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Abstract

This study analyzes flood frequencies using discharge data from 6 gaging stations in the Aji River basin

in Iran. Eighteen different distributions are fitted to the maximum annual discharges from each of these

stations, and parameters of these distributions are estimated using the method of maximum likelihood

and the method of moments. Calculations are performed with Mathematica, a computer algebra system

developed by Wolfram Research. The advantage of using this software is that the symbolic, numerical,

and graphical computations can be combined and all quantities can be accurately calculated; in particular,

there is no need to resort to any approximate methods for the calculation of quantiles. There is a ready-

to-use command for calculating quantiles from distributions that are built in Mathematica, while for other

distributions they can be easily and accurately calculated by inverting the cumulative distribution functions

or by solving nonlinear equations where the inversion is not possible. The best distribution is selected

based on the root mean square error (RMSE), the coefficient of determination (R2) , and the probability

plot correlation coefficient (PPCC). Relations between the distributions’ parameters and the area, average

discharge, and time of concentration are explored. The complete Mathematica code and sample data files

are included in http://users.utu.fi/ruskeepa/.

Key Words: Flood frequency analysis, Probability distribution, Annual discharge, Aji River basin, Math-

ematica

Introduction

Planning, design, and management of water resources systems often require knowledge of flood characteristics,
such as peak, volume, and duration. Of fundamental importance in many design problems is the determination
of the probability distribution of maximum annual discharge. Based on an assumed probability distribution,
one can compute statistics of flows of various magnitudes, which can then be used for planning, design, and
management of water resources projects.
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Among the many probability distributions, the ones that are commonly used in stochastic hydrology are
the normal, log-normal, gamma, Weibull, Pearson type III, log-Pearson type III, and extreme value distributions
(e.g., Hromadka and Whitley, 1989; Moughamian et al., 1987; Robert, 1987; Opere et al., 2006). The log-normal
and Pearson distributions seem to adequately fit peak rainfall and stream-flow, while the Weibull and extreme
value distributions are commonly used for these and other extremes of hydrologic variables (Aksoy, 2000; Burn

and Goel, 2001). The selection of the best fitting distribution(s) among the many available ones has always
been a great challenge. An excellent review of the issues involved in the selection of the most appropriate
distribution (for a region or country) was made by Cunnane (1989) in an operational hydrology report for the

World Meteorological Organization (WMO). Nevertheless, it is all too common to employ a host of distributions,
as the following examples for different regions around the world reflect.

Benson (1968), Wallis (1988), and Vogel et al. (1993) used several distributions for describing flood flows

in the USA. The Natural Environment Research Council undertook a flood study for UK conditions (NERC,

1975). McMahon and Srikanthan (1981) evaluated flood distributions for Australian conditions. Rossi et al.

(1984) and Ahmed et al. (1988) studied flood distributions for Italy and Scotland, respectively. The flood

distributions for Turkey were investigated by Haktanır (1991, 1992) and Haktanır and Horlacher (1993), while

Mutua (1994) compared several frequency distributions for floods in Kenya. An extensive study on the selection
of the probability distribution function of annual maximum, mean, and minimum stream-flows in the USA was
performed by Vogel and Wilson (1996), who analyzed flow data observed from a large network of 1455 stations.

In a similar vein, an attempt is made in the present study to perform flood frequency analysis for Iranian
conditions. To this end, flow series from 6 stations (AharChai, Hervy, Lighvan, Moshiran, SofiChai, Vanyar)
in the Aji River basin in eastern Azerbaijan are studied. Eighteen different distributions are fitted to the
maximum annual discharges from each of these stations. These distributions include: exponential, Frechet,
gamma, generalized Pareto, inverse gamma, inverse Gaussian, Kumaraswamy, log-normal, log-Pearson type III,
Maxwell, Rayleigh, truncated Cauchy, truncated extreme value, truncated Gumbel, truncated logistic, truncated
normal, truncated Pearson type III, and Weibull. Parameters of these distributions are obtained using maximum
likelihood estimation (MLE) and the method of moments (MOM). The performances of these distributions are

evaluated using 3 statistical criteria: the root mean square error (RMSE), the coefficient of determination (R2),

and the probability plot correlation coefficient (PPCC).

In addition to the contribution to the regional hydrology of Iran, the novelty of this study is the use
of the software Mathematica (www.wolfram.com) for flood frequency calculations. This software has extensive
symbolic and numerical capabilities and, thus, enables us to do calculations in a simpler, faster, and more
accurate way. It has several statistical distributions already built-in, and there is also a ready-to-use command
for calculation of quantiles. Even for distributions that are not embedded in Mathematica (and thus where

calculations are not possible explicitly), quantiles can be calculated by solving nonlinear equations. In this study,

Mathematica version 7 (released in 2008) is used. For interactive estimation of densities with Mathematica, see

Ruskeepää and Ghorbani (2010).

Probability Density Functions

Eighteen different probability distributions are considered in this study, some of which are very widely used
in hydrologic frequency analysis. These distributions and their probability density functions are presented in
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Table 1. Probability distributions and their density functions.

Distribution PDF Assumption Domain
Exponential λe−λ(x−γ) λ > 0 x > γ

Frechet
cαc

xc+1
e
−(

α

x
)c

c > 0, α > 0 x > 0

Gamma
xα−1

βαΓ(α)
e
−

x

β α > 0, β > 0 x > 0

Generalized Pareto
1
σ

(1 + k
x − μ

σ
)
−

1
k
− 1

k > 0, σ > 0 0 < μ <
σ

k
x > μ

Inverse gamma
βα

Γ(α)xα+1
e
−

β

x α > 0, β > 0 x > 0

Inverse Gaussian

√
λ

2πx3
e
−

λ(x − μ)2

2μ2x λ > 0, μ > 0 x > 0

Kumaraswamy
pq

b
(
x

b
)p−1(1 − (

x

b
)p)q−1 p > 0, q > 0, b > 0 0 < x < b

Log-normal
1√

2πσx
e
−

1
2
(
log(x) − μ

σ
)2

σ > 0 x > 0

Log-Pearson type III
1

Γ(α)β
(
x − ε

β
)α−1e

−
x − ε

β α > 0, β > 0 x > eε

Maxwell
√

2x2

√
πσ3

e
−

1
2
(
x

σ
)2

σ > 0 x > 0

Rayleigh
x

σ2
e
−

1
2
(
x

σ
)2

σ > 0 x > 0

Truncated Cauchy
1
bπ

(1 + (
x − a

b
)2)−1(

1
2

+
1
π

tan−1(
a

b
))−1 b > 0 x > 0

Truncated extreme value
1
β

(1 − e−e

α

β
)−1e

−
x − α

β
− e

−
x − α

β

β > 0 x > 0

Truncated Gumbel
1
β

ee

−
α

β
e

x − α

β
− e

x − α

β

β > 0 x > 0

Truncated logistic
1 + e

−
μ

β

β
e
−

x − μ

β (1 + e
−

x − μ

β )−2 β > 0 x > 0

Truncated normal
√

2
σ
√

π
(1 + erf(

μ

σ
√

2
))−1e

−
1
2
(
x − μ

σ
)2

σ > 0 x > 0

Truncated Pearson type III
1

βΓ(α,− ε

β
)
(
x − ε

β
)α−1e

−
x − ε

β α > 0, β > 0, ε < 0 x > 0

Weibull
αxα−1

βα
e
−(

x

β
)α

α > 0, β > 0 x > 0
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Table 1. Only truncated (rather than whole) versions of Cauchy, extreme value, Gumbel, logistic, normal, and
Pearson type III distributions are used. The usual domains for these 6 distributions are the whole real line
for the extreme value as well as normal density functions and values larger than ε for the Pearson density
function, which can, in principle, be any real number, but would be negative in this study. Since discharge
is always non-negative, it is more realistic to truncate the density functions so that they yield a domain that
consists of only non-negative values. The truncation is done by simply dividing the original density function by
a suitable constant, to make the integral of the truncated density function equal to one; the constant is given
by P (X ≥ 0) = 1 − F (0), where F (x) is the cumulative distribution function of the original distribution. The

CDF of the truncated distribution is then calculated by integrating the truncated density from 0 to x. [Note:

In the truncated Pearson type III density function, the term Γ
(
α,− ε

β

)
is the value of the incomplete gamma

function Γ(a, z) =
∫ ∞

z ta−1e−tdt ].

The Pearson type III distribution has been adopted in some countries as the standard distribution for
flood frequency analysis because of its better performance (Sumioka et al., 1997). If ε = 0, then this distribution
reduces to the gamma distribution. The extreme value distribution is the limiting distribution for the largest
values in large samples drawn from a variety of distributions, including normal, exponential, and Weibull
distributions.

Estimation of Parameters and Comparison of Probability Density Functions

Many methods are available for estimating the parameters of the above distributions, such as least-squares,
maximum likelihood, moments, weighted moments, linear moments, and entropy. Extensive details of these
methods are already available in the literature (e.g., Rao and Hamed, 2000; Singh, 1996) and, therefore, are
not reported here. In this study, only 2 of these methods are employed: maximum likelihood estimation and
the method of moments.

There is no specific reason for preferring these 2 methods against the others, except that they are simple
and also sufficient for the purpose of this study. They are neither treated as superior to the other methods nor
any effort is made compare with them.

The probability density functions thus fitted are compared using quantiles. Assuming that there are n

number of observations, Cunnane’s plotting positions are first calculated as: pi = (i − 0.4)/(n + 0.2) for i =

1, . . . , n , where i is the order of the ith observation arranged in ascending order and pi is the probability

of non-exceedance of the ith observation estimated by the Cunnane’s plotting position formula. For each of
the density functions, the pi -quantiles, given by Qpi , i = 1, . . . , n , are calculated. These quantiles are then

compared with the observed values, denoted as xi , the ith ordered value. Three statistical indicators are used
to compare the computed and the observed quantiles (e.g., O’Donnell 1985): (1) the root mean square error

(RMSE), which is the square root of 1
n

n∑
i=1

(Qpi − xi)
2 ; (2) the coefficient of determination (R2), which is the

square of the coefficient of correlation between the computed and the observed quantiles; and (3) the probability

plot correlation coefficient (PPCC). The probability plot correlation coefficient (PPCC) test was developed by

Filliben (1975), and it is a simple but powerful goodness-of-fit test. The test uses the correlation r between
the ordered observations and the corresponding fitted quantiles Qpi , determined by plotting position pi for

each xi . The PPCC test is a measure of linearity of a probability plot. If the sample to be tested is actually
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drawn from the hypothesized distribution, the curve formed by the fitted quantiles against observed quantiles
is expected to be nearly linear and the correlation coefficient will be near to one.

Mathematica contains distribution functions, density functions, and also quantile functions for exponen-
tial, gamma, inverse gamma, inverse Gaussian, log-normal, Maxwell, Rayleigh, and Weibull distributions, and
also for some others that are not employed in this study such as Laplace and Levy distributions. Further, for
the Frechet, generalized Pareto, Kumaraswamy, truncated Cauchy, truncated extreme value, truncated Gumbel,
truncated logistic, and truncated normal distributions, one can easily calculate the density distribution, and
quantile functions. However, for the truncated Pearson type III and log-Pearson type III distributions, one
can explicitly calculate only the density and distribution functions, but not the quantile functions. Therefore,
for these distributions, the needed quantiles are calculated numerically by solving the corresponding nonlinear
equations.

Data Analysis and Results

In this study, flood frequency analysis is performed for the Aji River basin in Iran. The Aji River basin is

approximately 13700 km2 and is situated in the eastern part of the Lake Urmieh in the north west of Iran.
For the present analysis, 6 gaging stations within a sub-basin of the Aji River basin are considered: AharChai,
Hervy, Lighvan, Moshiran, SofiChai, and Vanyar. Figure 1 presents a map of the Aji River basin, wherein the
locations of these 6 stations are also indicated. The data considered for the flood frequency analysis are the
annual maximum discharge values. Figure 2 shows the variations of these discharge values for the 6 stations
(in the above order), and Table 2 presents their annual flood data. In Table 3, some basic characteristics of

these stations and of the associated flows (i.e. area, mean flow, time of concentration) are presented. For all

these stations, the time of concentration (Tc ) is computed using the Bransby Williams (Institution of Engineers

Australia, 1987) method.

Caspian Sea

Azerbaijan

TURKEY

IRAQ

Figure 1. Map of the Aji River basin and locations of the 6 gaging stations.
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Table 2. Annual flood data for hydrometric stations.

Year AharChai Hervy Lighvan Moshiran SofiChai Vanyar
1950 - - - - - 51
1951 - - - - - 8.07

1952 - - - - - 52
1953 - - - - - 27.8
1954 - - - - - 72.9
1955 - - - - - 20.8
1956 - - - - - 87.6
1957 - - - - - 62
1958 - - - - - 18.06
1959 - - - - - 56
1960 - - - - - 27.8
1961 - - - - - 28.6
1962 - - - - - 16.56

1963 - - - - - 71.38
1964 - - - - - 109.41
1965 - - - - - 47.3
1966 - - - - - 50.27
1967 - - - - - 123.3
1968 - - - - - 53.9
1969 - - - - - 178.8
1970 - - - - - 40.8
1971 - - - - - 30.8
1972 11 4.5 - 32.8 35.9 62.42

1973 11.9 4.38 - 77.4 31.93 44.2
1974 8.43 5.44 - 46.2 19.5 83.6
1975 3.41 2.9 - 23.33 9.3 50.1
1976 3.65 4.44 - 45.19 11.88 95.07
1977 8.77 30.04 - 16.37 23.68 36.31
1978 6.94 43 - 54.05 40.9 34.31
1979 48.5 5.35 - 67.6 56.25 47.56
1980 44.7 2.05 - 118.55 35.41 55.81
1981 29.36 5.25 - 57.5 30.43 70.82
1982 53.7 5.96 - 231 40.18 54.65
1983 48.12 8.18 - 127 47.77 54.4

1984 24.4 5.58 - 110.3 55.05 30.52
1985 41.3 2.87 4.04 87.1 14.86 114.22
1986 48.5 4.72 3.75 126 34.5 43.82
1987 24.6 1.67 1.98 70.4 9.11 43.82
1988 33.6 6.5 2.37 128 33.92 107.7
1989 55.5 7.93 3.44 72.8 35.9 24.59
1990 45.6 6.75 8.65 140 22.65 32.56
1991 63.5 4.8 4.27 133 33.9 31.72
1992 15.7 3.05 3.66 118 15.3 74.4
1993 67.6 6.26 4.07 139.9 22.74 73.41

1994 24.84 4.17 5.42 86.4 45.6 84.6
1995 33.8 4.33 1.65 171 34.9 51.73
1996 30.5 4.66 3.48 156 54.6 53.66
1997 31.6 5.59 2.12 119 21.7 32.4
1998 33.4 3.63 4.2 105 25.4 21.26
1999 51.4 5.77 6.18 112.6 31.6 6.78
2000 55.61 3.74 3.66 197.1 30.7 16.4
2001 18.4 2.36 2.44 158 34.7 3.15
2002 29.11 4.65 3.9 191.69 21.28 34.93
2003 56.87 3.6 5.38 75.95 39.25 65.3

2004 31.79 14.73 4.01 468.2 37.54 32.8
2005 48.89 2.78 3.84 235.2 27.16 39.1
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Figure 2. Maximum annual discharge at the 6 gaging stations.

Table 3. Some elementary characteristics of river basin and data.

Characteristics AharChai Hervy Lighvan Moshiran SofiChai Vanyar
Area (km2) 2058.8 135 76 11454 240.5 7586

Qmean(m3/s) 33.68 6.81 3.93 120.55 31.34 52.56
Time of Concentration (h) 17.02 5.6 3.38 34.6 6.91 29.83

A station-wise flood frequency analysis was carried out using all the above 18 distribution functions and
with the 2 parameter estimation methods (i.e. MLE and MOM). Tables 4 and 5 show the magnitudes of the
distribution parameters estimated by the maximum likelihood method and the method of moments, respectively.
Among the 18 considered, some distributions have no solution due to calculation difficulties and, thus, are not
referred to in Tables 4 and 5 (exponential and generalized Pareto distributions for MLE; Kumaraswamy, log-

Pearson Type III, and truncated Cauchy distributions for MOM).
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Table 4. Distribution parameter values estimated using the MLE method.

Distributions AharChai Hervy Lighvan Moshiran SofiChai Vanyar

Frechet c = 1.08
α = 17.39

c = 2.03
α = 3.87

c = 2.62
α = 3.01

c = 1.35
α = 69.37

c = 1.91
α = 22.31

c = 1.09
α = 28.95

Gamma α = 2.33
β = 14.44

α = 1.89
β = 3.61

α = 7.10
β = 0.55

α = 2.62
β = 45.98

α = 5.58
β = 5.61

α = 2.59
β = 20.30

Inverse
gamma

α = 1.41
β = 25.40

α = 3.30
β = 14.40

α = 6.92
β = 23.50

α = 2.15
β = 164.48

α = 4.33
β = 109.71

α = 1.58
β = 47.78

Inverse
Gaussian

λ = 38.81
μ = 33.68

λ = 12.09
μ = 6.81

λ = 24.99
μ = 3.93

λ = 210.21
μ = 120.55

λ = 132.58
μ = 31.34

λ = 71.06
μ = 52.56

Kumaraswamy b = 68.36
p = 1.25
q = 1.29

b = 507462.64
p = 1.18
q = 527549.09

b = 636.83
p = 2.66
q = 542382.91

b = 31477.04
p = 1.61
q = 6575.52

b = 97.92
p = 2.70
q = 15.08

b = 29684.79
p = 1.72
q = 43751.44

Log-normal μ = 3.29
σ = 0.79

μ = 1.63
σ = 0.64

μ = 1.30
σ = 0.38

μ = 4.59
σ = 0.67

μ = 3.35
σ = 0.46

μ = 3.76
σ = 0.71

Log-Pearson
type III

α = 328.34
β = 0.05
ε = −11.56

α = 228.79
β = 0.04
ε = −7.64

α = 1442.80
β = 0.01
ε = −13.25

α = 6266.39
β = 0.01
ε = −48.32

α = 7457.84
β = 0.01
ε = −36.55

α = 262.15
β = 0.05
ε = −8.31

Maxwell σ = 22.06 σ = 6.03 σ = 2.44 σ = 83.97 σ = 19.41 σ = 35.53
Rayleigh σ = 27.02 σ = 7.39 σ = 2.98 σ = 102.84 σ = 23.78 σ = 43.52
Truncated
Cauchy

a = 31.46
b = 16.08

a = 4.60
b = 1.29

a = 3.82
b = 0.57

a = 101.65
b = 45.41

a = 31.87
b = 8.09

a = 43.12
b = 19.90

Truncated
extreme
value

α = 23.42
β = 17.58

α = 4.26
β = 3.23

α = 3.24
β = 1.20

α = 85.96
β = 55.85

α = 25.30
β = 11.33

α = 37.76
β = 24.55

Truncated
Gumbel

α = 36.99
β = 21.81

α = −2427294
β = 232544

α = 4.18
β = 2.41

α = 0.00
β = 213.38

α = 35.73
β = 13.87

α = 12.29
β = 78.26

Truncated
logistic

β = 12.67
μ = 30.87

β = 4.77
μ = −0.53

β = 0.82
μ = 3.78

β = 47.10
μ = 98.25

β = 7.32
μ = 30.94

β = 20.20
μ = 44.01

Truncated
normal

μ = 30.82
σ = 20.55

μ = −454.05
σ = 56.61

μ = 3.90
σ = 1.57

μ = 69.22
σ = 113.18

μ = 31.11
σ = 12.48

μ = 41.72
σ = 39.94

Truncated
Pearson
type III

α = 1364.91
β = 0.55
ε = −725.12

α = 0.00
β = 8.09
ε = −31.07

α = 7.10
β = 0.55
ε = 0.00

α = 2.00
β = 120.38
ε = −85411.15

α = 305.26
β = 0.71
ε = −185.34

α = 3.87
β = 15.87
ε = −9.11

Weibull α = 1.87
β = 37.71

α = 1.18
β = 7.32

α = 2.66
β = 4.42

α = 1.61
β = 135.28

α = 2.81
β = 35.21

α = 1.72
β = 59.01

Distribution Parameters and Their Relations to Basin Characteristics

Using regression analysis, distribution parameters estimated by the maximum likelihood method and the method
of moments are related to watershed area (A), mean of discharge (Qmean), and time of concentration (Tc). The
results of this regression analysis are given in Tables 6 and 7 for MLE and MOM, respectively. This analysis
could be an alternative for estimating flood peaks of various return periods for ungaged stream in the same
basin. Based on the results in Tables 6 and 7, relations between the selected distribution parameters and the
basin characteristics may be discussed as follows. For brevity, only some are discussed.

For the Weibull distribution, parameter β has good correlation with A , Qmean , and Tc . In other
words, the value of β increases with increasing area, discharge, and concentration time, with the largest β

corresponding to the largest area, discharge, and concentration time.

For the truncated Pearson type III distribution, parameter β has a meaningful relationship with A ,
Qmean , and Tc , but the other parameters have no such relationship (except parameter ε with Qmean) . For the

truncated Gumbel distribution, there are no meaningful relationships between the parameters (α and β ) and A

and Qmean (and even Tc). For the gamma distribution, parameter β has a direct and meaningful relationship
with A , Qmean , and Tc , while parameter α has an inverse relationship with all the basin characteristics. For
the log-normal distribution, parameter μ has a meaningful relationship with Qmean and Tc , while parameter σ

seems to have, in general but not always, no meaningful relationship with A , Qmean , and Tc . For the truncated
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normal distribution, the parameter σ has meaningful relationships with basin characteristics (i.e. an increase

in the parameter value is observed for an increase in A and Qmean) in the case of MOM.

Table 5. Distribution parameter values estimated using the MOM method.

Distributions AharChai Hervy Lighvan Moshiran SofiChai Vanyar
Exponential γ = 15.61

λ = 0.06
γ = −1.11
λ = 0.13

γ = 2.39
λ = 0.65

γ = 39.18
λ = 0.01

γ = 19.14
λ = 0.08

γ = 20.54
λ = 0.03

Frechet α = 26.21
c = 3.43

α = 4.47
c = 2.41

α = 3.26
c = 4.24

α = 89.14
c = 3.01

α = 25.99
c = 4.26

α = 39.78
c = 3.18

Gamma α = 3.48
β = 9.69

α = 0.74
β = 9.21

α = 6.56
β = 0.60

α = 2.19
β = 54.93

α = 6.60
β = 4.75

α = 2.69
β = 19.51

Generalized
Pareto

μ = 1.77
σ = 65.72
k = −1.06

μ = 0.20
σ = 5.61
k = 0.15

μ = 2.12
σ = 2.17
k = –0.20

μ = 42.28
σ = 75.34
k = 0.04

μ = 11.25
σ = 37.29
k = −0.86

μ = 16.40
σ = 41.14
k = −0.14

Inverse
gamma

α = 5.48
β = 150.75

α = 2.74
β = 11.85

α = 8.56
β = 29.69

α = 4.19
β = 385.11

α = 8.60
β = 238.25

α = 4.69
β = 194.15

Inverse
Gaussian

λ = 117.08
μ = 33.68

λ = 5.04
μ = 6.81

λ = 25.76
μ = 3.93

λ = 264.56
μ = 120.55

λ = 206.91
μ = 31.34

λ = 141.59
μ = 52.56

Log-normal μ = 3.39
σ = 0.50

μ = 1.49
σ = 0.92

μ = 1.30
σ = 0.38

μ = 4.60
σ = 0.61

μ = 3.37
σ = 0.38

μ = 3.80
σ = 0.56

Maxwell σ = 21.10 σ = 4.27 σ = 2.46 σ = 75.54 σ = 19.64 σ = 32.94
Rayleigh σ = 26.87 σ = 5.44 σ = 3.13 σ = 96.18 σ = 25.00 σ = 41.94
Truncated
extreme
value

α = 25.44
β = 14.13

- α = 3.24
β = 1.20

α = 77.51
β = 65.52

α = 25.85
β = 9.51

α = 37.20
β = 25.32

Truncated
Gumbel

α = 35.35
β = 24.25

- α = 4.54
β = 1.49

α = 42.09
β = 171.98

α = 36.18
β = 11.85

α = 42.94
β = 53.44

Truncated
logistic

β = 11.62
μ = 30.62

- β = 0.90
μ = 3.87

β = 59.05
μ = 84.77

β = 7.11
μ = 30.84

β = 21.90
μ = 43.35

Truncated
normal

μ = 30.82
σ = 20.55

- μ = 3.90
σ = 1.57

μ = 69.22
σ = 113.18

μ = 31.11
σ = 12.48

μ = 41.72
σ = 39.94

Truncated
Pearson
type III

α = 3.48
β = 9.69

α = 0.74
β = 9.21

α = 6.56
β = 0.60

α = 2.19
β = 54.93

α = 6.60
β = 4.75

α = 2.69
β = 19.51

Weibull α = 1.94
β = 37.98

α = 0.86
β = 6.32

α = 2.77
β = 4.41

α = 1.51
β = 133.64

α = 2.78
β = 35.20

α = 1.69
β = 58.88

For the truncated logistic distribution, both the parameters β and μ have meaningful relationships with
all the basin characteristics. For the inverse gamma distribution, parameter β has a meaningful relationship
with Qmean ; parameter α has an inverse relationship with all the basin characteristics. Finally, for the
inverse Gaussian distribution, parameter μ has a meaningful relationship with all the basin characteristics,
and parameter λ has a direct relationship with Qmean but no meaningful relationship with the other 2 basin
characteristics.

On the basis of these observations, it is fair to conclude that (in a majority of the cases considered)

the distribution parameters have meaningful relationships with the basin area (A) and the average discharge

(Qmean), and they also have (at least in some cases) a direct or inverse relationship with the time of concen-

tration (Tc), as the case may be. In general, the parameters have greater correlations with A and Qmean than
they do with Tc .
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Table 6. Distribution parameters using the MLE method and relations to basin characteristics.

Distributions Relation with A Relation with Qmean Relation with Tc

Frechet α = 0.004A + 7.515
(R2 = 0.833)

α = 0.568Qmean + 0.592
(R2 = 0.992)

α = 1.570Tc – 1.335
(R2 = 0.736)

Gamma β = 0.003A + 3.056
(R2 = 0.916)

β = 0.387Qmean – 0.989
(R2 = 0.970)

β = 1.165Tc – 3.827
(R2 = 0.852)

Inverse gamma — β = 1.185Qmean + 15.06
(R2 = 0.712)

—

Inverse Gaussian μ = 0.008A + 11.55
(R2 = 0.877)

λ = 1.574Qmean + 16.32
(R2 = 0.778)
μ = Qmean

(R2 = 1.000)

μ = 2.863Tc – 4.972
(R2 = 0.795)

Kumaraswamy — — —
Log-normal — μ = 0.026Qmean + 1.900

(R2 = 0.777)
μ = 0.082Tc + 1.654
(R2 = 0.741)

Log-Pearson type III — — —
Maxwell σ = 0.005A + 7.314

(R2 = 0.885)
σ = 0.695Qmean – 0.606
(R2 = 0.998)

σ = 1.990Tc – 4.058
(R2 = 0.793)

Rayleigh σ = 0.007A + 8.960
(R2 = 0.885)

σ = 0.851Qmean – 0.741
(R2 = 0.998)

σ = 2.438Tc – 4.969
(R2 = 0.793)

Truncated Cauchy a = 0.006A + 11.64
(R2 = 0.834)
b = 0.003A + 3.475
(R2 = 0.887)

a = 0.835 Qmean + 1.436
(R2 = 0.994)
b = 0.386Qmean – 0.812
(R2 = 0.981)

a = 2.347Tc – 2.004
(R2 = 0.762)
b = 1.150Tc – 3.442
(R2 = 0.843)

Truncated extreme
value

α = 0.005A + 8.877
(R2 = 0.862)
β = 0.004A + 4.769
(R2 = 0.895)

α = 0.711Qmean + 0.494
(R2 = 0.998)
β = 0.467Qmean – 0.440
(R2 = 0.993)

α = 2.015Tc – 2.704
(R2 = 0.778)
β = 1.372Tc – 3.315
(R2 = 0.830)

Truncated Gumbel — — —
Truncated logistic β = 0.003A + 3.441

(R2 = 0.911)
μ = 0.006A + 10.15
(R2 = 0.840)

β = 0.391Qmean – 0.743
(R2 = 0.981)
μ = 0.828Qmean + 0.200
(R2 = 0.988)

β = 1.149Tc – 3.174
(R2 = 0.823)
μ = 2.362Tc – 3.772
(R2 = 0.780)

Truncated normal — — —
Truncated Pearson
type III

β = 0.008A – 5.973
(R2 = 0.733)

β = 1.025Qmean – 18.16
(R2 = 0.855)
ε = 738.9Qmean – 16575
(R2 = 0.818)

—

Weibull β = 0.009A + 12.87
(R2 = 0.877)

β = 1.123Qmean – 0.106
(R2 = 1)

β = 3.216Tc – 5.694
(R2 = 0.795)

Three goodness-of-fit methods including RMSE, R2 , and PPCC are considered to select the best distri-
bution. For the 6 stations, the results for selected distributions are presented in Tables 8 and 9 for the maximum
likelihood estimation and for the method of moments, respectively. Figure 3 presents the best estimated den-

sity functions (chosen based on RMSE, R2 , and PPCC) for the 6 stations obtained with these 2 parameter

estimation methods; for each station, the best curve(s) is presented. Tables 10 and 11 show distribution pa-

rameters and discharges exceeding a given value (i.e. quantile) with the given probability for MLE and MOM,
respectively.
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Table 7. Distribution parameters using the MOM method and relations to basin characteristics.

Distributions Relation with A Relation with Qmean Relation with Tc

Exponential γ = 0.002A + 6.721
(R2 = 0.731)

γ = 0.323Qmean + 2.547
(R2 = 0.914)

γ = 0.917Tc + 1.073
(R2 = 0.714)

Frechet α = 0.006A + 9.564
(R2 = 0.864)

α = 0.737Qmean + 0.905
(R2 = 0.998)

α = 2.104Tc – 2.667
(R2 = 0.790)

Gamma β = 0.003A + 2.626
(R2 = 0.866)

β = 0.447Qmean – 2.109
(R2 = 0.926)

β = 1.275Tc – 4.247
(R2 = 0.731)

Generalized Pareto μ = 0.003A + 1.487
(R2 = 0.826)

μ = 0.361Qmean – 2.669
(R2 = 0.937)

—

Inverse gamma — β = 3.003Qmean + 43.70
(R2 = 0.855)

—

Inverse Gaussian μ = 0.008A + 11.55
(R2 = 0.877)

λ = 2.003Qmean + 43.71
(R2 = 0.724)
μ = Qmean

(R2 = 1)

μ = 2.863Tc – 4.972
(R2 = 0.795)

Log-normal — μ = 0.026Qmean + 1.882
(R2 = 0.756)

μ = 0.084Tc + 1.621
(R2 = 0.732)

Maxwell σ = 0.005A + 7.237
(R2 = 0.877)

σ = 0.626Qmean – 0.000
(R2 = 1)

σ = 1.794Tc – 3.116
(R2 = 0.795)

Rayleigh σ = 0.006A + 9.214
(R2 = 0.877)

σ = 0.797Qmean – 0.000
(R2 = 1)

σ = 2.284Tc – 3.969
(R2 = 0.795)

Truncated extreme
value

α = 0.006A + 1.425
(R2 = 0.724)
β = 0.004A + 3.963
(R2 = 0.891)

α = 0.754Qmean – 7.664
(R2 = 0.853)
β = 0.541Qmean – 1.938
(R2 = 0.973)

α = 2.206Tc – 12.14
(R2 = 0.707)
β = 1.550Tc – 4.647
(R2 = 0.775)

Truncated Gumbel — — —
Truncated logistic β = 0.004A + 3.114

(R2 = 0.883)
μ = 0.006A + 4.617
(R2 = 0.735)

β = 0.486Qmean – 2.137
(R2 = 0.958)
μ = 0.800Qmean – 5.007
(R2 = 0.864)

β = 1.389Tc – 4.497
(R2 = 0.758)
μ = 2.356Tc – 10.020
(R2 = 0.726)

Truncated normal σ = 0.007A + 13.79
(R2 = 0.711)

σ = 0.813Qmean + 5.221
(R2 = 0.757)

—

Truncated Pearson
type III

β = 0.003A + 2.626
(R2 = 0.866)

β = 0.447Qmean – 2.109
(R2 = 0.926)

β = 1.275Tc – 4.247
(R2 = 0.731)

Weibull β = 0.009A + 12.770
(R2 = 0.877)

β = 1.112Qmean – 0.081
(R2 = 0.999)

β = 3.193Tc – 5.733
(R2 = 0.799)

Comparison of Distributions

With the maximum likelihood estimation method, the best distributions are as follows:

AharChai: Kumaraswamy (PPCC, R2 , and RMSE);

Hervy: truncated Cauchy (PPCC and R2) and Frechet (RMSE);

Lighvan: inverse gamma (PPCC, R2 , and RMSE);

Moshiran: inverse gamma (PPCC and R2) and log-Pearson type III (RMSE);

181



GHORBANI, RUSKEEPÄÄ, SINGH, SIVAKUMAR
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SofiChai: truncated Pearson type III (PPCC and R2) and truncated normal (RMSE);

Vanyar: truncated extreme value (PPCC and R2) and gamma (RMSE).

With the method of moments, the best distributions are as follows:

AharChai: generalized Pareto (PPCC, R2 , and RMSE);

Hervy: Frechet (PPCC and R2) and log-normal (RMSE);

Lighvan: Frechet (PPCC and R2) and inverse gamma (RMSE);

AharChai (MLE method) AharChai (MOM method)

Kumaraswamy (PPCC, R2, RMSE)
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Figure 3. Histograms and the best estimated probability density functions.
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Moshiran (MLE method)

Log-Pearson type III (RMSE)
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Figure 3. Continued.

Moshiran: Frechet (PPCC and R2) and log-normal (RMSE);

SofiChai : truncated normal (PPCC, R2 , and RMSE);

Vanyar: log-normal (PPCC, R2 , and RMSE).

Based on these results, it may be inferred that the inverse gamma, log-Pearson type III, and log-normal
distributions are generally suitable for both large and small basins, when the maximum likelihood method
used for parameter estimation. With the method of moments, however, the Frechet, inverse gamma, and the
log-normal distributions seem more suitable. Taking these collectively, the inverse gamma distribution may be
suggested as an appropriate distribution for the Aji River basin, and possibly for other Iranian basins, although
caution needs to be exercised in making such a generalization.

185



GHORBANI, RUSKEEPÄÄ, SINGH, SIVAKUMAR

Table 10. Distribution parameters and discharges exceeding a given value with a given probability (MLE method).

Discharge quantiles

Site Best
Distribution

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 p = 0.95 p = 0.99 p = 0.999

AharChai Kumaraswamy 33.8298 39.7491 45.7856 52.0904 58.9738 62.9092 66.8007 68.0982

Hervy
Truncated
Cauchy

4.77509 5.17804 5.7045 6.58882 8.95855 13.5043 49.4229 452.963

Frechet 4.63752 5.39131 6.43684 8.11303 11.749 16.7596 37.4602 116.948

Lighvan Inverse
gamma

3.56532 3.93981 4.40044 5.03416 6.12649 7.27171 10.2787 15.809

Moshiran
Inverse
gamma

90.1586 109.054 135.463 177.976 269.998 395.525 899.821 2733.43

Log-Pearson
type III

98.1566 116.287 139.463 172.609 232.217 296.922 471.804 795.342

SofiChai
Truncated
Pearson
type III

31.0194 34.1613 37.5596 41.5838 47.2475 51.9966 61.0802 71.5337

Truncated
normal

31.213 34.3577 37.727 41.6743 47.1535 51.6809 60.1776 69.7051

Vanyar
Truncated
extreme
value

47.0928 54.554 63.3486 74.8441 93.2521 110.918 150.929 207.569

Gamma 45.9679 54.0447 63.6767 76.3024 96.3299 115.16 156.308 211.822

Table 11. Distribution parameters and discharges exceeding a given value with a given probability (MOM method).

Discharge quantiles

Site Best
Distribution

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 p = 0.95 p = 0.99 p = 0.999

AharChai Generalized
Pareto

34.0359 40.2996 46.4693 52.5145 58.3733 61.1834 63.3032 63.7326

Hervy
Frechet 5.20021 5.90305 6.85284 8.32668 11.372 15.3349 30.1784 78.6791
Log-normal 4.44161 5.61449 7.21426 9.67429 14.5325 20.3365 38.1973 77.4256

Lighvan
Frechet 3.54966 3.81429 4.15112 4.63609 5.53262 6.5551 9.6238 16.5728
Inverse
gamma

3.60943 3.94673 4.3555 4.908 5.8371 6.78443 9.16984 13.283

Moshiran
Frechet 100.689 111.437 125.566 146.744 188.307 239.196 411.146 885.05
Log-normal 99.9149 116.694 137.778 167.339 219.112 273.745 415.623 663.711

SofiChai Truncated
normal

31.213 34.3577 37.727 41.6743 47.1535 51.6809 60.1776 69.7051

Vanyar Log-normal 44.8838 51.75 60.2632 72.0209 92.2165 113.099 165.865 254.774

Conclusions

In this study, flood frequency analysis was performed for Iranian conditions. Maximum annual discharge
values observed at each of 6 gaging stations in the Aji River basin were studied. Eighteen different probability
distributions were fitted, and the method of maximum likelihood and the method of moments were used for
parameter estimation. The performances of these distributions for different quantiles were compared using

root mean square error (RMSE), coefficient of determination (R2), and probability plot correlation coefficient

(PPCC). A regression analysis was carried out to establish relations between the distribution parameters and
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3 basin characteristics: area (A), mean discharge (Qmean), and time of concentration (Tc). This study is also
the first one to use the software Mathematica for performing any type of flood frequency analysis.

The results generally suggest meaningful relationships between the distribution parameters and all the
3 basin characteristics considered, but having far greater correlations with A and Qmean than with Tc . The
results also indicate that, among the 18 different distributions, the inverse gamma distribution is the most
appropriate for the Aji River basin, followed by the inverse Gaussian distribution.

The present study has important implications for flood frequency analysis for Iran in particular, and for
regional hydrology in general. Further, the use of Mathematica provides a new dimension to the flood frequency
analysis. With the many challenges faced in using the existing methods (often due to difficulties in calculations)
for the selection of the most appropriate probability distribution for a given region, the symbolic, numerical,
and graphical capabilities of Mathematica, together with its flexibility, can go a long way. Future work will
focus on advancing the use of Mathematica towards developing a more generalized and flexible framework for
flood frequency analysis, details of which will be reported elsewhere.
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