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Abstract

This study deals with the problem of shrinkage cracks in reinforced concrete walls restrained at the base.

A finite element model to study cracking of the wall was proposed. Nonlinear behavior of concrete was

considered by means of a smeared crack approach. The equations proposed by ACI Committee 209 were

used to model the mechanical properties of concrete, as well as the average concrete shrinkage within the

thickness of the wall. It was found that the suggested model closely predicts the true behavior of cracking

in base-restrained concrete walls, including the crack pattern and crack propagation.
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Introduction

Volume changes due to shrinkage are significantly important because, in practice, these movements are usually
partly or wholly restrained; therefore, they induce stresses. Once the tensile strength of the concrete is exceeded,
a crack will develop.

Cracks in concrete are undesirable because they are unsightly. They impair structural durability, increase
permeability, and reduce strength.

The control of shrinkage cracks in reinforced concrete walls has been investigated by many researchers.
Carlson and Reading (1988) developed a technique for determining shrinkage stresses in concrete building

walls using rubber models. Kheder et al. (1994) studied the problem of cracking due to volume change of
base-restrained reinforced concrete walls. Their crack prediction formula is based on the theory of change in
restraint during the crack formation. Stoffers (1978) presented the problem of cracking due to shrinkage and
temperature variation in walls. He based his derivations on the fact that the crack spacing in base-restrained
concrete walls is determined by the effect of the restraining base and not by any reinforcement that may be
present in the wall. Kheder et al. (1990) presented the strategic reinforcement for controlling volume change
cracking in base-restrained concrete walls. Their works are based on the use of finite element analysis to obtain
the diagrams of distribution of restraint factor in walls with different length-to-height ratios. These diagrams are
used to determine the amount and the distribution of steel reinforcement in a position effective for controlling
cracking. Kianoush et al. (2008) studied the cracking behavior of reinforced concrete walls under restrained

volumetric deformations using the computer program ABAQUS/6.4, which is an FE-based program.
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The objective of the present work was to study the phenomenon of shrinkage cracks in base-restrained
plain and reinforced concrete walls.

A finite element method was developed and used to find the degree of restraint, sequence, and distribution
of cracks and the effect of the horizontal reinforcement (HR) of the wall using a rectangular 4-node element.
The suggested model includes material nonlinearity, smeared crack representation, tension stiffening, stress
degradation of concrete in the parallel crack direction, and shear retention of concrete on the cracked surface.

Concrete Representation

Reinforced concrete walls were modeled by 4-node rectangular elements using the following polynomial functions
for the assumed displacement field:

u = α1 + α2x + α3y + α4xy (1)

v = α5 + α6x + α7y + α8xy (2)

where u and v are the displacement in (x) and (y) directions, and α1 , α2 , α3 , α4 , α5, α6,α7 , and α8 are the

coefficients of the displacement field.

Prior to cracking, the concrete was assumed to be isotropic, homogenous, and linearly elastic; thus, the
stress-strain relations for the plane stress were:

⎧⎨
⎩

σx
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τxy
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Ec(t)
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⎫⎬
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in which σx , σy , and τxy are the stresses of concrete in global coordinates; εx , εy , and γxy are the strains of

concrete in global coordinates; Ec (t) is the modulus of elasticity of concrete at time t; and υ is Poisson’s ratio
of concrete.

ACI Committee 209 (ACI, 1990) proposed the equations for predicting the compressive strengthf ′
c (t) ,

direct tensile strengthf ′
t (t) , and modulus of elasticity Ec (t) at time t:

f ′
c (t) =

t

4 + 0.85t
f ′

c (28) (4)

f ′
t (t) = 0.007

√
wf ′

c (t) (5)

Ec (t) = 0.043w1.5
√

f ′
c (t) (6)

where f ′
c (28) is the 28-day compressive strength, w is the concrete unit weight in kg/m3 , and f ′

c (t) ,f ′
t (t), and

Ec (t) are measured in MPa.

Smeared crack representations treat concrete as an orthotropic material with principal axes normal and
parallel to the crack direction (Figure 1).
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Figure 1. Coordinates system for cracks.

The incremental stress-strain relationship associated with the crack coordinates (Eq. (3)) becomes:
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⎫⎬
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In Eq. (7), the modulus of elasticity of concrete is reduced to 0 in the direction normal to the crack direction,
and Et is the tangent modulus of concrete parallel to the crack direction. Poisson’s ratio is taken as 0 due to

the lack of interaction between the 2 orthogonal directions. G = Ec

2 is the shear modulus of cracked concrete,

and μ is the shear retention factor with 0 < μ ≤ 1 (Finite Element Analysis of Reinforced Concrete, 1982). A
constant value of μ = 0.25 was used in this study.

The stress in a reinforced concrete wall restrained at the base varies from point to point in accordance
with the variation in degree of restraint throughout the wall. When this stress reaches the tensile strength of
the concrete, a crack will initiate at the base, where the restraint is greatest, and progress upward until a point
is reached at which the stress is insufficient to continue the crack. After initial cracking, the tension caused by
restraint in the region of the crack is redistributed to the uncracked element of the wall, thereby increasing the
tensile stresses above the crack. The residual stress is computed as the difference between the stresses existing
prior to cracking and stresses that the element can sustain at the same strain level after cracking. A load vector
equivalent to this residual stress is then computed for each cracked element according to:

{P } =
∫

vol

[B]T {σ} dvol (8)

where {σ } is the residual stress vector and[B] is the conventional nodal displacement strain matrix.

Tension Stiffening

The use of the orthotropic constitutive equation to represent cracked concrete may not be totally realistic,
because the cracked concrete of a reinforced concrete element can still carry some tensile stress in the direction
normal to the crack. This phenomenon is termed “tension stiffening” (ACI, 2001). In this work, a general

tension stiffening curve suggested by Bhide (1986) was used. This curve can be expressed as follows:

ft =
f ′

t

1 + 1000εt(φ/90)1.5
(9)
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where ft and εt are respectively the average tensile stress and the average tensile strain normal to the crack
direction, f ′

t is the maximum tensile strength of concrete, and Φ is measured in degrees counterclockwise from
the steel direction to the crack direction.

Stress Degrading Effect for Concrete Parallel to the Crack Direction

After cracking has taken place, the concrete parallel to the crack direction is still capable of resisting either
tensile or compressive forces. When it is subjected to tension, a pure linear elastic behavior is assumed (Figure

2), and Et is taken as Ec (t) in Eq. (7). On the other hand, when concrete is subjected to compression,

experimental results (Vecchio and Collins, 1982; Maekawa and Okamura, 1983) show that the tensile cracks
cause damage to the concrete with the transverse tensile strain, having a degrading effect not only on the
compressive strength but also on the compressive stiffness.

Several formulas (Vecchio and Collins, 1982; Cervenka, 1985; Vecchio and Collins, 1986) have been
proposed to determine the degraded maximum compressive strength fcm for concrete parallel to the crack
direction. The experimentally determined relationship suggested by Vecchio and Collins (1986) was used in this
study:

fcm

f ′
c

=
1

0.8 + 0.34 εt

ε0

≤ 1 (10)

where ε0 is the strain corresponding to the maximum concrete compressive strength f ′
c . After the peak strength

fcm is determined, the stress-strain curve suggested by Saenz (1964) is used to calculate the concrete compressive
stress fc :
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Ecε
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ε0
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in which R and RE are the ratio relation and the modulus ratio, E0 is the secant modulus of elasticity at fc

for concrete, and Rσ and Rε are respectively the stress and strain ratio.

The tangent modulus Et used in Eq. (7) can be found by differentiating Eq. (11):
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Figure 2. Stress-strain curve for concrete parallel to the crack direction.

Reinforced Concrete Representation

The material stiffness of the composite element is obtained by superposition of the material stiffness of the
individual material components, concrete and reinforcement.

A stress-strain relationship for the element can be written in the following form (Chen, 1982):

{σt} = [D] {εt} (14)

where the total stress vector {σt} and the total strain vector {εt} can be defined as follows:

{σt} =

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ and {εt} =

⎧⎨
⎩

εx

εy

γxy

⎫⎬
⎭ . (15)

[D] is the composite material stiffness matrix. The strains are similar for the 2 components, steel and concrete,
while the total stress vector is the sum of the component stress vectors:

{σt} = {σc} +
N∑

i=1

{σ}i (16)

where {σc} is the concrete stress vector and {σ}i is the stress vector for the i th steel layer.

Stresses {σt} , {σc} , and {σ}i act on the unit area of the composite cross section. It can be noted that

the total stresses {σt} do not represent real stresses, but rather internal forces acting on a composite element.
These stresses can be found from the strain as follows:

{σc} = [Dc] {εt} (17)

{σ}i = [D]i {εt} (18)

in which [Dc] is the material stiffness matrix for the concrete component and [D]i is the material stiffness

matrix for the i th steel layer. By substituting Eqs. (17) and (18) into Eq. (16), and then comparing Eq. (14)

with Eq. (16), the total material stiffness matrix can be evaluated as follows:

[D] = [Dc] +
N∑

i=1

[D]i. (19)
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The stress-strain curve of reinforcing steel is modeled by an idealized bilinear curve identical in tension and

compression (Figure 3). The incremental constitutive matrix for the i th steel layer, [D]i , can be written as:

[D]i =

⎛
⎝ ρiES 0 0

0 0 0
0 0 0

⎞
⎠ (20)

where ρi and Es are respectively the steel percentage for the i th steel layer and the modulus of elasticity of
steel.

f y 
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ε

-f y 

1 

σ

1 
Esp 

Figure 3. Idealized stress-strain curve for steel.

Nonlinear Solutions Procedures

In a simple linear elastic system, the fundamental approach of the solution is the solving technique of a set of
algebraic equations for the unknown displacements {d} of the form:

[KG] {d} = {F } (21)

in which [KG] and {F } are the stiffness matrix and the vector of external force, respectively.

The above procedure cannot be accomplished in the case of a nonlinear system, in which the stiffness
matrix [KG] is a function of material properties and structural displacement. The solution for a nonlinear

problem (Mercer and Palazotto, 1987) is usually attempted by a step-by-step method, a constant stiffness
method, or a combination of both. In the latter procedure, the load is applied incrementally, and, with each
increment, successive iterations are performed for more accurate results. Depending on the sequence of the
stiffness matrix computation, the combined method can be classified into 2 forms. The full Newton-Raphson
form is the first form, in which the stiffness matrix is continually updated during each iteration. The second
form is the modified Newton-Raphson, in which the stiffness matrix is computed at the beginning of each load
step and remains constant during iterations until reaching convergence.

The modified Newton-Raphson method has been widely used in nonlinear analysis of reinforced concrete
structure and was adopted in this study.
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Convergence criteria

The iterative technique used in the present problem was to decide whether the current iteration was sufficiently
close to the exact solution. The convergence criteria for nonlinear structural problems can usually be classified
as displacement convergence and force convergence.

The force convergence criterion was adopted in this work, supposing that the first cracks appear when the
concrete load reaches its ultimate value (nonlinear elastic behavior). The violation of equilibrium is estimated
by the magnitude of the residual unbalanced nodal forces, which are calculated during each iteration as follows
(Aldstedt and Bergan, 1978):

{Δf} = {F } − {I} (22)

where {Δf} is the vector of residual unbalanced nodal force, {F } is the applied load vector, and {I} is the

internal force vector, which depends on the nodal deformations {d} .

The convergence formula is:

[
NEQ∑
j=1

(Δf)2
]1/2

[
NEQ∑
j=1

(F )2
]1/2

≤ Force tolerance (23)

in which NEQ represents the number of equations (Mercer and Palazotto, 1987). The force tolerance used in
the present work was taken as equal to 0.05.

Mathematical Formulation of Shrinkage

According to ACI Committee 209 (ACI, 1990), the shrinkage strain occurring between t0 at the start of shrinkage
and t can be predicted using the following formula:

εsh (t) =
(t − t0)

35 + (t − t0)
εshu (24)

where εshu is the ultimate shrinkage and represents the product of the applicable correction factors:

εshu = 780γsh10−6 (25)

γsh = γhγtγsγcγϕγα (26)

where γh, γt, γs, γc, γϕ andγα are empirical coefficients that take into consideration the effects of humidity,

minimum member thickness, slump, cement content, fine aggregate percentage, and air proportion, respectively.
γh is expressed by:

γh = 1.4 − 0.01h for 40% ≤ h ≤ 80%
γh = 3.0 − 0.03h for 80% ≤ h ≤ 100% (27)

where h is the relative humidity (%).

γtandγs are determined by
γt = 1.23− 0.0015Th for the duration of shrinkage ≤ 1 year (28)

221



OUZAA, BENMANSOUR

where Th is the minimum member thickness (mm), and

γs = 0.89 + 0.00161S (29)

whereS is the slump of fresh concrete (mm).

γc is determined by
γc = 0.75 + 0.00061C

(30)

where C is the cement content (kg/m3).
γϕ and γα are expressed by

γϕ = 0.3 + 0.014ϕ for ϕ ≤ 50%
γϕ = 0.9 + 0.002ϕ for ϕ > 50% (31)

where ϕ is the ratio of the fine aggregate to the total aggregate (%), and

γα = 0.95 + 0.008α (32)

where α is the air content (%).

Results and Discussion

In this section, the finite element program is applied to represent shrinkage cracks in base-restrained members.

The following properties were assumed in the analysis: w = 2359kg/m3 , f ′
c = 37.2MPa, f ′

t = 2.07 MPa,
Ec = 30 GPa, ν =0.15, and Es = 200 GPa.

In all walls, the percentage of the vertical steel reinforcement and diameter of the bar were taken as equal
to 0.5% and 8 mm, respectively.

The walls were assumed to be completely fixed to their foundation and 1 m long (Figure 4). The thickness
of the walls and the duration of drying were taken as equal to 0.1 m and 30 days, respectively.

The data required for applying the ACI Committee 209 equations (ACI, 1990) to predict shrinkage values
are given in Table 1.

Table 1. Shrinkage correction factor γsh .

t0 h Th S C φ α γsh

(days) (%) (mm) (mm) (kg/m3) (%) (%)
7 40 100 50 350 38.5 4 0.83

Degree of restraint

The degree of restraint in a wall with a restrained, continuous base varies within the member. At the bottom,
the wall is fully restrained, and at the top, it is more or less free to move.
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Figure 4. Geometry of the reinforced concrete wall.

The first crack usually occurs at the mid-length of the wall, since the restraint is highest at this position.
As each new crack forms at approximately the midpoint of the uncracked portions of the base, the previously
formed cracks will propagate vertically.

The mid-length point of the wall at the base has a maximum degree of restraint. Figure 5 shows the
degree of restraint at this position of the walls for L/H = 1. The degree of restraint KR is calculated during

analysis as the ratio of restrained shrinkage strain εr(t) to free shrinkage strain εsh(t):

KR =
εr(t)
εsh(t)

. (33)

The restrained shrinkage strain is determined by subtracting the free shrinkage strain from the total strain.
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Figure 5. Degree of restraint at center section of wall for L/H = 1.

Models made of rubber were used by Carlson and Reading (1988) to study drying shrinkage stress
conditions in base-restrained walls with different shapes, with and without openings, and with different degrees
of restraint. Degree of restraint contour diagrams in walls with different length-to-height ratios of 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, and 20 were prepared. These diagrams were used for comparison with the results of the finite
element analysis. The values of the degree of restraint calculated in the present study were found to be in good
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agreement with the experimental values obtained by Carlson and Reading (1988). Small negative values of the
degree of restraint were found at the wall top, indicating the occurrence of small compressive stresses.

Figure 6 shows the percentage of increase in the degree of restraint with different reinforcement ratios at
relative levels of the wall above the base for L/H = 1. From this figure, it is obvious that the contribution of
reinforcement to restraint is very limited at the level nearest to the base, and it increases toward the top of the
wall.
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Figure 6. Increase in degree of restraint with different horizontal steel ratios for L/H = 1.

Sequence of cracking

The first crack was noticed to happen exactly at the mid-length point of the wall. After formation of the first
crack, the degree of restraint changed and its maximum value occurred at approximately the mid-length point of
the 2 uncracked portions at the base level. A maximum degree of restraint took place above the crack level due
to the redistribution of stresses. Hence, the first crack propagated and new cracks initiated at approximately
the mid-length of the uncracked portions of the wall. This sequence of cracking is shown in Figures 7 and 8.
This process was repeated for the second, third, and following cracks.

Crack analysis

Figure 9 gives the values of concrete shrinkage strains and steel stresses in cracked elements (Figures 7 and 8)
of the wall with different horizontal steel ratios.

In the present analysis, steel reinforcement carried a compression stress before cracking. This stress was
dependent on the degree of base restraint and the sequence of crack formation. At the bottom level, where the
degree of restraint is high, the compressive stress in steel is relatively low and increases upward. After cracking,
the tensile stress carried by concrete transfers to steel reinforcement in the vicinity of the crack. The value of
this transferred tensile stress is affected by the degree of base restraint and the number of cracks at that level.

As can be seen above, the presence of steel reinforcement did not affect the time of first crack initiation,
whereas it intentionally affected the sequence and pattern of crack propagation.
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Figure 7. Sequence of crack propagation for HR = a) 0%,

b) 0.2 %, c) 0.3 %, d) 0.5 %, e) 0.7 %, and f) 0.9%.

Figure 8. Time to crack of elements for HR = a) 0%, b)

0.2%, c) 0.3%, d) 0.5%, e) 0.7 %, and f) 0.9%.
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Figure 7. Continued. Figure 8. Continued.
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Figure 9. In cracked elements of the wall, a) concrete shrinkage strains and b) steel stresses.

Figure 10 shows the relationship between time and percentage of crack height. There it is clear that the
existence of steel reinforcement delays the propagation of any crack, which permits others cracks to initiate on
both sides of that crack. It can be seen that an increase in the horizontal steel ratio will cause a decrease in the
height of cracks at the end of the drying period studied.
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Figure 10. Crack propagation of the wall.

The crack width at any level in the wall is simply a function of the amount of the tensile strain formerly
carried by concrete and relieved by the process of cracking. In other words, the crack width at any level of the
wall is proportional to the difference between the restrained shrinkage strain and the tensile strain capacity of
concrete.

The width of a single crack and the spacing between the primary cracks are affected by discretization,
which means that a smaller element size results in a smaller crack width and in distances between cracks. The
values of crack width given in Figure 11 were calculated by multiplying the element width by the strain, which
is calculated in the center of the cracked element.

From comparing the values of width at different levels, it can be seen that the crack width increased to a
certain level above the base, and that it decreased upward until it took the lowest value at the tip of the crack.
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The change of crack width throughout the height of the wall indicates that the reinforcement ratio must
be increased in an ascending pattern toward the base.

The steel reinforcement allowed the opening of more, but finer, cracks (Figures 11 and 12). Hence, it
decreased the spacing and width of cracks.
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Figure 11. Effect of the horizontal reinforcement ratio on crack width.
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Figure 12. For different horizontal steel ratios, a) number of cracked elements and b) maximum crack width of elements.

Table 2 gives the crack widths calculated according to the present finite element procedure and according
to Kheder’s equations (Kheder et al., 1994):

Wmax = Smax [C1 (Rb − C2Ra) ev − eult/2] (34)

Smax =
2kdH

kd + ρH
(35)
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where Wmax is the maximum crack width, Smax is the maximum crack spacing, C1 is the coefficient for creep
effect and is taken equal to 0.6, C2 is the coefficient for slippage between the base and the wall and is taken
equal to 0.8 (the value estimated from crack width measurements at the level immediately above the restraining

base), ev is the total volumetric shrinkage, eult is the elastic tensile strain capacity of the concrete, Ra is the
degree of restraint after cracking, R b is the degree of restraint before cracking, k is the constant depending on
bar type (k = 0.57 for deformed steel bars), d is the bar diameter, ρ is the steel reinforcing ratio, and H is the
height of the wall. The values of ev and eult were obtained from the finite element analysis used in this study.

From Table 2, it can be seen that there was relatively good agreement between the values of crack width
from the 2 approaches.

Table 2. Width of crack versus relative crack height with different horizontal steel ratios.

Crack width (mm)

L/H = 1

Kheder
HR Relative height C1 = 0.6, C2 = 0.8
(%) of crack (%) ev = 288 ×10−6, eult = 150 ×10−6 Present study

k = 0.57

0

5 0.0316 0.0250
15 0.0315 0.0397
25 0.0276 0.0301
35 0.0145 0.0155

0.2
5 0.0211 0.0209
15 0.0279 0.0283
25 0.0141 0.0142

0.3
5 0.0153 0.0149
15 0.0140 0.0137

0.5
5 0.0151 0.0147
15 0.0129 0.0133

0.7
5 0.0169 0.0147
15 0.0168 0.0129

0.9
5 0.0140 0.0141
15 0.0130 0.0126

Conclusions

The following conclusions were obtained from the results of the present study:

• The degree of restraint calculated in the present analysis is in good agreement with the degree of restraint
estimated by Carlson and Reading. After each new crack initiation or old crack propagation, the degree
of restraint is redistributed along the wall.

• The sequence of cracking showed good agreement with the limitations of cracking sequence stated by ACI
Committee 209.

• The trend of cracking recognized in the present study is that the width of a primary crack is always greater
than that of any secondary crack in the same wall. Furthermore, the first crack to form was found to be
the widest one in the wall at any stage of drying.

• For economic purposes, crack width can be controlled by varying the steel distribution along the wall
height according to the variation of crack width through its height.
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