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Abstract

In this study, free vibrations of thick composite cylindrical and spherical shell panels with uniformly

distributed attached masses were analyzed, using the standard Galerkin procedure. The stiffness effect of

the distributed attached mass was taken into account for the first time, and the results were compared

with well-known published results for which this effect was not considered. Various results for effects such as

thickness, radii of curvature, and elasticity moduli are presented in this paper. Mass inertia of the distributed

attached mass decreased the natural frequencies of the system, while the stiffness effect increased these values.
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Introduction

In weight-sensitive engineering applications such as aerospace, and recently in transportation, fiber-reinforced
materials are widely used, and their popularity continues to increase because of their high strength-to-weight
and stiffness-to-weight ratios. As a result, the analyzing of laminated shells, especially thick ones, has increased
in recent decades (Noor, 1973). The simplifying assumptions made in classical and first-order theories are
reflected by the high percentage error in the results of thick composite and sandwich plates with stiff facings
or distributed attached masses. Higher-order shell theories were introduced and developed by many researchers
(Reddy, 1984; Garg et al., 2006). The use of higher-order shear deformation theory (HOST), which includes
a realistic parabolic variation of transverse shear stress through the laminate thickness and warping of the
transverse cross-section, is very important for the free vibration analysis of laminated composites, especially for
thick composite and sandwich plates and shells with stiff faces or distributed attached mass. Khalili et al. (2008)
investigated the free and forced vibration of multilayered composite cylindrical shells under transverse impulse
load, as well as combined static axial loads and internal pressure. The procedure used in this analysis was first-
order shear deformation theory, and the boundary conditions were considered to be simply support. The effects
of fiber orientation, axial load, internal pressure, and some of the geometric parameters on the time response of
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the shells were determined. The results indicated that the dynamic responses were governed primarily by the
natural period of the structure. More recently, Rahmani et al. (2009) introduced a free vibration analysis of
composite sandwich cylindrical shells with flexible cores using a higher-order sandwich panel theory. The model
consisted of a systematic approach for the analysis of sandwich shells with a flexible core, having high-order
effects caused by the nonlinearity of the in-plane and the vertical displacements of the core. The behavior
was presented in terms of internal resultants and displacements in the faces, peeling and shear stresses in the
face-core interface, and stress and displacement fields in the core. Many publications on beams and rods with
uniformly distributed mass (Chan et al., 1998) have been published, but only a limited amount of literature is

available about plates with distributed masses. Gorman and Singal (1990) solved the free vibrations of a plate

carrying a mass with a point-supported boundary by means of superposition. Rossi and Laura (1996) solved the
vibration of a fully clamped plate with attached mass by combining the boundary element and finite element
methods. Kopmaz and Telli (2002) investigated the free transversal vibrations of a plate carrying a distributed
mass by means of a mathematical model. To discretize the derived partial differential equation, the Galerkin
procedure was utilized. The eigenfrequencies and the eigenvectors of the system were then obtained. Wong
(2002) analyzed the free bending vibration of a simply supported rectangular plate carrying a distributed mass
loading with the Rayleigh-Ritz method. The effects of size and location of the mass loading on the changes
of modal frequencies and shapes as demonstrated by the analysis of the numerical solution of the eigenvalue
problem were investigated.

In this paper, for the first time, the natural frequencies of cylindrical and spherical shell panels were
investigated using higher-order shell theory with an attached mass. The stiffness effect of the distributed
attached mass was also investigated. Results with and without taking the stiffness into account were obtained
and compared with each other. It was shown that by neglecting the stiffness, the error percentage in the
behavior of the shell was increased.

Mathematical Model

Figure 1 shows a laminated composite curved shell with uniform thickness, carrying a distributed attached
mass on its top surface. x , y , and z denote the orthogonal curvilinear coordinates where the x and y curves
lie in the mid-surface of the laminate, and z is orthogonal to these 2 in order to make right-hand orthogonal
coordinates. Rx and Ry represent the principal radius of the mid-surface curvature along the x - and y -axes.

Neglecting the amount of z , comparing the radii of curvatures (z/R = 0), and using the constant radii of the

curvatures, the shell used in this study is a doubly curved shell (Reddy, 2002).

In this study, a 12-variable displacement field (Garg et al., 2006) was used. By using this field, which
demonstrates better kinematics compared to the first-order shear deformation and classical laminate theories, a
shear correction factor may not be required. Expanding the displacements up to the cubic term in the thickness
coordinate leads to the following equations:

⎧⎪⎪⎨
⎪⎪⎩

U (x, y, z, t) = u0 (x, y, t) + zθx (x, y, t) + z2u∗
0 (x, y, t) + z3θ∗x (x, y, t)

V (x, y, z, t) = v0 (x, y, t) + zθy (x, y, t) + z2v∗0 (x, y, t) + z3θ∗y (x, y, t)

W (x, y, z, t) = w0 (x, y, t) + zθz (x, y, t) + z2w∗
0 (x, y, t) + z3θ∗z (x, y, t)

(1)

where U , V , and W are the displacements of a general point in the laminate, and t is the time. uo and vo

are the displacements related to the mid-surface, and wo is the transverse displacement of a point on the mid-
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Figure 1. Laminated composite curved shell with uniform thickness and an attached mass.

surface. The terms θ x , θ y , θ z ,u∗
o ,v∗o ,w∗

o , θ ∗
x , θ ∗

y , and θ ∗
z are functions defined in the mid-surface. θ x and

θ y are the rotations of the normal to the element middle plane about the x- and y-axes, and u∗
o ,v∗o , w∗

o , θ ∗
x ,

θ ∗
y , and θ ∗

z are the higher-order terms in Taylor’s series expansion and represent the higher-order transverse

cross-sectional deformation modes. Linear normal and shear strains in an orthogonal curvilinear coordinate for
a doubly curved shell (Reddy, 2004) were used. Hamilton’s principal was used to define the equations of motion,

with respect to the displacement field in Eq. (1). The analytical form is stated as follows (Reddy, 2002):

t∫
0

δLdt ≡
t∫

0

[δK − (δU − δV )]dt = 0 (2)

where δK denotes the virtual kinetic energy, δU the virtual strain energy, and δV the virtual potential energy
due to the applied loads. In order to add an attached mass, its virtual energy should be added to the main
system. The main assumption is that this attached mass will take the form of the shell on the region in which
it is located.

By means of Heaviside functions, the effect of the attached mass location will be satisfied (Kopmaz and

Telli, 2002):

Ktotal = Kshell + H(x, y, x0, y0, c, d)Kattached mass

Utotal = Ushell + H(x, y, x0, y0, c, d)Uattached mass

(3)

where x0 and y0 are the coordinates of the corner of the attached mass, closest to the origin, and c and d

are its width and length. H is a combination of Heaviside functions introduced by Kopmaz and Telli (2002).
Integrating the resulting expression by part and collecting the coefficients of δu0 , δv0 , δw0 , δθx , δθy , δθz ,

δu∗
o , δv∗

o , δw∗
o , δθ∗x , δθ∗y , and δθ∗z results in the following equations:
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I2ü0 + I3θ̈x + I4ü
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in which:

(Ii)a =
N∑

k=1

(za)k+1∫
(za)k

ρ̄(k)(za)idza (i = 0, 1, 2, ..., 6)

Ii =
N∑

k=1

zk+1∫
zk

ρ(k)(z)idz (i = 0, 1, 2, ..., 6) (5)

C0 =
1
2

(
1

Rx
− 1

Ry

)
.

Here, M ,M∗ , N ,N∗ , Q ,Q∗ , S , and S∗ are the stress resultant components (Garg et al., 2006). The

subscript “a” denotes the properties of the distributed attached mass. In the first expression of Eq. (5),
which demonstrates the mass inertias of the distributed attached mass, it should be noted that the integral over
z a is measured from the mid-surface of the shell. Adding an attached mass leads the solution in such a way
that the Navier solution will no longer be applicable. The solution used in this study is the Galerkin method.
In order to solve the equations of motion, they must be transformed into the displacement coefficients.

The boundary condition for the simply supported shell is:

v0 = w0 = θy = θz = v∗o = w∗
o = θ∗y= θ∗z = Nx = N∗

x = Mx = M∗
x = 0 atx = 0 and a,

u0 = w0 = θx = θz = u∗
o = w∗

o = θ∗x= θ∗z = Ny = N∗
y = My = M∗

y = 0 aty = 0 and b.
(6)

In order to satisfy these conditions, the double Fourier series was used as (Garg et al., 2006):

u0 =
∞∑

m=1

∞∑
n=1

{u0mn cosαx sin βy} eiωt, v0 =
∞∑

m=1

∞∑
n=1

{v0mn sin αx cosβy} eiωt,

w0 =
∞∑

m=1

∞∑
n=1

{w0mn sin αx sin βy} eiωt, θx =
∞∑

m=1

∞∑
n=1

{θxmn cosαx sinβy} eiωt,

θy =
∞∑

m=1

∞∑
n=1

{θymn sin αx cosβy} eiωt, θz =
∞∑

m=1

∞∑
n=1

{θzmn sinαx sin βy} eiωt, (7)

u∗
0 =

∞∑
m=1

∞∑
n=1

{u∗
0mn cos αx sinβy} eiωt, v∗0 =

∞∑
m=1

∞∑
n=1

{v∗0mn sin αx cosβy} eiωt,

w∗
0 =

∞∑
m=1

∞∑
n=1

{w∗
0mn sin αx sinβy} eiωt, θ∗x =

∞∑
m=1

∞∑
n=1

{θ∗xmn cos αx sinβy} eiωt,

θ∗y =
∞∑

m=1

∞∑
n=1

{
θ∗ymn sin αx cosβy

}
eiωt, θ∗z =

∞∑
m=1

∞∑
n=1

{θ∗zmn sin αx sinβy} eiωt.
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Here, α = mπ /a, β = nπ /b, and ω is the natural frequency of the system. The next step was to apply
these equations to the equations of motion in terms of displacement coefficients. After applying the equations,
the shape functions had to be multiplied to their appropriate equations of motion, and then integrated over
the surface of the shell. After integrating over the surface of the shell and collecting the coefficients, further
relations in a matrix form resulted as follows:

{
[A] − ω2 [B]

}
{C} = {0} (8)

in which {C } is the displacement vectors obtained by collecting the coefficients, which were sorted in an

ascending order. [A ] is the stiffness matrix and [B ] is the mass matrix.

Results and Discussion

In order to solve the equations of motion, a program was set. After verifying the code by some well-known
references in related fields, novel results for cylindrical and spherical panels carrying a distributed attached mass
on its top were generated.

In the first example, free vibrations of cross-ply composite cylindrical and spherical panels were inves-
tigated, and the results were compared with the results of Reddy (2004). Material properties are shown in
Table 1; the fundamental natural frequencies are listed in Table 2 for the cylindrical panel and Table 3 for the
spherical panel.

Table 1. Material properties of composite shell panels (Reddy, 2004).

Elasticity Shear Modulus Lay-up Dimensions Poisson’s Nondimensionalized
Modulus ratio Factor
E1/E2 = 25 G12 = G13 = 0.5E2 (0◦/90◦)s a = b v12 = 0.25 Ω = ωa2(ρ/E2)1/2/h
E2 = E3 G23 = 0.2E2

Table 2. Nondimensional frequencies of simply supported symmetric cross-ply laminated composite cylindrical panel.

R/a h/a Reddy (2004) Present Study
1 0.01 66.704 66.5594

0.1 13.128 12.1839
5 0.01 20.361 20.343 8

0.1 12.267 11.0538
Infinity 0.01 15.184 15.1381
(Plate) 0.1 12.226 11.7131

Table 3. Nondimensional frequencies of simply supported symmetric cross-ply laminated composite spherical panel.

R/a h/a Reddy (2004) Present Study
1 0.01 126.33 126.299

0.1 16.172 15.822
5 0.01 31.079 31.052

0.1 12.437 11.934
Infinity 0.01 15.184 15.139
(Plate) 0.1 12.226 11.713
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The maximum discrepancy in the case of a thin shell for the cylindrical panel was less than 0.2% with
R/a = 1, and for the spherical panel it was also less than 0.02% for R/a = 1. In the case of thick shell panels,

the maximum discrepancy for the spherical panel was less than 0.3%, and for the cylindrical panel it was less
than 4%.

The second example for verification was that of an isotropic plate carrying a distributed attached mass
at the center of the plate, without the stiffness effect. The reference that used here was a study by Kopmaz
and Telli (2002). System properties are listed in Table 4. Results of 4 nondimensional frequencies for the plate
without an attached mass are shown in Table 5, and for the plate with attached mass in Table 6.

Table 4. System properties of an isotropic plate carrying a distributed attached mass (Kopmaz and Telli, 2000).

Plate Attached Mass Properties Nondimensionalized
Properties Factor
b = 1.5a ρaha = 10ρh, ha = h, xo = 0.45a,

a/h = 0.01 yo = 0.675a, c = 0.1a, d = 0.15a Ω = ω(D/ρa4)−1/2

Table 5. Nondimensional frequencies of simply supported isotropic plate.

Present Study Kopmaz and Telli (2002)
14.9618 14.2561
28.6130 27.4156
47.6247 43.8649
59.7813 57.0244

Table 6. Nondimensional frequencies of simply supported isotropic plate carrying a distributed attached mass.

Present Study Kopmaz and Telli (2002)
12.6785 12.0092
28.3854 27.2403
47.2860 43.2103
59.7623 56.9853

In the Tables, a and b are the width and length of the plate, respectively; the subscript “a” represents
the attached mass; ρ is the density of the plate and h is the thickness; x0 and y0 are the coordinates of the
corner of the attached mass closest to the origin: c and d are the width and the length of the attached mass:
and D is the flexural rigidity of the plate, which is defined as follows (Kopmaz and Telli, 2002):

D =
Eh3

12(1 − v2)
(9)

where E and υ are Young’s modulus and Poisson’s ratio of the plate, respectively.

The results of Kopmaz and Telli (2002) were based on classical plate theory, and the present theory was
based on the higher-order shell theory. As can be seen, the results of the present theory are slightly higher than
the results of Kopmaz and Telli (2002).

After validation of the model, 2 examples were set to demonstrate the effect of the distributed attached
mass with stiffness effect. The first example pertained to the thickness and radii of the curvatures of the shell
and the attached mass. The second demonstrated the effect of the elasticity moduli of the distributed attached
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mass. All results are available for the cylindrical and spherical panels. Properties of the shells are shown in
Table 1. For the first example, the properties of the attached mass, which is located at the center of the panel,
were set as follows:

E = E1 (of panel), v = 0.33, c = 0.2a, d = 0.2a, and ρaha= 10ρh.

The first natural frequencies of the forgoing system are shown in Table 7 for the cylindrical panel and
Table 8 for the spherical panel. In both Tables, the densities of the attached mass and the panel are assumed
to be same. In these Tables, the first case is a shell without any attached mass; the second case is a shell with
an attached mass, without including the stiffness effect; and the third case is a shell with an attached mass,
including the stiffness effect. Quantities in parenthesis are the percentage of variation with respect to the first
case. The following conclusions were derived from Tables 7 and 8. First, by fixing the amount of the first mass
inertia term, which is the dominant term in the mass matrix, it becomes obvious from the results in the second
case, in which the amount of variation percentage is constant, that the stiffness effect is shown by variation of
the thickness and radii of curvatures. For instance, in Table 7, for the cylindrical composite panel, for R/a =

1 and h/a = 0.01, the effect of the attached mass when considering the stiffness effect (in the third case) is

-15%; however, by increasing the radii of curvature until the panel became a plate, the effect was increased to

Table 7. Variation of first natural frequency of a cylindrical panel by thickness and radii of curvatures for three cases.

R/a h/a First Case* Second Case** Third Case***
1 0.01

0.02
0.05
0.07

66.4952
35.1187
17.8832
14.7760

35.4515 (-%46)
22.8217 (-%35)
11.6563 (-%34)
9.6463 (-%34)

56.3936 (-%15)
32.9001 (-%6)
21.2588 (+%18)
18.8879 (+%27)

2 0.01
0.02
0.05
0.07

36.7391
22.2195
15.1135
13.5506

23.4070 (-%36)
14.1645 (-%36)
9.6590 (-%36)
8.6673 (-%36)

34.2017 (-%7)
24.8571 (+%11)
20.3454 (+%34)
18.7880 (+%38)

5 0.01
0.02
0.05
0.07

20.2972
16.3760
14.1712
13.1646

12.8678 (-%36)
10.3790 (-%36)
8.8200 (-%36)
8.3623 (-%36)

24.0418 (+%18)
21.9365 (+%33)
20.0602 (+%41)
18.7417 (+%41)

10 0.01
0.02
0.05
0.07

16.5826
15.3375
14.0287
13.1076

10.4960 (-%36)
9.7120 (-%36)
8.8999 (-%36)
8.3155 (-%36)

22.1896 (+%33)
21.4797 (+%40)
20.0136 (+%42)
18.7274 (+%42)

20 0.01
0.02
0.05
0.07

15.5117
15.0657
13.9928
13.0933

9.8158 (-%36)
9.5378 (-%36)
8.8742 (-%36)
8.3027 (-%36)

21.7005 (+%39)
21.3631 (+%41)
19.9998 (+%42)
18.7210 (+%42)

Plate 0.01
0.02
0.05
0.07

15.1375
14.9739
13.9807
13.0885

9.5783 (-%36)
9.4785 (-%36)
8.8648 (-%36)
8.2972 (-%36)

21.5345 (+%42)
21.3250 (+%42)
19.9922 (+%43)
18.7138 (+%43)

*Shell without any attached mass

**Shell with attached mass, without including the stiffness effect

***Shell with attached mass, including the stiffness effect

196



KHALILI, TAFAZOLI, MALEKZADEH, MITTAL

+42%. Second, by increasing the thickness, the stiffness of the attached mass became more dominant on the
first natural frequency. This parameter was affected by increasing or decreasing the radii of the curvature. This
result is clear from Tables 7 and 8. In Table 8, for the spherical composite panel, for R/a = 1, the effect of the

attached mass was increased from -19% to +7% by increasing the thickness ratio from 0.01 to 0.07. However, for
the case of a plate, this variation was between 42% and 43%. Third, by increasing the radii of the curvatures,
the stiffness effect was increased.

Table 8. Variation of first natural frequency of a spherical panel by thickness and radii of curvatures for three cases.

R/a h/a First Case* Second Case** Third Case***
1 0.01

0.02
0.05
0.07

126.2994
64.0430
27.6488
20.9347

83.6955 (-%33)
42.4651 (-%33)
18.3677 (-%33)
13.9106 (-%33)

102.0096 (-%19)
55.0972 (-%14)
27.4414 (%0)
22.4831 (+%7)

2 0.01
0.02
0.05
0.07

68.2709
36.2882
18.8545
15.6914

43.7462 (-%36)
23.2675 (-%35)
12.1193 (-%35)
10.0932 (-%35)

57.4896 (-%15)
33.8873 (-%6)
22.2786 (+%18)
19.8657 (+%26)

5 0.01
0.02
0.05
0.07

31.0516
20.1352
14.8992
13.5543

19.6898 (-%36)
12.7746 (-%36)
9.4732 (-%36)
8.6206 (-%36)

30.4635 (-%1)
23.8397 (+%18)
20.4124 (+%37)
18.9494 (+%39)

10 0.01
0.02
0.05
0.07

20.3439
16.4230
14.2171
13.2070

12.8798 (-%36)
10.4050 (-%36)
9.0228 (-%36)
8.3823 (-%36)

24.0880 (+%18)
21.9860 (+%33)
20.0136 (+%40)
18.7917 (+%42)

20 0.01
0.02
0.05
0.07

16.5948
15.3499
14.0403
13.1183

10.5020 (-%36)
9.7186 (-%36)
8.9056 (-%36)
8.3201 (-%36)

22.2020 (+%33)
21.4933 (+%40)
20.0288 (+%42)
18.7427 (+%42)

Plate 0.01
0.02
0.05
0.07

15.1375
14.9739
13.9807
13.0885

9.5783 (-%36)
9.4785 (-%36)
8.8648 (-%36)
8.2972 (-%36)

21.5345 (+%42)
21.3250 (+%42)
19.9922 (+%43)
18.7138 (+%43)

*Shell without any attached mass

**Shell with attached mass, without including the stiffness effect

***Shell with attached mass, including the stiffness effect

The second example is of the ratio of the elasticity moduli. Results are plotted in Figure 2 for the
cylindrical and spherical panels. There, Ea is set equal to the E1 of the panel, which was not small. As
expected, by increasing this ratio, the stiffness of the system was increased, and the first natural frequency then
also increased. This increase was almost linear, as is shown in Figure 2.
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Figure 2. Variation of natural frequency by elasticity moduli for cylindrical and spherical panels.

Conclusion

In this paper, for the first time, the natural frequencies of cylindrical and spherical shell panels were investigated
using higher-order shell theory with an attached mass. The stiffness effect of the distributed attached mass was
also included in the analysis. The following conclusions were obtained:

• Natural frequencies of the system could be decreased by adding a distributed attached mass to the shell,
and these variations could be very significant in some cases, when the stiffness of the patch was not
included.

• By increasing the radii of the curvature, the effect of the stiffness of the attached mass on the natural
frequency of the system was decreased.

• By increasing the thickness of the attached mass, the effect of the stiffness of the attached mass on the
natural frequency of the system was increased.

• Elasticity modulus is a parameter that directly affects the stiffness of the attached mass and hence the
stiffness of the whole system. By increasing the elasticity moduli of the attached mass, the effect of the
stiffness of the attached mass on the natural frequency of the system was increased linearly.
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