically with increasing γ31 = �3/�1 for the cases where

q/E1 �= 0, q/E1 = 0 and E2/E1 = 1, E2/E1 = 10, and approach the limit values, i.e. the values determined
from the corresponding boundary-value problem in the plane-strain state.

Nomenclature

Ω domain of full plate
Ω′ domain of cylindrical hole
(Ω − Ω′) solution domain
Ox1x2x3 Cartesian coordinate system
(x01, y01) center of the left half circular arc in the plane x3 = const.
(x02, y02) center of the right half circular arc in the plane x3 = const.
hA height of the part of the plate at the bottom of the hole
hU height of the part of the plate at the top of the hole
p additional uniformly distributed normal forces
q initial state the uniformly distributed normal stretching forces
�1 length of the thick plate along the axis Ox1

�3 length of the thick plate along the axis Ox3

Aij effective material constants
σij components of stresses
σ

(0)
ij initial stresses in the considered plate

δj
i kronecker symbol

S surface of the cylidrical hole
nj components of the unit normal vector
NDOF number degrees of freedom
K(0), K stiffness matrixes
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a the vector the components of which are the displacements at the nodes
r(0), r force vectors
λk and μk Lamé constants
Ek young Module
νk Poisson’s ratios
ηk concentrations of the components in composite materials
b half length of the hole along the Ox1 axis
R half length of the hole along the Ox2 axis
ur displacement through the axis O′rin the cylindrical coordinates O′rθz
uθ displacement through the axis O′θ in the cylindrical coordinates O′rθz
uz displacement through the axis O′z in the cylindrical coordinates O′rθz
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